
MACA: A Residual Network with Multi-Attention
and Core Attributes for Code Search

Lian Gu, Zihui Wang, Jiaxin Liu, Yating Zhang, Dong Yang, Wei Dong
College of Computer Science, National University of Defense Technology, Changsha, China

{gulian, wangzihui98, liujiaxin18, zhangyating18}@nudt.edu.cn, yangdong5002@163.com, wdong@nudt.edu.cn

Abstract—Code search technique has gradually become a key
skill to accelerate software development. However, the current
deep learning methods only use the encoded results and ig-
nores the original content of the code. Besides, the feature
expression of the code is too single, which makes the model’s
understanding insufficient. And the last problem is the lack of
separate processing of core attributes, which will cause the model
to lack differentiated learning of the attributes with different
importance. Therefore, we propose a residual network based
on Multi-Attention, so that the model can not only retain the
original content of the code but also allow the code to perform a
large number of combined learning in different aspects to obtain
differentiated features. Then we treat three core attributes and
specific implementation of the code differently so that the model
can pay extra attention to the core attributes. We use 158,201 Java
code-comment pairs for training. In our experimental results, our
model is 9.5% higher than the existing method on the indicator
of MRR and 12% higher on the SuccessRate@1.

Index Terms—code search, deep learning, residual network,
Multi-Attention

I. INTRODUCTION

The code search field can be divided into two historical
development stages. The first stage is based on information
retrieval methods, and its main strategy is keyword matching;
the second stage is based on deep learning methods, and its
main strategy is to build a neural network model from query
sentences to codes to bridge the semantic gap between the
two.

On the one hand, the method based on information retrieval,
because it relied on keywords, leads to limited correctness,
and may not match codes that are highly similar to the
query sentence due to different keywords. On the other hand,
the current deep learning method has three problems. The
first is that the model only uses the encoded result of the
code and discards the original content, which will make the
model lose a certain degree of stability. The second is that
the model’s distributed representation of code features is too
single, which makes the model unable to fully learn the
code features. The last problem is that these models lack
separate processing of core attributes, which will allow code
elements of different importance to be treated equally, so
that core attributes cannot be expressed as they should in the
modeling process. Therefore, we propose a residual network
structure based on Multi-Attention. This structure can not only

Corresponding author: Wei Dong. This work was supported by National
Natural Science Foundation of China (No.62032019, 61690203)

DOI reference number: 10.18293/SEKE2021-079

retain the original content of the code but also allows the
code to learn different aspects of the combination through a
large number of attention mechanisms [1], so as to obtain a
more comprehensive representation of the code. Finally, we
extracted the three core attributes of the method name, return
type, and parameter list separately from the original code
content. Then let the distributed representation of these three
attributes concatenate the existing coding content so that the
model can pay extra attention to the important features of the
code.

Our experimental results show that our method is higher
than other deep learning methods in both SuccessRate and
MRR indicators. This shows that our method effectively
improves the performance of code search.

Our contributions are as follows:
• We find that inputting the core attributes of the code

separately into the model increases the performance of
the model;

• We conduct a comparative experiment on the presence or
absence of Multi-Attention and find that Multi-Attention
can effectively mine the potential information of code and
comments;

• We also set up an experiment, discarding one of the
attributes each time, and find that the method name helps
the model the most.

II. RELATED WORK

The field of code search has always been a popular research
content in academia and industry. It has gone through two
research phases, one is realized by information retrieval tech-
nology, and the other is realized by deep learning.

At the stage where information retrieval technology is the
main method, the code search method has already made many
achievements. One of the typical methods is CodeBroker [2],
which uses annotations to calculate similarity. Besides, Apache
releases Lucene [3], which is an open-source full-text search
engine toolkit, which can perform full-text indexing and search
with high search efficiency. In addition to the full-text search
engine Lucene, there are many code search engines based on
information retrieval, such as Codase [4], Koders [5], Krugle
[6].

