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Abstract- Efficient defect detection is crucial for main-
taining a stable power system. One method is to check the
status of electrical equipment through images or videos
taken by UAVs (unmanned aerial vehicles), overcoming
various difficulties of manual inspection in complex en-
vironments such as high-altitude, snowy or rainy days,
etc. Unfortunately, it is still a difficult challenge to pro-
cess the data returned by UAVs automatically and effec-
tively. This study proposes a defect detection algorithm to
process UAV images of power equipment based on Faster-
RCNN. Additionally, we use multiple optimization strate-
gies to improve the performance of the benchmark al-
gorithm, including feature pyramid network, deformable
convolution, online hard example mining, and data aug-
mentation. Our results show that the average accuracy
of experiments obtains nearly 60% improvement com-
pared to that naive deep learning target detection algo-
rithm. Meanwhile, this method is suitable for various de-
fects of power equipment with high accuracy, thus bene-
fiting thousands of households.
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1 Introduction
Periodical inspection, troubleshooting, and timely repair are es-

sential to the stability of the power system, especially to the long-
distance high-voltage transmission circuit with complex topograph-
ical distributions. The common defects of electric devices are shown
in Fig.1, including foreign matters in the tower, damage of the insu-
lator, abrasion of wires, and corrosion of hardware. If these common
electrical equipment defects are not found and fixed in time, it will
cause extensive equipment damage and paralyze the power grid. To
guarantee the steady operation of these circuit devices, unmanned
aerial vehicle (UAV) photography has become the top choice for an
electric system inspection. UAVs can capture images or videos of
electric devices in a complex environment. In contrast, manual in-
spections often face tremendous challenges under which. And then,
we can make out the defect type and position by processing these
images or videos. Therefore, intelligent analysis of power equip-
ment defects through images or videos obtained by UAVs plays a
significant role in improving fault detection and repair efficiency.

Over the years, tremendous efforts have been made to process the
images obtained by UAVs. In general, these methods can be roughly
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Figure 1: Common defects of power equipment

divided into three categories: The first and the most commonly used
one is manual analysis [1], which is to inspect and analyze graphics
or video information manually, bearing the highest accuracy. But, it
also has obvious drawbacks. The high demand for the quantity and
quality of professionals makes it expensive due to the vast amount of
power infrastructure relying on manual inspection. Meanwhile, in-
specting images manually for an extended period can cause fatigue
and reduce judgment accuracy, thereby omitting some equipment
defects and causing safety hazards. The second one is the traditional
image-based defect detection method that inspects power lines by
analyzing infrared images [2]. This method has satisfactory perfor-
mance in detecting defects that lead to large temperature gradients,
such as local high temperatures caused by wire corrosion. Neverthe-
less, not all power failures will cause temperature changes in power
equipment, and infrared image analysis has its limitations. The third
one is to use deep learning methods, which utilize data-driven train-
ing of convolutional neural networks to locate and classify defects
[3]. Deep learning methods can automatically extract image fea-
tures [4], simplify the image preprocessing process, and effectively
improve target detection efficiency compared with traditional image
fault detection methods.

However, the existing deep learning methods still have some
shortcomings in solving these problems, such as insulator identifi-
cation methods [5], or power transformer fault diagnosis [6], they
can achieve good results under limited data sets. But these methods
can only have satisfactory performance for specific problems, which
do not work for other kinds of defects. Because Faster-RCNN [7]
is widely used in the industry and has high stability, strong versatil-
ity, which can relatively accurately identify multiple defects. This
paper uses the Faster-RCNN algorithm as the benchmark algorithm.
Then we propose an automatic detection method that can recognize



Figure 2: Work flow of the defect detection algorithm based on improved Faster-RCNN

various defects in power equipment.
Although Faster-RCNN is already a relatively mature detection

algorithm, defect detection in power systems still faces many chal-
lenges: Firstly, there are so many types of defects to be detected that
it is difficult for the algorithm to locate them accurately in UAV im-
ages. Secondly, complex and diverse backgrounds of pictures will
bring annoying noise to the target detection algorithm, thus boosting
the robustness of the algorithm in different scenarios must be taken
into consideration. Thirdly, UAVs often shoot objects from different
heights and angles, so the captured images’ target has different sizes
and angles. The recognition algorithm needs to be able to detect
targets at multiple scales.

