
Complementary Representation of ALBERT for
Text Summarization

Wenying Guo, Bin Wu, Bai Wang, Lianwei Li, Junwei Sun, Maham Nazir
Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia

Beijing University of Posts and Telecommunications, Beijing, China
{gwy, wubin, wangbai, llw, junweisun, maham}@bupt.edu.cn

Abstract—Pretraining has proved to be an effective strategy to
learn the parameters of the deep neural network. It captures the
world knowledge that can be adapted to downstream tasks. Text
summarization based on ALBERT [1] outperformed previous
work by a large margin. However, they only use the final layer
as a contextualized representation of the input text. Multiple
studies have proven that intermediate layers also encode the rich
hierarchy of linguistic information. In this paper, we propose
a Fast Complementary Representation Network (FCRN), which
dynamically incorporates linguistic knowledge spread across the
entire ALBERT for extractive selection. Different from previous
work, we measure the importance of hidden layers by all sentence
representations rather than all token embeddings, which can filter
nonsignificant words and takes six times less time during training.
FCRN first obtains the importance of each layer by sentence
embeddings and then automatically absorbs the supplementary
information to ALBERT’s output. We conduct experiments on
CNN/DailyMail and XSum datasets. The results show that our
model obtains higher ROUGE scores.

Index Terms—Text summarization, Pretrained Language
Model, Fast Complementary Representation network

I. INTRODUCTION

Text summarization is the task of condensing the essence
of a document to converse the main information contents and
main ideas quickly. There are two paradigms to generate a
summary: extractive summarization and abstractive summa-
rization. Extractive summarization generates the summary by
scoring and extracting the high-score sentences (or more fine-
grained units) from source documents generally, such as [2],
[3]. In contrast, abstractive summarization is an ideal form of
summarization since it generates the novel sentence required to
have recourse to world knowledge. Abstractive summarization
generates a summary in a human-written way.

Extractive summarization remains more reliable than ab-
stractive summarization since the summary is composed of
the text span (like sentence) in the source document. In
this paper, we primarily focus on extractive summarization.
The pretrained language model has recently brought Natural
Language Processing (NLP) to a new era since the emergence
of BERT [4].

Numerous summarization approaches have achieved state-
of-the-art results based on the pretrained language models.
BERTSUMEXT [5] built a BERT-based minimum-requirements
model, which outperformed previous work by a large margin.

DOI reference number: 10.18293/SEKE2021-084

DISCOBERT [6] extracted sub-sentential discourse units based
on BERT and Graph Convolutional Network. MATCHSUM [7]
adopted a Siamese-BERT architecture to select the candidate
summary, which was the most similar to the target summary.
TSEM [8] showcased the effectiveness of ALBERT to handle
text summarization. However, the improvement on automatic
metrics like ROUGE has reached a bottleneck. They only use
the final layer of the pretrained language model as contex-
tualized representations of the input text. The popularity of
transformer-based models has driven researchers to study what
was behind their success.

Multiple studies [9]–[11] have proven that transformer-
based models composed a hierarchy of linguistic signals
ranging from surface to semantic features. Intermediate layers
also encode the rich hierarchy of linguistic information. Taking
the output of the pretrained language model restricts the power
of pretrained representation when fine-tuning [9], [12], [13].
ALBERT has fewer parameters and focuses on modeling inter-
sentence coherence. Meanwhile, TSEM has achieved better
performance based on ALBERT than BERTSUMEXT based on
BERT in the summarization task. In this paper, we propose an
architecture stacked on ALBERT, namely Fast Complementary
Representation Network (FCRN), which can leverage the rich
linguistic knowledge to enhance the power of ALBERT. There
is no research to study the effectiveness of the fused represen-
tation of the ALBERT on text summarization. In our model,
The ALBERT’s embeddings of hidden layers are complemen-
tary to the output of ALBERT. To capture the information
hierarchically, different from previous work [12], [13], We first
obtain the sentence embedding in the document to capture the
gist of the individual sentence. The number of sentences is
far more than tokens, which can reduce training time. The
embeddings of sentences that contain the main information
are input to FCRN to catch a complementary representation
of the final output. We highlight our contributions as follows:

• We proposed FCRN to capture more language infor-
mation of sentence. We also study the performance of
different language knowledge on text summarization. To
our knowledge, we are the first ones to dynamically fuse
the rich information spread across the entire model on
ALBERT.