Sachdev et al. set up an experiment to compare the effects
of traditional information retrieval methods and deep learning
methods on code search tasks [7]. The results show that
methods based on deep learning can express more precise



code

word2vec

initial
embedding multi-attention code 

embedding method name

return type

parameters

final 
embedding

comment
initial

embedding multi-attention comment 
embedding

verbs

nouns

 final 
embedding

similarity
concatenate

concatenate

concatenate

concatenate

word2vec

Fig. 1. The structure of the Code-Comment Embedding Neural Network

semantics and achieve better performance. In recent years, a
large number of code search methods based on deep learning
have emerged. A typical method is NCS [7], which trains the
code and query sentence at the same time to obtain a fastText
[8] embedding, and then calculates the weight of the code
according to IF-IDF [9] to obtain the final code representation
vector, and directly averages the embeddings of the query
sentence to obtain its final representation. Cambronero et al.
improves based on NCS and proposes UNIF [10], which
trains a fastText embedding for the code and query sentence
respectively, and this embedding can be fine-tuned in the later
training phase, and the weighting of the code is changed from
TF-IDF to the attention mechanism. Gu et al. split code into
three parts according to the characteristics: method name, API
sequence, and code tokens [11]. And they train an embedding
for each of the three, which encodes the method name and
API sequence through the Recurrent Neural Network, and
encodes the code tokens through the Multi-Layer Perceptron.
Haldar et al. propose a multi-perspective architecture, which
calculates the similarity by capturing both global and local
similarities [12]. Mou et al. embed codes by a tree-based
convolutional neural network [13]. Chen et al. model code
and natural language by training two VAEs [14].

III. METHOD

Our model is a twin tower model based on the deep
structured semantic model(DSSM) framework [15]. The twin
tower model divides the input into two independent terminals,
one for codes and another for comments, and then processes
the two different inputs separately. Among them, each end is

composed of three layers. The first layer is the input layer, also
called the embedding layer. Its function is to process the input
into a numeric vector. The second layer is the presentation
layer, also called the coding layer. Its function is to process
the input vector into a single vector that can represent the
entire input. The third layer is the matching layer. Its purpose
is to score the similarity of the two final representations. The
higher the score, the more similar the two inputs.

A. Input Layer

In the input layer, we usually choose some classic word
vector representations. We choose Word2Vec [16] to learn
word vectors for code and comments respectively. On the code
side, in addition to the coding code itself, we also extracted
the three attributes of the return value, method name, and
parameter list; on the comment side, in addition to the coding
comment itself, we also extracted the commented verbs and
nouns. We believe that these separately extracted features can
better help the model to express.

B. Presentation Layer

The presentation layer is the core of the entire model. Its
role is to encode a collection of word vectors representing code
and comments into a single word vector, which represents the
entire code or comment.

From the framework of the presentation layer, both the
code side and the comment side are two residual network
structures. On the one hand, the model needs to learn new
information from the original content, and on the other hand,
it also needs to retain the original information to a certain



extent. Therefore, we use Multi-Attention to generate new
content and then concatenate the original content. This is the
first residual structure that learns new content by itself through
the model. In the second stage, the model also needs to retain
the existing content given artificially. On the code side, these
contents are the return type, parameter list, and method name;
on the comment side, these contents are the verbs and nouns
that appear in the comment.

Because the attention mechanism is only an understanding
of one aspect of the code, we have performed multiple
attention calculations on the code, and we call this process
Multi-Attention. The attention mechanism of each time is
calculated as follows:

ai,k =
exp

(
ak · eTi

)∑n
i=1 exp

(
ak · eTi

) (1)

Among them, ai,k is the weight of each ei vector, and ak
is the attention weight coefficient. The target combined vector
can be calculated as follows:

vk =

n∑
i=1

ai,kei (2)

where vk is the k-th vector of the target vectors.
Finally, the word vector representing the entire code is

cascaded to the new vector generated by Multi-Attention
and is input to the encoding stage as detailed information
together. When summing up the embedding of the four parts,
we directly obtain the final code vector representation by
averaging.