This paper proposes a defect detection method for power equip-
ment aerial images based on the improved Faster-RCNN algorithm.
The system framework is shown in Fig.2: UAV aerial photography
obtains videos or images of power equipment in different environ-
ments and transmits these images to the server after relevant pro-
cessing. The improved Faster-RCNN target detection algorithm can
automatically detect defects in power equipment images and auto-
matically classify them, and then professionals will troubleshoot and
repair the defect.

According to the characteristics of the UAV’s power equipment
images, the improvements made to the original Faster-RCNN algo-
rithm in this paper are as follows: First, to solve the problem of dif-
ferent resolutions and variables camera distances of images, we add
a multi-dimensional feature extraction [8] module to adjust the net-
work structure, combining top-down and bottom-up feature extrac-
tion methods to detect defects of different sizes in images of differ-
ent scales. This improvement allows the algorithm to obtain a larger
receptive field when paying attention to minor electrical equipment
defects. Second, because the defective shapes of power equipment
are primarily irregular, the traditional convolution shape is relatively
single and does not have strong adaptability to defect detection of
power equipment. We use deformable convolution [9] to enhance
the feature extraction of defects of different shapes. Third, we use
online hard example mining (OHEM) [10], and data augmentation
[11] methods to solve the problem that there are generally only a
single or a small number of electrical equipment defects in a single
image captured by UAV. The improved algorithm framework pays
attention to positive samples in the training process. It has a greater
response to the area where the power equipment is located and where
the power equipment is defective. More details are shown in Section
III.

Our major innovations and contributions are as follows:

• This paper proposes an image defect detection method for
power equipment based on deep learning. The method realizes
integrated intelligent processing of defect detection, including
UAV shooting, detecting and classifying defects automatically,
and repairing electrical equipment.

• We add modules to optimize the performance of the native fault
detection algorithm based on Faster-RCNN, including multi-
scale feature extraction, deformable convolution, online hard

example mining, and data amplification.

• Through the 5847 images of UAV’s electrical equipment with
different resolutions for comparison experiments, it is proved
that our algorithm for detecting defects of electrical equipment
improves the accuracy by 60% on average compared with the
benchmark algorithm. The method reduces the problem of
excessive resource consumption in the maintenance of basic
power facilities, and it is of great significance to national life
and economic development.

This paper is organized as follows. In Section II we discuss some
related work. In Section III, We will present our main idea. In Sec-
tion IV we will show our experiment results, and we conclude in
Section V.

2 Related Work
Although UAVs can capture numerous images and videos for

electric equipment, they can not detect the defects of the equip-
ment by automatically surveying those data. Therefore, image post-
processing plays a critical role in defect detection after UVA im-
age acquisition. The conventional processing method relies on the
experience of the workers, which includes processing the images
manually and marking the potential danger information via visual
inspection. The cost of this approach is relatively high due to its
experience dependence, labor enrichment, and material resource de-
pendence. Thus, there is an unmet need to develop novel approaches
to detect defects with better efficiency and lower cost.

Infrared image-based processing is one of the most commonly
used methods for fault detection. Kazuo Yamamoto et al.[12] de-
tected the transmission lines’ faults in power equipment by fusing
infrared images with RGB images, which enlarged the difference
between those two images and contributed to targeting extraction.
Based on this research, Walter Fetter Lages et al.[13] developed a
real-time fault detection module for transmission lines. Although
this method simultaneously provides and visualizes the faults infor-
mation in power lines, it can only detect transmission lines with tem-
perature difference characteristics. Moreover, the detection ability
for some other types of faults is weak. Additionally, the operating
ambient temperature of UAVs is relatively complicated. During the
shooting process, the imaging attitude is uncertain, and there are
many interferences. Furthermore, different infrared devices cannot
work together, which limits the accuracy of the detection.