• In our model, We propose taking sentence embeddings
rather than all token embeddings as the input of FCRN.



It shortens the training and inference time with better
performance. Our model can generate a better ground-
truth to train the MATCHSUM.

• We identify the importance of linear word order, syntactic
rule, and semantic information for the summarization
task.

II. RELATED WORK

A. Pretrained Language Model
The state-of-the-art result has been achieved by pretrained

language models in many NLP tasks. Pretrained language
models have advanced downstream NLP tasks by learning
universal language representation. In earlier research, the pre-
trained language model aims to learn good word embeddings
containing semantic meaning. Those pretrained representa-
tions are added to downstream tasks as additional features.
For BERT, ALBERT, and RoBERTa [14], they obtain the
embedding of the token with context. Unlike the earlier
pretrained language models, they can capture syntactic struc-
tures, semantic rules, and context-dependent natures of words.
The representation of a given token in vocabulary depends
on the whole text. Those models are stacked with a deep
network, fine-tuned on downstream tasks with a better model
initialization.

Currently, the transformer-based pretrained language model
has drawn more attention. The best known transformer-based
model is BERT. The curiosity about transformer-based models
has driven over 150 studies of the popular BERT model.
Based on this knowledge, many enhanced versions of BERT
are proposed. The backbone of their architecture is similar
to BERT. RoBERTa improves BERT by dynamic masking.
ALBERT replaces the next sentence prediction with sentence
order prediction to model inter-sentence coherence. All of
them can be fine-tuned to adapt to special downstream tasks.

B. Abstractive Summarization
Neural abstractive summarization models conceptualize the

task as a sequence-to-sequence problem, where an input se-
quence is mapped into another output sequence. In 2015, Rush
et al. [15] applied the neural encoder-decoder architecture to
abstractive summarization and thus paved the way for using
neural networks for abstractive summarization. Nallapati et
al. [16] and See et al. [17] applied a pointer generator network
which generates words from a fixed vocabulary or copies
from the source document, which is an effective method to
handle Out of Vocabulary (OOV). See et al. presented a
coverage mechanism to discourage repetition. To solve the
mismatch between the learning object and the evaluation
criterion, reinforcement learning-based models trained by op-
timizing the ROUGE metric achieved higher performance.
Encoder-decoder transformers have shown great successes for
abstractive summarization.

C. Extractive Summarization
Extractive summarization has gained more attention with its

simplicity and facticity. It is often defined as a binary classifi-
cation. The label of the text span indicates whether it should be

included in the summary. Initially, statistical methods generate
summaries leveraging the similarity between sentences. They
consider statistical features, including sentence position, term
frequency (TF), and the inverse document frequency (IDF).

Neural networks are primarily introduced to text summa-
rization by modeling the semantic meaning of sentences [18].
Recently, deep neural networks have achieved great success in
summarization tasks. Neural text summarization generally ob-
tains the sentence representation by a neural encoder. Nallapati
et al. [19] instantiated the encoder by recurrent neural network
(RNN). Zhong et al. [20] leveraged transformer to encode the
semantic meaning by interacting between sentences.

Graph Neural Networks (GNN) can learn from complex
structured data. Xu et al. [6] presented how GNN can be use-
fully applied in text summarization. NEUSUM [21] was a neu-
ral extractive document framework that jointly learnt to score
and select sentences. The reinforcement learning-based model
trained by directly optimizing the ROUGE metric achieved
state-of-the-art results [22], [23]. Pretrained language models
have achieved state-of-the-art results on extractive summa-
rization. HIBERT [3], BERTSUMEXT, MATCHSUM are based
on BERT, and TSEM [8] explored the potential of ALBERT
on text summarization. It showed ALBERT performed better
than BERT with fewer parameters. The pretrained language
model was fine-tuned to adapt to text summarization in the
above work. They only use the final layer as a contextualized
representation of the input text.

Compared to the models outlined above, we explore the
potential of fusing the representation of multiple layers as
complementary to the last layer. It makes sentence embed-
dings capture more language knowledge. Moreover, sentence
embeddings are used to weight all hidden embeddings which
can take less time and capture the sense of sentence.

