
Formalization and Verification of Dubbo Using CSP
Zhiru Hou, Jiaqi Yin, Huibiao Zhu⇤

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

Abstract—Dubbo is a high-performance, lightweight Java Re-
mote Procedure Call (RPC) framework developed by Alibaba,
which provides interface-oriented remote method call, intelligent
fault tolerance and automatic service registration. Since Dubbo
is extensively applied recently as an excellent representative RPC
framework, it is of great significance to formally analyze Dubbo.
In this paper, we use Communicating Sequential Processes (CSP)
to model and formalize Dubbo. In order to enhance the reliability
of the call, we use token authentication mechanism in the
modeling process. Moreover, we put the CSP description of the
established model into the model checker Process Analysis Toolkit
(PAT) for simulation and verification. We verify whether the four
properties are valid, including Deadlock Freedom, Connectivity,
Robustness and Parallelism. Our final verification results show
that the model can satisfy these properties, thus we can conclude
the framework can guarantee the highly available remote call.

Index Terms—Dubbo, Formalization, Verification, CSP

I. INTRODUCTION

With the development of the Internet, the architecture
for a large number of website applications is constantly
changing, from Monolithic Architecture, Vertical Architecture,
Distributed Service Architecture to Flow Computing Archi-
tecture. Now, more and more website technicians choose
to use Microservices [1], which is evolved from Service-
Oriented Architecture (SOA) [3]. As a means of communica-
tion, Remote Procedure Call (RPC) [2] still plays an important
role in Microservices, and Apache Dubbo is an excellent
representative of the RPC framework.

Dubbo [4] is an open source and high-performance RPC
call framework developed by Alibaba. It is a RPC remote call
service solution dedicated to providing high performance and
transparency. In recent years, some work has been done on
Dubbo [5, 6]. Zhang et al. [5] proposed a distribution network
state control system using Dubbo in order to improve the lean
management level of the distribution network. Xiong et al. [6]
designed a new type of think tank evaluation system based
on Microservices, and realized the communication between
services based on the RPC remote call of Dubbo distributed
framework. From these works, we can find that they focused
more on using Dubbo to implement remote calls between
services. Unfortunately, there is nearly no research conducted
to describe the interactions in Dubbo formally, thus it is a
challenge to give a formal model on the interactions between
the components in Dubbo.

In this paper, we propose a formal model of Dubbo using
Communicating Sequential Processes (CSP) [7], which aims
to reflect the interactions of Dubbo’s call process. In order

⇤Corresponding author: hbzhu@sei.ecnu.edu.cn (H. Zhu).

to better ensure the reliability of calling services, token au-
thorization mechanism is also formalized in this model. In
addition, we use Process Analysis Toolkit (PAT) [8, 11] to
verify whether the achieved model caters for some significant
properties or not, including Deadlock Freedom, Connectivity,
Robustness and Parallelism.

The remainder of this paper is organized as follows. Section
II gives a brief introduction to Dubbo and the process algebra
CSP. In Section III, we formalize the model of Dubbo using
CSP. Furthermore, in Section IV, we apply the model checker
PAT to implement the achieved model and verify four proper-
ties. Finally, we give a conclusion and make a discussion on
the future work in Section V.

II. BACKGROUND

In this section, we give a brief introduction to Dubbo’s call
service process, token authentication and process algebra CSP.

A. Dubbo

Dubbo is a distributed service framework. The architecture
of Dubbo is shown in Fig. 1. As we have seen in Fig. 1,
Dubbo architecture mainly has four components, including
provider, consumer, registry and monitor. Furthermore, Fig.
1 shows the main communications of Dubbo architecture, and
their respective functionalities are seen in Table I.

TABLE I
COMPONENTS AND FUNCTIONALITIES OF DUBBO

Components Functionalities
Provider Exposing remote services
Consumer Calling the remote services
Registry Service discovery and configuration
Monitor Counting the number of service invoca-

tions and time-consuming
Container Managing the services’ lifetime

In Fig. 1, when consumer wants to call the service it needs,
the following sequence of actions occurs:
(1) Container is responsible for launching, loading and run-

ning the provider.
(2) Provider registers its services to registry when it starts.
(3) Consumer subscribes the needed services from the reg-

istry when it starts.
(4) Registry returns a list of providers to consumer. When

the list changes, the registry will push the changed data
to consumer through long connection.