On the comment side, we first extract the verbs and
nouns in the comment sentence through the Natural Language
Toolkit(NLTK) and input the word vectors of the two sepa-
rately into the final representation. The encoding of the entire
sentence is consistent with the code side. First, additional
information about the comment is obtained through Multi-
Attention, then these vectors are concatenated to the original
vector, and finally, the average is taken.

C. Match Layer

The presentation layer has coded the code and the comment
into a vector respectively, and the function of the matching
layer is to score the similarity of the two vectors representing
the code segment and the natural language comment. For
two vectors with equal dimensions, we generally use cosine
similarity for calculation. The higher the cosine similarity
score, the closer the two vectors are. The calculation formula
of cosine similarity is as follows:

cos(θ) =
A ·B
‖A‖‖B‖

=

∑n
i=1Ai ×Bi√∑n

i=1 (Ai)
2 ×

√∑n
i=1 (Bi)

2
(3)

Among them, A and B respectively represent a vector, Ai

represents the i-th element in the A vector, and Bi represents
the i-th element in the B vector.

IV. EXPERIMENT

A. Dataset

a) Data Collection: We first obtain Java projects with a
stat greater than or equal to 10 on GitHub through the crawler.
Then we parse each Java file in the project through the AST
parser of Java Development Tools(JDT) to get information
such as comment, method name, return type, parameter list,
and method body. Among them, each function corresponds to
a piece of data. We finally get 158,201 pieces of data, and
then randomly selected 500 pieces of data as the test set.

b) Preprocessing: Because the naming convention in
Java follows the camel case principle, and the actual semantics
is a single word in the variable name instead of the entire,
so we also de-camelize the function name and variable name
according to the regular expression and keep the content Words
with precise semantics. At the same time, to be more stable in
the subsequent training of word vectors, we convert all words
to lowercase.

c) Data set training: In the training phase, our training
set is a triple which consists of the following parts: a code
segment, a natural language description, and an integer tag.
The value of this tag is either 1 or 0. 1 means that the code
segment and the natural language description are the data in
the original data set. And 0 means that this code segment does
not match the natural language description, which is generated
by random negative sampling. In our experimental data, the
number of our negative samples is equal to the number of
original samples.

B. Experimental Setup

In our experiment, our data set is trained for 10 epochs,
and the batch size is set to 100. In the setting of the count of
Multi-Attention, we find that 30% of the number of original
embedding vector sets is the best. If the original vector set
has 100 vectors, then 30 vectors will be generated after the
Multi-Attention. The code segment and the Word2Vec vector
described by natural language are trained separately, and the
dimension of the word vector of both is 128. Our model is
implemented on the TensorFlow framework, and the optimizer
selected during training is Adam.

Our similarity is calculated by cosine similarity. For a
training data triple <code, description, flag>, our loss function
is defined as follows:

L(θ) =
∑n

i=1 (cos (ai, bi)− flagi)2

N
(4)

Where N represents the number of training samples, cos(·)
is the cosine similarity mentioned above, the value of the flag
is 0 or 1, 0 means randomly sampled data, 1 means original
sample data.

C. Evaluation Index

In the test indicators, we adopt the commonly used Success-
Rate@k and MRR. MRR is the average value of the inverse of
the ranking of all test data in the sample, and SuccessRate@k
is the ratio of the number of all samples ranked before K.



D. Baseline

We chose UNIF, a classic model among the code search
models. The model is very lightweight. On the code side,
UNIF transmits the token vector of the entire code to the
encoder in the form of a bag of words. The encoder completes
the final representation of the code through the attention
mechanism; on the comment side, UNIF directly averages the
word vectors of all words to get the final representation of the
comment. Because the model is relatively simple, the actual
effect of each sub-module of our model can be observed more
clearly in the experiment.

E. Results

We set up two comparative experiments, one of which is
used to prove the effectiveness of the module we designed,
and the other experiment is used to compare the degree of
improvement of each artificially extracted core attribute on the
model effect. The first experiment is to prove the effectiveness
of manually extracting core attributes and Multi-Attention
separately:

TABLE I
EFFECT OF EACH MODALITY. (BEST SCORES ARE IN BOLDFACE.)