III. MODEL

A. Overview

Fig. 1 presents an overview of our model, which consists
of a Sentence Encoder and FCRN. For the Sentence Encoder,
a pretrained ALBERT is used to output the representation of
each sentence in all hidden layers. FCRN takes the output of
the Sentence Encoder as input and dynamically summarizes
the hidden representation based on the output of Bi-LSTM,
which enhances the power of the final output. The outputs of
FCRN are used to predict the label of the sentence.

Let D = [sent1, sent2,..., sentn] denote a document with
n sentences, where senti is the i-th sentence. We formulate
extractive summarization as a sequence labeling task, in which
the label sequence Y= [y1, y2,..., yn] ∈ {0, 1} indicates
whether the corresponding sentence is included in the sum-
mary or not. We will calculate the final predicted score ŷi.
The loss of our model is the binary classifier entropy between
the prediction and the gold label.

L = −
n∑

i=1

(yi · log(ŷi) + (1− yi) · log(1− ŷi)) (1)



ALBERT

FCRN

Classifier

[CLS] sent1 [SEP][CLS] sent2 [SEP]…[CLS] sentn [SEP]

[CLS]1 [CLS]2

FCRN

Linear layer

Bi-LSTM Bi-LSTM Bi-LSTM

Com layer12

Concat
Yn-1 Yn

σ×

layer12layer1 layer2

layer2

layer1

layer12

Y2Y1

[CLS]n

[CLS]1 [CLS]2 [CLS]n

[CLS]1 [CLS]2 [CLS]n

[CLS]1 [CLS]2 [CLS]n

Fig. 1. (left) is an overview of our model, FCRN is stacked on ALBERT encoder. (right) is the architecture of FCRN. σ is a softmax function to calculate
the importance of each layer.

B. Sentence Encoder

ALBERT is a transformer-based encoder, which can gener-
ate the contextual representation of words based on tokens,
segment tokens, and position ids. ALBERT is pretrained
on a sentence or sentence pair, and a special classification
token ([CLS]) is used as the aggregate representation for the
classification task. Given Document D is a document with
multiple sentences needing to be classified, we insert [CLS],
and [SEP] at the beginning and the ending of each sentence.
[CLS] is to capture the meaning of an individual sentence and
[SEP] is viewed as the boundary of the sentence. Segment
token {0, 1} indicates the position of sentences is odd or even
in the document. For document D, the input tokens are [CLS],
sent1, [SEP], [CLS], sent2, [SEP], ..., [CLS], sentn, [SEP]],
and the segment tokens are [0, 1, 0, 1, ...]. We input D as the
input to ALBERT like in Fig. 1. All hidden-state embeddings
are computed by ALBERT, The formula is as follows:

T1, ...Tl=ALBERT([CLS],sent1,[SEP],...,
[CLS],sentn,[SEP])

(2)

s1, ...sl = Extractor(T1, ..., Tl) (3)

where Ti is the output of the i-th layer, and l denotes the
number of layers in ALBERT. However, Ti contains the
embedding of each token in the document. We select the
embeddings of [CLS] as the sentence embeddings by the
Extractor in each layer. The sentence embeddings of i-th layer
si ∈ Rn×d, where n is the number of sentences and d is the

hidden size of the encoder. They will be sent to FCRN to
generate the final sentence representation.

C. FCRN

FCRN is proposed to generate a more powerful represen-
tation. We can select a different number of input layers for
FCRN. To capture the long-range dependency of sentences,
a single-layer bidirectional Long Short Time Memory (Bi-
LSTM) are used to weight all hidden sentence embedding.
We apply Layer Normalization (LayerNorm) to Bi-LSTM to
stabilize the training. The formulation of Bi-LSTM are as
follows: 

Fi

Ii
Oi

Gi

 = LNh(WhHi−1) + LNx(Wxxi) (4)

Ci = σ (Fi)� Ci−1 + σ (Ii)� tanh (Gi−1) (5)

Hi = σ (Oi)� tanh (LNc (Ci)) (6)

Where Hi is the hidden state at time i, Ci is the cell state
at the time i, and Ii, Fi, Gi, Oi are the input, forget, cell, and
output gates, LNh, LNx, LNc are different layer normalization
operations. The bias is ignored in the formulation. xi is the
input in step i.