DOI reference number: 10.18293/SEKE2021-077

Fig. 1. Communications of Dubbo Module (Adapted from [4])

(5) Consumer selects one of the providers based on load
balancing algorithm and executes the invocation. If fails,
it will choose another provider.

(6) When monitor starts, it will subscribe all providers and
consumers that registered or called.

(7) Both consumer and provider count the number of service
invocations and time-consuming in memory, and send the
statistics to monitor every minute.

In Dubbo, if the provider wants to verify the identity of the
consumer before the consumer invokes its service, the system
can use token authentication between them. In this condition,
the consumer cannot bypass the registry and connect directly
to provider. The details of using token authentication in Dubbo
can be seen in Fig. 2.

Fig. 2. Token Authentication of Dubbo (Adapted from [4])

There are two types of tokens in Dubbo, which are random
token and fixed token. Random token is generated using a
UUID, and fixed token is equivalent to the password which is
used in this paper. The sequence of using token verification
[12] in Dubbo is:
(1) When provider registers its service, it generates a token

and publishes it with the service to registry.
(2) Registry has the right to decide whether to assign token

to consumer.
(3) Once the consumer obtains the URL of the provider from

registry, it can request to invoke the provider through the
token.

(4) The provider needs to verify whether this token is con-
sistent with the token generated by itself. If it is non-
consistent, this invocation will fail.

B. A Brief Introduction to CSP

CSP was proposed by C.A.R Hoare, which is the abbrevi-
ation of Communicating Sequential Processes [7]. It has been
successfully applied to model and verify diverse concurrent
systems and protocols [9, 10]. We use the following syntax to
define the processes in this paper.

P , Q ::= SKIP | STOP | a ! P | c?x ! P | c!e ! P |
PCbBQ | P⇤Q | P ||Q | P |||Q | P ;Q

• SKIP stands for a process which terminates success-
fully.

• STOP represents that the process does nothing and runs
into the deadlock state.

• a ! P performs action a firstly, then behaves like P .
• c?x ! P receives a message by channel c and assigns

the received message to variable x, then behaves like P
subsequently.

• c!e ! P sends a message e through channel c, then the
subsequent behavior is P .

• PCbBQ represents a conditional choice. If the expression
b is true, process P will be carried out; otherwise, process
Q is executed.

• P⇤Q is a general choice, it acts like either P or Q and
the environment decides the selection.

• P ||Q shows the parallel composition between P and Q.
The || means that actions in the alphabet of both operands
require simultaneous participation of them.

• P |||Q indicates that P interleaves Q which means P and
Q run concurrently without barrier synchronization.

• P ;Q executes process P and process Q in sequence.

III. MODELING DUBBO

In this section, we give a formal model of Dubbo’s call
service process, and this model includes five components.
The formalization proceeds based on the four components
described in Section II. In order to better describe the temporal
process of Dubbo, we propose a new component Clock.

A. Overall Modeling

For the whole system, there are four crucial processes
running in parallel through their own corresponding chan-
nels, including Provider, Consumer, Registry and Clock.
Monitor process interleaves with them. The behavior of
Dubbo system process is modelled as below.

DubSys =df Provider || Consumer || Registry || Clock;
System =df DubSys ||| Monitor;

Next, we give the formalization of Provider, Consumer,
Registry, Monitor and Clock, respectively.

TABLE II
THE EXPLANATIONS OF CHANNELS OF THE MODEL

Channels Functionalities
PiR Transmitting register messages between

providers and registry
CdR Transmitting subscribe messages between

consumers and registry
PiCd Transmitting call messages between con-

sumers and providers
CdM Transmitting consumers’ monitor mes-

sages between consumers and monitor
PiM Transmitting providers’ monitor messages

between providers and monitor
ComHearti Transmitting heartbeat messages between

providers and registry
T ime Transmitting time messages

B. Provider

In this system, there can be several providers. Each provider
has a unique ID marked as i, and I is the total number
about providers. Provider is mainly responsible for providing
services and generating tokens. In addition, Provider period-
ically sends a heartbeat to registry and a monitor message to
monitor. Thus, we formalize Provider as below.