With the development of modern digital image technology, artifi-
cial intelligence, and other disciplines, diverse methodologies have
been developed to optimize image post-processing and achieve vary-
ing results [14]. Since traditional image processing methods above-
mentioned cannot address the unmet need in fault detection for
power equipment, many scholars turn their attention to deep learning
methods to explore novel detection methods with better efficiency.
With the breakthrough of artificial neural network theory, an artifi-
cial neural network has gradually become an accurate and efficient
solution to learn specific tasks and complete the corresponding tasks.



(a) Feature pyramid network module (b) Deformable convolution (c) OHEM and data augmentation

Figure 3: Schematic diagram of improvement

The literature [15] applied the AlexNet as a feature extraction net-
work when using the random forest algorithm to detect insulator fail-
ures. Also, for detecting the fault in insulators, The literature [16] in-
troduced multi-layer perceptrons to extract the location-related fea-
tures and local contour features of the captured images. Moreover,
The literature [17] adopts the neural network method to filter out the
background noise in detecting the transmission line. Notably, with
the combination of convolutional neural network and wavelet trans-
form, The literature [5] can detect faulty transmission lines more
accurately due to the better classification and extraction of fault fea-
tures. However, the deep learning method has made progress in
detecting electrical equipment with drone aerial photography, espe-
cially in accuracy and automation. The types of faults detected by
related studies are relatively single. Most of them are in the prelimi-
nary exploration stage. Unlike the above deep learning methods, we
will describe how to solve the problem more universally by improv-
ing the benchmark algorithm in the next part.

3 The proposed method
This section will introduce how to apply deep learning methods

to identify and classify defects in images. This paper aims to realize
intelligent processing as much as possible. Moreover, the Faster-
RCNN algorithm is widely used in aerial inspection [18] [15] and
has high stability [19]. Therefore, we select the Faster-RCNN as the
benchmark framework for defect detection in UAV images of power
equipment. However, defects are small targets, and the traditional
convolutional layers decrease sensitivity when deepening in the ac-
tual scene, it is easy to ignore small targets. So we select the residual
network [20] Resnet101 as the feature extraction network. As the
overall accuracy of the benchmark algorithem is still not high, we
consider the specific problems encountered in UAV photography to
make three improvements to achieve higher accuracy in the follow-
ing part.

3.1 Feature pyramid network
The detected objects in the images have various scales due to the

different shooting distances and defect sizes. So the algorithm needs
to detect targets of various scales.

Traditional deep feature extraction networks in the shallow layer
can extract more detailed features that contain rich information.
They also have a more incredible response to small-scale targets.
Nevertheless, contextual semantic information misses due to the
lack of receptive fields. The network continues to downsample while
the feature extraction network is deepening. This way increases the
receptive field corresponding to each area in the feature map. The
features extracted at this time contain rich semantic information.
However, the feature extraction networks have a more excellent re-
sponse to large-scale targets while many details in the image are
lost simultaneously. This shortcoming is fatal for defects detection
of power equipment because power equipment defects are generally

small targets. Suppose we can extract multi-dimensional feature in-
formation and can achieve multi-scale feature extraction. In that
case, the accuracy of detecting defects in electrical equipment cap-
tured by UAV will be further improved. So this paper implements
a feature extraction process by extracting multi-scale features from
the bottom-up and fusing the pyramid structure of different stages
from the top-down to achieve the first stage optimization.

Figure 4: The process of multi-scale feature extraction using feature
pyramid network, which integrates the top-down and bottom-down
feature extration methods

Fig. 4 shows the process of feature pyramid network. Firstly, the
feature maps obtained in each stage are fixed as 1x1 convolution,
then the number of channels is fixed as 256. Secondly, the lower-
layer feature map is up-sampled by two times so that the feature
map of the upper layer after convolution can scale the same size as
the feature map of the lower layer. Then the bottom layer feature
map fuses with the up-sampled upper layer feature through convo-
lution and addition so that the high-level semantic information is
merged with the detailed low-level information. Finally, The net-
works use 3x3 convolution to convolve the added feature maps to
eliminate aliasing effects. Fig.3(a) shows the framework with the
feature pyramid network.