The input to the FCRN is s1, s2, ..., sl. We take si to Bi-
LSTM. Bi-LSTM will obtain a fixed-sized embedding Ki to
capture the knowledge in i-th layer. We take the concatenation



TABLE I
THE RESULTS OF OUR PROPOSED MODELS ON CNN/DAILYMAIL

DATASET. MODELS WITH SUBSCRIPT * WERE TRAINED AND TESTED ON
THE ANONYMIZED-VERSION DATASET. FCRN(w/o)∗ ((w)∗) MEANS THE

MODEL WITHOUT (WITH) * LAYERS.

Model R1 R2 RL
ORACLE 51.64 30.48 47.88
LEAD-3 40.37 17.44 36.61
Rnn-ext+RL* 40.55 18.42 36.84
NEUSUM 41.86 19.16 38.20
BERTSUMEXT 43.32 20.32 39.71
FCRNCom 43.43 20.36 39.78
TSEM-sentence 43.54 20.47 39.93
FCRN 43.66 20.54 40.03
MATCH-ORACLE 51.08 26.94 46.99
MATCH-ORACLE-FCRN 51.29 27.15 47.39
MATCHSUM-BERT 44.22 20.62 40.38
MATCHSUM-FCRN 44.36 20.70 40.51
FCRN(w/o)high 43.48 20.36 39.85
FCRN(w/o)middle 43.34 20.27 39.71
FCRN(w/o)low 43.61 20.51 40.01
FCRN(w)high 43.28 20.22 39.65
FCRN(w)middle 43.64 20.53 40.04
FCRN(w)low 43.05 19.98 39.40

of each direction’s final state as a knowledge of the current
layer.

Ki = ReLU (LayerNormLSTM (si)) (7)

The importance of each layer will be calculated as:

αi = softmax (Ki) (8)

Given the importance of each layer, we calculate the comple-
mentary representation Com to the final output of the encoder,
and we concatenate them as the representation of all sentences
which captures more language information.

Com =

n∑
i=1

αisi (9)

S = [sl | Com] (10)

A classifier is stacked on FCRN to calculate the label ŷi.
The classifier is instantiated by a linear layer and a sigmoid
function.

ŷi = σ(WeSi + bi) (11)

IV. EXPERIMENTS

In this section, we present our experiments from text
summarization datasets, evaluative criteria, the implementation
details of our model, comparison with multiple previous
approaches, hierarchy linguistic knowledge analysis and the
compute efficiency studies.

A. Datasets

We evaluate our model on two benchmark datasets, namely
CNN/DailyMail and XSum. These datasets possess diverse
summary characteristics. The proportion of novel n-grams
represents the level of abstraction of the dataset. The highly
abstractive dataset can reflect the potential of the model to
capture the semantic information of text span. We used a

TABLE II
THE RESULTS OF OUR PROPOSED MODELS ON XSUM DATASET.

Model R1 R2 RL
ORACLE 28.96 8.19 21.86
LEAD 19.66 2.39 14.80
BERTSUMEXT 23.53 4.54 17.80
TSEM-sentence 23.91 4.69 18.11
FCRN 24.14 4.74 18.27
MATCH-ORACLE 29.54 7.40 22.55
MATCH-ORACLE-FCRN 30.10 7.38 23.08

greedy algorithm similar to [19] to obtain an oracle summary
for each document to train extractive models.

1) CNN/DailyMail: CNN/DailyMail dataset is generated
by modifying a question answering dataset, including 93K
articles from CNN and 200k articles from Daily mail web-
sites. Following previous work, we conduct experiments
on the non-anonymized version and split the dataset into
287,226/13,368/11,490 for training, validation, and testing.
Due to the limitations of the memory and the model, the
document is truncated to 512 tokens.

2) XSum: XSum dataset consists of 226,711 BBC articles
with single-sentence summaries. It has more novel n-grams
in the target summaries that do not appear in their source
document than CNN/DailyMail dataset. Following Narayan
et al. [24], we split XSum into 204,045/11,332/11,334 for
training, validation, and testing.

B. ROUGE

ROUGE is a package for the automatic evaluation of
system-generated summaries by counting the number of over-
lapping units between the generated summary and the refer-
ence summary. There are three ROUGE metrics extensively
used in text summarization, namely the F1 score of ROUGE-
1, ROUGE-2, and ROUGE-L. (R1 and R2 are shorthands
for ROUGE-1, ROUGE-2; RL is ROUGE-L). R1 and R2
evaluate the summary by counting the overlapping uni-grams
and bi-grams, respectively. RL assesses by longest common
subsequence. Following previous work, we report R1, R2, RL
as a means of assessing fluency.