Provider =df |||i2IServicei
Servicei =dfServProvider ||| ServPMon ||| ServHBeat

Before introducing the three processes of Provider, we first
explain messages and channels used here. The messages can
be described as follows, and the explanations of channels are
illustrated in Table II.

• ProInfo is sent from Provider to Registry, which
contains the ID, IP address, host name and the corre-
sponding information of the Provider.

• InvokeSuccess is a reply from Provider to
Consumer, which means that Consumer can call
the matched Provider successfully.

• InvokeFail is a reply from Provider to Consumer,
which represents that the invocation fails.

• TokenFail is a reply from Provider to Consumer,
which means that the token sent by Consumer and the
token of Provider are inconsistent.

• MonPro is transmitted from Provider to Monitor,
which owns the ID, the number of service invocations
and time-consuming of the Provider.

• request is used by asking Clock the current time.
• HeartBeat is sent from Provider to Registry, which

indicates the Provider is still running.
• ProListInfo is transferred from Provider to Monitor,

which contains the URL addresses of all providers.

ServProvider. ServProvider describes the details of pub-
lishing services and being called by consumers. At first,
Provider registers its services and token to Registry. When

Provider receives the call request from Consumer, it first
verifies whether the token provided by consumer matches
the token generated by itself. If the match is successful, the
authentication is passed; otherwise, the authentication fails
and TokenFail is sent to Consumer. In addition, when the
monitor starts, Provider sends ProListInfo to Monitor
asynchronously. The behavior of ServProvider is modelled
as below.

ServProvider =df0

BBBBBB@

0

BBBB@

Initial{PCounti = 0;OccupiedStatei,d = false};
PiR!ProInfo.Token ! PiCd?InvoRe.CToken !0

@
IvkProvider
C(CToken == Token)B
PiCd!TokenFail ! ServProvider

1

A

1

CCCCA

|||(PiM?StartM ! PiM !ProListInfo ! ServProvider)

1

CCCCCCA

For the process IvkProvider, since the authentication
passes, it is necessary to check whether the provider is
occupied by other services. If the provider is not occupied,
Provider sends InvokeSuccess to Consumer. It also in-
creases the number of service invocations and calculates time-
consuming using the process Clock; otherwise, the consumer
can wait timeout seconds. Suppose consumer can call the
provider within timeout seconds, the call is successful; oth-
erwise it fails. The detailed behavior is modelled as follows.

IvkProvider =df0

BBBBBBBBBBBBBBBBBBBB@

0

BBBBBBBBBB@

PiCd!InvokeSuccess(OccupiedStatei = true) !
Add(PCounti);T ime!request !
T ime?t{PStart := t} !
PiCd?end(OccupiedStatei = false) !
T ime!request ! T ime?t{PEnd := t} !
End{PTimei := PEnd� PStart} !
Calcul(MonPro a PCounti.PT imei);
ServProvider

1

CCCCCCCCCCA

C(OccupiedStatei == false)B0

BB@

WAIT (timeout);0

@
ServProvider
C(OccupiedStated == true)B
PiCd!InvokeFail ! SKIP

1

A

1

CCA

1

CCCCCCCCCCCCCCCCCCCCA

The following is the model of the WAIT function, where
the parameter t is the unit of time to wait, and the specific
model is as follows.

WAIT (t) =dfSKIPC(t == 0)B(tick!WAIT (t� 1))

ServPMon. ServPMon process is mainly used to send mon-
itor messages to monitor regularly. Once the monitor starts, it
asks the current time and waits MonInterval seconds. Then
it sends MonPro to Monitor and cycles continuously. Next
we give the formalization of ServPMon.

ServPMon =df T ime!request ! T ime?startT !
WAIT (MonInterval);PiM !MonPro !
ServPMon

ServHBeat. ServHBeat works in heartbeat mechanism,
which means that Provider needs to send a heartbeat
to Registry regularly. Then we formalize the process of
ServHBeat as below.

ServHBeat =df T ime!request ! T ime?start !
0

BB@

✓
ComHearti!HeartBeat !
Assign(last := start);ServHBeat

◆

C(start� last > HBeatInterval)B
ServHBeat

1

CCA

Provider asks Clock for the current time firstly. If the time
interval is less than HBeatInterval, Provider sends a re-
quest to Clock again; otherwise, Provider sends HeartBeat
to Registry directly and this process cycles continuously.