3.2 Deformable convolution
The convolutional neural network proposes candidate regions

and generates candidate frames by autonomously learning after the
Faster-RCNN algorithm extracts image features. The corrosion of
hardware is a common type of electrical equipment defect with ir-
regular shapes. Additionally, The convolution kernel of traditional
convolutional neural networks is generally rectangular or square. So
it is a great challenge to detect the defects of the conductive line
using the convolution with a regular structure. A fixed-shaped con-
volution kernel can sample a fixed-shaped area on the entire image,
but the area covered by its receptive field is fixed for a given convo-
lution kernel, which is not a good design. Moreover, The function
of the high-level convolutional layer is to encode low-level features



and extract high-level features. However, targets at different loca-
tions often have different shapes and scales, limiting the coverage of
the receptive field area, thereby restricting the detection of targets of
different shapes. In the end, we adopt deformable convolution like
Fig. 5 to accept defects. The convolution adjusts the scale and the
coverage of the receptive field adaptively through learning, which
will improve detection accuracy.

Figure 5: Comparison of the process between deformable convolu-
tion and traditional convolution

The conventional feature map convolution is usually divided into
two steps in target detection:(1) sampling using a regular grid R over
the input feature map x; (2)summation of sampled values weighted
by w. The final result is the value corresponding to the sampling
position of the input feature map on the output feature map. In each
position p0 of the output feature map y, there is Eq.(1),

y(p0) =
∑
pn∈R

w(pn) ∗ x(pn + p0) (1)

where is an enumeration of each position of R. In the variable
convolution, the regular grid R is expanded by the offset(∆pn|n =
1 · · ·N ), where N = |R|, the above formula is further transformed
into Eq.(2).

y(p0) =
∑
pn∈R

w(pn) ∗ x(pn + p0 + ∆pn) (2)

After this change, sampling is no longer limited to the area corre-
sponding to the regular grid R, but the offset forms an irregular area.
As shown in Fig.6, the modified network predicts the offsets of each
convolution position by the learned infomation before the convo-
lution operation. After the position of the convolution changed by
the offset, the network can pick the most suitable place to extract
the features. The convolved area can be concentrated on defects as
much as possible.

Figure 6: The process of deformable convolution to locate defects

As shown in Fig.3(b), this paper uses deformable convolution in
the last three stages of Resnet101, enabling the feature extraction
network to convolve appropriate locations at different scales. It im-
proves the accuracy of small target detection.

3.3 Online hard example mining and data
augmentation

There are often few or even no defects in the images of electri-
cal equipment, which means that most of the candidate frames are
based on the background. Thus, it is essential to correctly distinc-
tion foreground and background. Correctly dividing the categories
of positive samples for defect classification is also essential. This
paper uses online hard example mining and data augmentation to
improve the response-ability of the detection framework to targets.

Online hard example mining
In Faster-RCNN, the candidate region generation networks gen-

erate many candidate regions, many of which are negative sample
boxes that do not intersect or intersect with the target box to be de-
tected. These samples are easy to train samples. It is easy to reduce
the loss function of the network by identifying these candidate sam-
ple frames as background. The ratio of the intersection with the
foreground target frame (that is, an area ratio, which comes from
the two candidate frames generated in the feature extraction stage,
and divides their intersecting part and their merged part) of the dif-
ficult to train negative sample is relatively large. However, it does
not exceed the set positive sample threshold. Therefore, it is neces-
sary to focus on training those negative sample frames with a higher
intersection ratio to be detected.

Online hard example mining can find difficult to train samples
during the training process and increase weight of these samples to
the loss function. The traditional method of regional candidate net-
work to propose regional candidate frames is to randomly select 512
candidate frames to calculate the loss function according to the ra-
tio of foreground and background 1:3 after the regression network
refines and classifies the candidate frames. Instead, the online hard
example mining method first calculates the loss of all the candidate
boxes after refinement and classification, sorts the loss from high to
low, and selects a total of 512 positive samples in a ratio of 1:3, and
uses these samples to train network. Furthermore, it can improve
the training effect by using the trained samples to train the network
again. Then, such a method will make the sample’s relative charac-
teristics more evident than the traditional method.