C. Experimental Setup

1) Implementation details: We implemented our model
based on the “albert-based-v2” version of ALBERT1. We set
the hidden size of LSTM to 384 due to the Layer Normal-
ization. Following Guo et al. [8], the Adam optimizer with a
learning rate of 2e−3, β1 = 0.9, β2 = 0.999 is used during
training. The warmup strategy increases the learning rate from
0 to 2e−3 on the first 15000 steps:

lr = 2e−3 ·
(
step−0.5, step · warmup−1.5

)
(12)

We conduct our experiments on 3 GPUs (RTX 2080 Ti) with
50000 steps. The gradient accumulation with two steps is used
to enlarge the batch size. Model checkpoints are evaluated on

1https://github.com/huggingface/transformers/tree/master/src/transformers/
models/albert

https://github.com/huggingface/transformers/tree/master/src/transformers/models/albert
https://github.com/huggingface/transformers/tree/master/src/transformers/models/albert


TABLE III
THE RESULTS OF COMPUTE EFFICIENCY STUDIES ON CNN/DAILYMAIL,
INCLUDING SPEED COMPARISON WITH FCRN-TOKEN AS THE BASELINE

Model R1 R2 RL Speeduptrain Speedupinf

FCRN-token 43.58 20.48 39.97 1.0 1.0
FCRN 43.66 20.54 40.03 5.9x 1.65x

the validation set per 1000 steps. We saved the three best
checkpoints on evaluated losses and record the performance
of the best checkpoints on the test set.

We obtained the scores of the candidate sentences and sorted
the sentences in descending order based on these scores. Top-3
sentences are selected to form the summary.

2) Trigram Blocking: This is a simple but effective ap-
proach to improve performance during inference. Given a
selected summary set and a sentence, the sentence will be
selected into the summary set when it has no trigram overlap-
ping with the selected summary. We also apply this approach
to this work.

D. Experimental Results and Analysis

A comprehensive experiment is conducted on
CNN/DailyMail and XSum. We use the official ROUGE
script (version 1.5.5) to evaluate the generated summaries.
The results are reported as follows.

1) CNN/DailyMail: Table I summarizes our results on
the CNN/DailyMail dataset. We list strong baselines with
different learning approaches. LEAD-3 is a commonly used
and strong extractive baseline. It simply selects the first three
sentences as a summary. Rnn-ext+RL [22] applies policy-
based reinforcement learning to the extractor. NEUSUM [21]
extracts the summary by jointly learning to score and select
a sentence. BERTSUMEXT [5] extends BERT to text sum-
marization by inserting multiple [CLS], segment information,
and stacking a linear layer. TSEM-sentence [8] is the first
stage of TSEM to assign relevance scores to sentences. We
change it as a baseline by choosing three top-ranked sentences
to compose a summary. FCRNCom predicts the score of a sen-
tence only by complementary representation Com. MATCH-
ORACLE [7] extracted by BERTSUMEXT is the ground-
truth used to train MATCHSUM. This model has achieved the
state-of-the-art extractive result on CNN/DailyMail. MATCH-
ORACLE-FCRN extracts the ground-truth by our model.
MATCHSUM-FCRN is trained on MATCH-ORACLE-FCRN,
while MATCHSUM-BERT is trained on MATCH-ORACLE.

From the first block of Table I, we observed that our
approach outperformed the baseline models. As compared to
TSEM-sentence and FCRNCom, which only used the final out-
put of ALBERT and the complementary embedding, respec-
tively, our model improved the ROUGE score. It means that
the knowledge of the hidden layers as complementary to the fi-
nal layer indeed achieves better performance. TSEM-sentence
performs than FCRNCom means semantic information is more
critical for text summarization. The fusion representation of
hidden layers can weaken semantic information of a sentence.

FCRN provides syntactic and surface information as comple-
mentary to semantic features. This further confirms that text
summarization requires comprehensive linguistic knowledge.

The second block in Table I presents that the MATCHSUM
ground-truth extracted by our model provides a stronger oracle
than BERTSUMEXT. The MATCHSUM approach performs
better with the MATCH-ORACLE-FCRN.