C. Consumer

Like Provider, each consumer has a unique ID marked as
d, and D is the total number about consumers. Consumer
mainly expresses subscribing service and calling service.
Moreover, Consumer sends a monitor message to monitor
regularly. Thus, we formalize Consumer as below.

Consumer =df |||d2DSubscriberd
Subscriberd =df ServConsumer ||| ServCMon

The messages in Consumer can be described as follows.

• SusRe is sent from Consumer to Registry, which
contains the ID, IP address and the corresponding in-
formation of the Consumer.

• InvoRe is transmitted from Consumer to Provider,
including the IDs of Consumer and Provider together
with invocation request.

• MonCon is sent from Consumer to Monitor, which
contains the ID, the number of service invocations and
time-consuming of the Consumer.

• end is transmitted from Consumer to Provider, which
means that Consumer wants to finish the call process.

• ConListInfo is transferred from Consumer to
Monitor, which owns the URL addresses of all con-
sumers.

ServConsumer. ServConsumer focuses more on sub-
scribing services and initiating the call processes. After
Consumer sends subscription to Registry, Consumer can
attain a list of providers and the tokens from Registry.
Then Consumer verifies whether the states of providers
are available or not. Consumer can select an available
provider to call via load balancing algorithm. Moreover we
use Random Load Balance algorithm here, which is selected
according to the provider’s weight and sets a random proba-
bility. Consumer sends invocation request to Provider and
waits the reply. In addition, if ProList changes, Registry
will notify Consumer asynchronously. Once monitor starts,

Consumer needs to send ConListInfo to Monitor. After
the above analysis, ServConsumer is formalized as below.

ServConsumer =df0

BBBBBB@

0

@
CdR!SusRe ! CdR?ProList !✓

IvkConsumer
C(statei == open)B SKIP

◆
1

A

|||(CdR?ModiProList ! SKIP)
|||(CdM?StartM ! CdM !ConListInfo !
ServConsumer)

1

CCCCCCA

For IvkConsumer, if reply is InvokeSuccess, it cal-
culates time and increases the number of invocations as
Provider; by contrast, it can have two opportunities to
try to call other providers. Then, we formalize the process
IvkConsumer as below.

IvkConsumer =df0

BBBBBBBBBBBBBBBBBBBBBB@

Initial{CCountd = 0};RanLoadBan(PID);
PiCd!InvoRe.CToken ! PiCd?reply !0

BBBBBB@

(Add(CCountd);T ime!request !
T ime?t{CStart := t} ! PiCd!end !
T ime!request ! T ime?t{CEnd := t} !
End{CTimed := CEnd� CStart} !
Calcul(MonCon a CCountd.CT imed);
ServConsumer

1

CCCCCCA

C(reply == InvokeSuccess)B0

BBBB@

8
<

:

x : num = 2;
(x > 0)
{IvkConsumer};x��;

9
=

;

C(reply == InvokeFail)B
ServConsumer

1

CCCCA

1

CCCCCCCCCCCCCCCCCCCCCCA

ServCMon. ServCMon process is mainly used by consumer
to send monitor messages to monitor regularly. Once the mon-
itor starts, Provider needs to send MonCon to Monitor.
Like ServPMon, we give the formalization of ServCMon.

ServCMon =df T ime!request ! T ime?startT !
WAIT (MonInterval); CdM !MonCon !
ServCMon

D. Registry

We use Zookeeper [13] to implement dynamic registration
and discovery of services in the registry. Registry serves as a
component for storing information and receiving the heartbeat
message from providers. Thus, we formalize Registry as
below.

Registry =df ServRegistry ||| RegHBeat

The messages in Registry can be described as follows, and
the channels are explained in Table II.

• ProList is sent from Registry to Consumer, and it is
a list which contains matching providers’ information.

• ModiProList is transferred from Registry to
Consumer, which owns modified matching providers’
information.

Next, we formalize the two processes, respectively.

ServRegistry. ServRegistry process is applied for describing
the registration and subscription processes. Firstly Registry
receives registration from Provider and subscription from
Consumer, respectively. Based on the information provided
by Consumer, Registry checks whether there is a matching
provider. If there is no matching provider, then it skips;
otherwise, Registry finds out the relevant providers according
to the matching algorithm SelectPro, and sends ProList
to Consumer. The behavior of ServRegistry process is
modelled as below.