Data augmentation
Data flipping. UAVs often capture images of electrical equip-

ment from different directions, but the defects of the electrical equip-
ment are invariant. It means the defect information will still exist af-
ter flipping an image vertically or horizontally. Therefore, during the
training process, we randomly flip the images and the device defect
frame marked by the image, and the data volume finally increases.
Simultaneously, it improves the robustness of the detector by using
these modified images to train the detector and allows the detector
to learn useful information from images in different directions and
angles.

Data scaling. UAVs usually do not maintain the same height in
the process of photographing electronic equipment, and they cannot
guarantee the same route and height every time. Furthermore, the
resolution of UAVs of different brands is also quite different. There-
fore, the images are randomly scaled to simulate the real environ-
ment in the training process of the model. Then the model will have
a greater response to power equipment defects with different scales.
Fig.3(c) shows that the detection framework with online hard exam-
ple mining and data augmentation is effective in classification and
regression.



After making relevant improvements, the next part of the experi-
ment will prove that the improved detection framework has achieved
obvious results.

4 Experiments
In this part, the traditional Faster-RCNN algorithm will be used

as the basic framework to experimentally verify the ability of the im-
proved system framework to detect image defects of power equip-
ment.

4.1 Dataset
This experiment’s data set consists of 5847 images of power

equipment captured by UAVs, collected by one of the largest power
companies in China. There are several types of electrical equipment
defects in these images, such as foreign matters in the tower, damage
of the insulator, abrasion of wires, and corrosion of hardware, and
their resolutions are different. The data is divided into the training
set, the verification set, and the test set at a ratio of 8:1:1. We verify
the validation set when the training phase is completed (all training
data are trained once) in training the model. We save the best model
on the validation set and apply it to the test set to record the final
result.

4.2 Evaluation indicators
Precision and Recall are important indicators for model evalua-

tion. A comprehensive evaluation of recall rate and precision will
be meaningful for evaluating defect detection of power equipment.
Simultaneously, we also add the Average Precision and the mean Av-
erage Precision as measurement indicators according to the accuracy
requirements of power system defect detection. The Average Preci-
sion refers to the average value of the maximum precision under the
condition of calculating different recall rates, shown in Eq.(3):

AP =

∫ 1

0

p(r) dr (3)

where AP stands for the Average Precision, and r refers to the
recall rate. p(r) represents the highest precision when the recall rate
is r. The mean Average Precision refers to the average accuracy of
each category, shown in Eq.(4):

mAP =
AP

C
(4)

where mAP is the average accuracy of multiple types, and C is
the total number of categories of the target to be detected. It should
be noted that when calculating AP and mAP , we uses the predic-
tion frame whose intersection ratio with the real target object’s outer
frame(The ratio of the area of the intersection of the two candidate
frames generated in the feature extraction stage to the area of the
merged part) is more significant than 0.5 as the average accuracy
calculated by the positive sample.

4.3 Comparative experiments
This paper sets up four stages of comparative experiments to

study whether the improvement of Faster-RCNN is useful. Faster-
RCNN with Resnet101 as the feature extraction network is set as
the first group of comparative experiments recorded as experiment
1. Because the improvement of the benchmark system framework
is divided into three parts, three sets of experiments are set to com-
pare with experiment 1 during the investigation. Experiment 2 is
the result of adding multi-scale feature extraction to the benchmark
framework. Experiment 3 is the result of adding variable convolu-
tion based on experiment 2, and experiment 4 is the result of adding

online difficult sample mining and data augmentation based on ex-
periment 3. The intuitive comparison of detection accuracy can re-
flect the effectiveness of the improved target detection framework
for power equipment images.

4.4 Experimental results
As shown in Tab. 1, experiment 2 increases the average accuracy

of experiment 1 by 19.3% after adding multi-scale feature extrac-
tion. According to our analysis, the reason is that the resolution of
images captured by UAVs is relatively large. Images entered into
the network are often reduced by a certain percentage. The fea-
ture extraction network also downsamples the images by 32 times,
which will cause the inherently relatively small defects to be sig-
nificantly reduced or even lost during the down-sampling process.
These small defect features can be well preserved and detected on
the high-resolution feature map after adding multi-scale feature ex-
traction.