2) XSum: Our main results on the XSum dataset are
shown in Table II. Again, we report the performance of
ORACLE, LEAD, MATCH-ORACLE-FCRN, MATCH-
ORACLE, and BERTSUMEXT where LEAD baseline simply
selects the first two sentences from the document. XSum
has a lower ROUGE score than CNN/DailyMail because its
summary is more abstractive. Following previous work [5], [8],
we process the XSum dataset with a greedy algorithm and then
conduct experiments on TSEM-sentence. The experiment re-
sults demonstrated the effectiveness of ALBERT on the XSum
dataset. We can observe that our model with complementary
information to the final layer again is superior to all baselines.
MATCH-ORACLE-FCRN generates a better ground-truth to
train the MATCHSUM.

3) Hierarchy Linguistic Knowledge Analysis: Previous
work has proven that surface features are most prominent in
lower layers, syntactic features in middle layers, and semantic
features in higher layers. In this work, we split all hidden lay-
ers of ALBERT into low layers (1-4), middle layers (5-8), high
layers (9-12). We take them as the input of FCRN, respectively.
It can change the linguistic knowledge complementary to the
output of ALBERT. A comprehensive experiment is conducted
to detect the effect of different layers on CNN/DailyMail
dataset. The results are reported in the third block of Table I.

We observe that the model without middle layers is the
worst, and high layers are more effective than low layers. It
means that complementary syntactic knowledge improves the
overall system performance better than semantic knowledge on
CNN/Daily Mail dataset. The reason is due to the similarity
between the gold and sentences in the generated summary.
Meanwhile, the final layer of ALBERT has included semantic
information. It makes no difference whether or not the lower
layers are added since the lower layers possess the most in-
formation about linear words. We also observe the knowledge
of all hidden layers as the input to FCRN can achieve better
performance.

E. Compute Efficiency

We conduct experiments on CNN/DailyMail dataset to
verify the compute efficiency. We trained models with all token
embeddings and sentence embeddings, namely FCRN-token
and FCRN, respectively. We report the running time, inference
time, and the performance of models in Table III. FCRN is
about 6 times faster than token-level in iterating through the
data during training and about 1.65 times during inference.
Compared to FCRN-token, FCRN will require significantly
less time to train since a sequence of inputs passes through
LSTM cell, one at a time. The performance of FCRN-token
does not improve with fusion based on token embeddings but,



using sentence embeddings achieves better performance. The
above phenomena suggests that using sentence embedding is
more compute-efficient and capture the more comprehensive
knowledge of each layer. The model performance poorly
removing the complementary information, demonstrating the
complementary representation is crucial for predicting the
summary of a document.

V. CONCLUSION

In this paper, we propose FCRN to showcase how to fuse all
linguistic knowledge in hidden layers and enhance the power
of ALBERT. Experiments demonstrate constant improvement
over baselines on two benchmark datasets. Furthermore, Using
sentence embeddings not only achieved better results but
also decreased training and inference time. We find that the
syntactic information is worthy of note in our model. We plan
to consider more syntactic information and import more world
knowledge as a part of our future work.

VI. ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China (2018YFC0831500), the
National Natural Science Foundation of China under Grant
No.61972047 and the NSFC-General Technology Basic Re-
search Joint Funds under Grant U1936220.

REFERENCES

[1] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” in International Conference on Learning Representations, 2020.

[2] D. Wang, P. Liu, Y. Zheng, X. Qiu, and X. Huang, “Heterogeneous graph
neural networks for extractive document summarization,” in Proceedings
of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, Jul.
2020, pp. 6209–6219.

[3] X. Zhang, F. Wei, and M. Zhou, “Hibert: Document level pre-training
of hierarchical bidirectional transformers for document summarization,”
arXiv preprint arXiv:1905.06566, 2019.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis,
Minnesota: Association for Computational Linguistics, Jun. 2019, pp.
4171–4186.

[5] Y. Liu and M. Lapata, “Text summarization with pretrained encoders,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:
Association for Computational Linguistics, Nov. 2019, pp. 3730–3740.

[6] J. Xu, Z. Gan, Y. Cheng, and J. Liu, “Discourse-aware neural extractive
text summarization,” in Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for
Computational Linguistics, Jul. 2020, pp. 5021–5031.