ServRegistry =df Initial{ProList = null};
PiR?ProInfo.Token ! CdR?SusRe !

0

@

✓
SelectPro(ProList a ProInfo.IP.Token);
CdR!ProList ! ServRegistry

◆

C(SusRe.CInfo 2 ProInfo.PSer)B SKIP

1

A

RegHBeat. RegHBeat process mainly involves the heartbeat
mechanism. The process RegHBeat is formalized as follows.

RegHBeat =df0

BBBB@

�
ComHearti?HeartBeat ! RegHBeat

�

⇤

0

BB@

Initial{ModiProList = ProList};
set{statei = closed};
Modify(ModiProList a ProInfo.IP);
CdR!ModiProList ! SKIP

1

CCA

1

CCCCA

In case Registry receives heartbeat message from
Provider, it indicates the provider is running normally; on
the other hand, it means that the provider may be down, and
we can modify the provider’s information to ModiProList.

E. Monitor

Monitor is responsible for monitoring the status of the
service. Thus, Monitor can be formalized as below.

Monitor =df PiM !StartM ! PiM?ProListInfo !
CdM !StartM ! CdM?ConListInfo !
PiM?MonPon ! CdM?MonCon !
Monitor

When monitor starts, it needs to obtain the URL information
of all providers and consumers. It also receives MonPro from
Provider and MonCon from Consumer, respectively.

F. Clock

In order to better represent the temporal process of Dubbo,
we abstract Clock process, which is used to express the
global clock. Once other processes ask Clock for the time
via the channel T ime, Clock will send back the current time
t which is a positive integer. The processes of Clock(t) can
be described as follows.

Clock(t) =df (tick ! Clock(t+ 1))
⇤ (T ime?request ! T ime!t ! Clock(t))

IV. VERIFICATION

In this section, we implement CSP model mentioned in
Section III and verify some important properties using PAT.

A. Verification in PAT

Before verifying the properties, we define some significant
variables. I , D, R, M denote the number of the providers, the
consumers, the registry and the monitor. In the trial, we set I ,
D, R, M to be 2, 3, 1, 1, respectively.

Property 1: Deadlock Freedom

In Dubbo, we should avoid the situation that two or more
consumers are waiting the resources which have been occu-
pied by other consumers infinitely. In addition, System1()
should also meet Deadlock Freedom. For the explanation of
System1(), see Property 2. In the tool PAT, there is a primitive
to describe this situation:

#assert System() deadlockfree;
#assert System1() deadlockfree;

Property 2: Connectivity

Registry and monitor are optional, and consumer can con-
nect provider directly in Dubbo. However, we use token to
enhance identity authentication in this paper, so that consumers
need to go through registry to connect with the provider. Thus
we prove that monitor is optional here.

We hide the relevant channels of monitor to detect whether
the provider can successfully connect with consumer without
monitor, we use System1() to model this in PAT. If the moni-
tor is optimal, the variable CncStatePro and CncStateCon
should be True. Moreover, both System() and System1()
should satisfy this property. The assertion about this property
is defined as below:

System1() = System() \ {PiM,CdM};
#define Connectivity(CncStatePro == true &&

CncStateCon == true);
#assert System() reaches Connectivity;
#assert System1() reaches Connectivity;

Property 3: Robustness

The primary objective of Dubbo is to accomplish the
call of provider reliably even in the presence of failures. If
providers are stateless, one instance’s downtime does not affect
the usage. After all the providers of one service go down,
consumer infinitely reconnects to wait for service provider to
recover.

In this paper, we assume that the services called by con-
sumers are the same as those provided by providers. Here we
define that there are four valid conditions listed as follows.
The first and second conditions are that all providers can run
normally, the third condition is that the first provider is down

and the last condition is that the second provider is down. The
assertion is defined as below:

#define Robust1(PCount[0] == 1 &&
PCount[1] == 2);

#define Robust2(PCount[0] == 2 &&
PCount[1] == 1);

#define Robust3(PCount[0] == 0 &&
PCount[1] == 3);

#define Robust4(PCount[0] == 3 &&
PCount[1] == 0);

#define Robustness(Robust1||Robust2
||Robust3||Robust4);