BEN FPN DC OHEM/DA mAP

1
√

43
2

√ √
62.3

3
√ √ √

68.1
4

√ √ √ √
69.3

Table 1: The impact of algorithm improvement at each stage on the
mean Average Precision. In particular, BEN stands for the bench-
mark algorithm, FPN stands for feature pyramid network, DC stands
for deformable convolution, OHEM/DA stands for online hard ex-
ample mining and data augmentation.

Additionally, the average accuracy of experiment 3 increased by
5.8% after using deformable convolution because experiment 3 is
more adaptable to the shape of power equipment after adding de-
formable convolution. Finally, the average accuracy of experiment
4 increased by 1.2% by adding online hard example mining. We an-
alyze that the model becomes easier to converge during the training
process and learns from more difficult samples to get a more robust
classification and detection capabilities. So experiment 4 further im-
proves the average accuracy.

Figure 7: Detection accuracy of different algorithm

Fig. 7 shows the performance of different framework improve-
ments in different categories of defects. In the original benchmark
algorithm, this category can hardly be detected since the abnormal
wire is small. With the addition of multi-scale feature extraction,
the defects of this category are significantly increased. Because for-
eign matters in the tower are large and easy to detect, the benchmark
target detection framework already achieve high detection accuracy,
there are still some small-scale targets in this category of defects
because the shooting distance of UAVs is relatively long, so multi-
scale feature extraction can still improve the detection accuracy. De-



formable convolution can further improve accuracy when it detects
frayed wires, damaged insulators, and foreign matters in the tower of
different shapes. Finally, the algorithm is easy to jump out of the lo-
cal minimum and converge better after adding online hard example
mining.

1 2 3 4 mAP

BA 3.8 63.7 64.7 39.9 43.2
OA 50.2 85.9 73.6 68.2 69.5
IR 12.210 0.349 0.138 0.709 0.609

Table 2: The accuracy improvement ratio of the improved optimal
algorithm and the benchmark algorithm. 1,2,3,4 respectively repre-
sent abrasion of wires, foreign matters in the tower, damage of the
insulator, and corrosion of hardware. BA,OA,IR respectively rep-
resent the benchmark algorithm, optimal algorithm, increase ratio.
The results show that our algorithm exceeds the benchmark, which
indicates the effectiveness of our approach.

Between comparison of the results of experiment 4 and experi-
ment 1, it can be seen that the benchmark target detection frame-
work is a better solution to the problem that minor defects in high-
resolution power equipment images can hardly be detected. For for-
eign matters in the tower, damaged insulators, and large-scale clamp
corrosion, the three major types of defects’ accuracy are increased
by about 30%, 15%, and 70% respectively. As shown in Tab 2, the
average accuracy of each category has increased by about 60% even-
tually. However, the experimental results show that the accuracy of
this method is still low for small-sized objects such as wires, so the
results left much to be improved. Therefore, we can further try to
use multi-task training methods to detect small-sized objects in a
targeted manner while retaining the existing algorithm framework.
Some results of our experiment are shown in Fig. 8.

Figure 8: Visual display of defect detection: Tower refers to foreign
objects in the tower, cable refers to abnormal conductors, insulator
refers to damaged insulators, and rust refers to metal corrosion

5 Conclusion
In this study, we propose a detect defection algorithm based on

improved Faster-RCNN to process images captured by UAVs. We
use a multi-scale feature extraction method to detect targets of dif-
ferent scales on images of different resolutions with high accuracy.
Meanwhile, we find that traditional convolution cannot adapt flexi-
bly due to the shapes of power equipment are multilateral. We intro-
duce deformable convolution to solve this problem. Moreover, we
improve the performance of defect recognition by studying the atten-
tion degree of the object to be detected in the labeled data. In gen-
eral, this research has improved the accuracy of intelligent detection
of defects in power equipment. Also, it has dramatically reduced the

consumption of human and material resources in the maintenance of
basic power facilities, which has a high application value.
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