[7] M. Zhong, P. Liu, Y. Chen, D. Wang, X. Qiu, and X. Huang, “Extractive
summarization as text matching,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. Online:
Association for Computational Linguistics, Jul. 2020, pp. 6197–6208.

[8] W. Guo, B. Wu, B. Wang, and Y. Yang, “Two-stage encoding extractive
summarization,” in 2020 IEEE Fifth International Conference on Data
Science in Cyberspace (DSC), 2020, pp. 346–350.

[9] G. Jawahar, B. Sagot, and D. Seddah, “What does BERT learn about the
structure of language?” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, pp. 3651–3657.

[10] I. Tenney, D. Das, and E. Pavlick, “BERT rediscovers the classical
NLP pipeline,” in Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, pp. 4593–4601.

[11] A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer in bertology:
What we know about how BERT works,” Trans. Assoc. Comput.
Linguistics, vol. 8, pp. 842–866, 2020.

[12] Y. Goldberg, “Assessing bert’s syntactic abilities,” arXiv preprint
arXiv:1901.05287, 2019.

[13] C. Zhu, M. Zeng, and X. Huang, “Sdnet: Contextualized attention-based
deep network for conversational question answering,” arXiv preprint
arXiv:1812.03593, 2018.

[14] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[15] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model
for abstractive sentence summarization,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing.
Lisbon, Portugal: Association for Computational Linguistics, Sep. 2015,
pp. 379–389.

[16] R. Nallapati, F. Zhai, and B. Zhou, “Summarunner: A recurrent neural
network based sequence model for extractive summarization of docu-
ments,” in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, California, USA, S. P.
Singh and S. Markovitch, Eds. AAAI Press, 2017, pp. 3075–3081.

[17] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summarization
with pointer-generator networks,” in Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Vancouver, Canada: Association for Computational
Linguistics, Jul. 2017, pp. 1073–1083.

[18] M. Kågebäck, O. Mogren, N. Tahmasebi, and D. Dubhashi, “Extractive
summarization using continuous vector space models,” in Proceedings
of the 2nd Workshop on Continuous Vector Space Models and their
Compositionality (CVSC). Gothenburg, Sweden: Association for Com-
putational Linguistics, Apr. 2014, pp. 31–39.

[19] R. Nallapati, F. Zhai, and B. Zhou, “Summarunner: a recurrent neural
network based sequence model for extractive summarization of docu-
ments,” in Proceedings of the Thirty-First AAAI Conference on Artificial
Intelligence, 2017, pp. 3075–3081.

[20] M. Zhong, D. Wang, P. Liu, X. Qiu, and X. Huang, “A closer look
at data bias in neural extractive summarization models,” arXiv preprint
arXiv:1909.13705, 2019.

[21] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking sentences for extrac-
tive summarization with reinforcement learning,” in Proceedings of the
2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers). New Orleans, Louisiana: Association for Computational
Linguistics, Jun. 2018, pp. 1747–1759.

[22] Y.-C. Chen and M. Bansal, “Fast abstractive summarization with
reinforce-selected sentence rewriting,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Melbourne, Australia: Association for Computational
Linguistics, Jul. 2018, pp. 675–686.

[23] Q. Zhou, N. Yang, F. Wei, S. Huang, M. Zhou, and T. Zhao, “Neural
document summarization by jointly learning to score and select sen-
tences,” in Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Melbourne,
Australia: Association for Computational Linguistics, Jul. 2018, pp.
654–663.

[24] S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just
the summary! topic-aware convolutional neural networks for extreme
summarization,” in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing. Brussels, Belgium: Associ-
ation for Computational Linguistics, Oct.-Nov. 2018, pp. 1797–1807.


	Introduction
	Related Work
	Pretrained Language Model
	Abstractive Summarization
	Extractive Summarization

	Model
	Overview
	Sentence Encoder
	FCRN

	Experiments
	Datasets
	CNN/DailyMail
	XSum

	ROUGE
	Experimental Setup
	Implementation details
	Trigram Blocking

	Experimental Results and Analysis
	CNN/DailyMail
	XSum
	Hierarchy Linguistic Knowledge Analysis

	Compute Efficiency

	Conclusion
	ACKNOWLEDGMENT
	References