#assert System() reaches Robustness;

Property 4: Parallelism

Parallelism means that the system allows multiple providers
publish services and consumers subscribe services concur-
rently, the processes do not interfere with each other. We
define two Boolean variables, aplPro means the number of
registration submissions of providers, and aplCon means the
number of subscription submissions of consumers. Our goal is
that the system can reach a state where the value of aplCon
and aplPro should be 1, which reflects the providers and
the consumers can involve calling processes parallelly. The
assertion about this property is defined as below:

#define Para1(aplPro[0] == 1 && aplPro[1] == 1)
#define Para2(aplCon[0] == 1 && aplCon[1] == 1

&& aplCon[2] == 1);
#define Parallelism(Para1 && Para2);
#assert System() reaches Parallelism;

B. Verification Results

The verification results are showed in Fig. 3. From Fig.
3, we can easily find that the four properties are all valid,
which represents that the constructed model caters for the
specifications and these properties.

1) Deadlock Freedom means that the constructed model
does not run into a deadlock state.

2) Connectivity is valid which means that the provider and
the consumer can connect successfully, even without
monitor.

3) Robustness represents that the framework has good fault
tolerances, which is an important property for RPC frame-
work.

4) Parallelism indicates that the providers can commit reg-
istrations and the consumers can commit subscriptions
concurrently.

V. CONCLUSION AND FUTURE WORK

Dubbo is a high-performance distributed service framework
from Alibaba, which can provide good remote call. In this
paper we analyzed Dubbo and used token mechanism to

Fig. 3. Verification Results

enhance identity authentication. We applied process algebra
CSP in formalizing Dubbo. Subsequently, we used PAT to
encode the CSP description and verified this model. In addi-
tion, we performed the validation of four properties, including
Deadlock Freedom, Connectivity, Robustness and Parallelism.
These properties are all valid. Therefore, we can conclude that
our model satisfies these properties and the framework can
realize effective remote calls from the perspective of process
algebra.

The formal verification of the distributed service framework
is still a challenge. In the future, we will formalize and verify
the Dubbo with Zookeeper [13] in more details and verify
whether the framework can resist attacks or not.

Acknowledgements. This work was partly supported by Na-
tional Key Research and Development Program of China
(Grant No. 2018YFB2101300), National Natural Science
Foundation of China (Grant No. 61872145, 62032024), Shang-
hai Collaborative Innovation Center of Trustworthy Software
for Internet of Things (Grant No. ZF1213).

REFERENCES

[1] Microservices, [Online] Available: https://martinfowler.com/articles /mi-
croservices.html.

[2] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls”,
ACM Transactions on Computer Systems, vol. 2, no. 1, pp. 39-59, 1984.

[3] N. M. Josuttis, SOA in Practice: The Art of Distributed System Design.
O’Reilly, 2007.

[4] Dubbo. [Online]. Available: http://dubbo.apache.org.
[5] Y. Zhang, Y. Liu, B. Li and L. Li, “Research on Distribution Network

Status Management System Based on Cloud Platform”, 2019 Interna-
tional Joint Conference on Information, Media and Engineering, pp.
391-395, 2019.

[6] S. Xiong and B. Huang, “A Novel Think Tanks Evaluation System Based
on Micro Service”, in Journal of Physics: Conference Series, 2021.

[7] C. A. R. Hoare, Communicating sequential processes. Prentice Hall
International in Computer Science, 1985.

[8] PAT: Process analysis toolkit, [Online] Available: http://pat.comp.
nus.edu.sg/.

[9] G. Lowe and B. Roscoe, “Using CSP to Detect Errors in the TMN
protocol”, IEEE Transactions on Software Engineering, vol. 25, no .10,
pp. 659-669, 1997.

[10] A. W. Roscoe and J. Huang, “Checking noninterference in timed CSP”,
Formal Aspects of Computing, vol. 25, no. 1, pp. 3–35, 2013.

[11] J. Sun, Y. Liu and J. S. Dong, “Model checking CSP revisited:
Introducing a process analysis toolkit”, International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation,
pp. 307–322, 2008.

[12] J. Yi and L. Lin, Deep understanding of Apache Dubbo and actual
combat. House of Electronics Industry, 2019.

[13] Zookeeper. [Online]. Available: https://zookeeper.apache.org.