Model SR@1 SR@5 SR@10 MRR
UNIF 0.536 0.764 0.796 0.632

MACA(Multi-Attention) 0.57 0.754 0.8 0.652
MACA(Core Attributes) 0.608 0.79 0.85 0.691

MACA(MA+CA) 0.656 0.808 0.868 0.727

It can be seen from the experimental data from table I that
our model performs better than the UNIF model. In terms of all
indicators, our model is 10% higher than UNIF as a whole. In
particular, on the SuccessRate@1 indicator, our model effect
has increased by 12%, and on the MRR indicator, our model
effect has increased by 9.5%. , Which shows that our model is
very accurate in calculating the similarity between comments
and code.

Then we remove the core attributes and Multi-Attention
respectively. We find that the effect of removing these core
attributes is worse than removing Multi-Attention, but the
effect of the two is still better than UNIF. After removing the
core attributes, MRR dropped by 7.5%; after removing Multi-
Attention, MRR dropped by 3.6%. Therefore, for the entire
model, human input of core attributes can greatly improve the
model’s effectiveness.

TABLE II
THE EFFECT OF REMOVING ONE OF THE ATTRIBUTES

Model SR@1 SR@5 SR@10 MRR
MACA 0.656 0.808 0.868 0.727

MACA-w/o.MethodName 0.598 0.774 0.816 0.676
MACA-w/o.ReturnType 0.644 0.806 0.856 0.718
MACA-w/o.Parameter 0.64 0.788 0.848 0.711

MACA-w/o.Verbs 0.65 0.802 0.858 0.721
MACA-w/o.Nouns 0.652 0.796 0.854 0.719

We finally set another comparative experiment, which was
to remove one of the core attributes to see how the model’s
effect declined. It can be seen from table II that when the core
attribute of the method name is removed, the MRR index drops
the most, up to 5.1%. When the parameter list is removed,
MRR drops by 1.6%. Among other core attributes, the decline
is minimal. This shows that it is necessary to input the two
core attributes of the method name and parameter list to the
model.

V. CONCLUSION

We propose a model based on the residual network, which
deliberately encodes the return type, parameter list, and
method name of the code on the basis of encoding the entire
code. The core attributes are entered separately to enhance
the modeling of the code by these attributes. In addition, in
the process of encoding the entire code and natural language
description, our model generates fresh vectors through Multi-
Attention, and these new vectors again input to the presen-
tation layer in the form of residuals as important content.
Our experiments show that adding these important contents
separately will enhance the effect of the model.

REFERENCES

[1] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, pp. 1 – 29, 2019.

[2] Y. Ye and G. Fischer, “Supporting reuse by delivering task-relevant and
personalized information,” in ICSE ’02, 2002.

[3] Lucene, https://lucene.apache.org/.
[4] Codase, https://www.codase.com/.
[5] Koders, https://www.koders.com/.
[6] Krugle, https://www.krugle.com/.
[7] S. Sachdev, H. Li, S. Luan, S. Kim, K. Sen, and S. Chandra, “Retrieval

on source code: a neural code search,” Proceedings of the 2nd ACM SIG-
PLAN International Workshop on Machine Learning and Programming
Languages, 2018.

[8] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association for
Computational Linguistics, vol. 5, pp. 135–146, 2017.

[9] W. Frakes and R. Baeza-Yates, “Information retrieval: Data structures
and algorithms,” 1992.

[10] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019.

[11] X. Gu, H. Zhang, and S. Kim, “Deep code search,” 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE), pp. 933–944,
2018.

[12] R. Haldar, L. Wu, J. Xiong, and J. Hockenmaier, “A multi-perspective
architecture for semantic code search,” ArXiv, vol. abs/2005.06980,
2020.

[13] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
AAAI, 2016.

[14] Q. Chen and M. Zhou, “A neural framework for retrieval and summa-
rization of source code,” 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 826–831, 2018.

[15] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck, “Learning
deep structured semantic models for web search using clickthrough
data,” Proceedings of the 22nd ACM international conference on In-
formation Knowledge Management, 2013.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” ArXiv, vol. abs/1310.4546, 2013.


