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Abstract—Remaining activity sequence prediction (i.e., Activity 
suffix prediction) aims at recommending the most likely future 
behaviors for ongoing process instances (traces), which enables 
process managers to rationally allocate resources and detect 
process deviations in advance. Recently, techniques of neural 
networks have found promising applications in activity suffix 
prediction by training a prediction model for next activity and 
iteratively performing the model to achieve the whole sequence 
prediction. However, the iterative prediction accumulates the 
deviations of each iteration and the result also lacks 
interpretability. In this paper, we propose a novel method to 
predict activity suffixes from the perspective of control flow and 
data flow for ongoing traces, where process discovery and trace 
replay techniques are employed to simulate executions of traces 
under real conditions and Long Short-Term Memory (LSTM) is 
applied to characterize the correlation between executed 
information and future execution. Sequence matching between 
historical prefix traces and ongoing traces are performed based on 
the above information to select the optimal-matched (i.e., most 
similar) activity suffix for ongoing process instances. Experiments 
on real-life datasets demonstrates that our proposed method 
outperforms other methods. 

Keywords-activity suffix prediction; process discovery; trace 
replay; LSTM; sequence matching 

I.  INTRODUCTION  
Business process management (BPM) is a technique that 

modifies and extends business processes for enterprises by 
continuously mining, modeling, and monitoring process 
instances (traces) [1]. As a concrete practice that supports the 
businesses of enterprises, Process Aware Information System 
(PAIS) [2] record execution information of process instances 
(i.e., event logs) such as activity (i.e., event type), timestamp, 
resources and so on, which is further analyzed for process 
optimization and improvement. Traditional process mining 
pays attention to offline analysis like process discovery, 
conformance checking between logs and process models while 
recent focus of researchers has gradually turned to online 
analysis, especially predictive business process monitoring 
(PBPM). PBPM dedicates to predicting future execution 
information for ongoing traces such as next activity, remaining 
time, final outcome, remaining activity sequence (i.e., activity 
suffix) and so on, which provides reference information for 
process executors and helps process managers to take effective 
measures for optimizing process executions.   

Among all prediction tasks of PBPM, next activity 
prediction and remaining time prediction are the most widely 
studied tasks while activity suffix prediction is seldom 
considered as a single theme. However, compared to next 
activity prediction and remaining time prediction, activity 
suffix prediction provides more extensive future information 
for both process executors and process managers. Accurate 
prediction of activity suffix helps process managers to perceive 
early deviations and resource shortages, which can be prevented 
by timely and effective measures.  

Recently, techniques of neural networks especially 
Recurrent Neural Network (RNN) [3] and Long-Short Term 
Memory (LSTM) [4] are widely employed in the fields of 
PBPM. These works address the tasks of PBPM as regression 
problems or classification problems and utilize historical traces 
to train prediction models. However, the diversity of activity 
suffix categories makes this solution inapplicable. Currently, a 
variety of researches achieve activity suffix prediction by 
constructing a prediction model for next activity and iteratively 
performing the model to predict the whole sequence. These 
methods, however, are super sensitive to hyper-parameters and 
each iteration would add deviations to the final result.  

Therefore, in this paper, we propose a novel sequence-
matching-based approach from the perspective of both control 
flow and data flow for activity suffix prediction. Summarily, the 
main contribution of this paper is as follows: 

• The techniques of process discovery and trace replay are 
applied to simulate the real behavioral context of trace 
executions.  

• LSTM is employed to train a prediction model that 
implicitly characterizes the correlations between 
executed information and future execution. 

• Sequence matching is performed between historical 
prefix traces and ongoing traces based on the above 
information to obtain the most similar activity suffixes 
for ongoing traces. 

The rest of this paper is structured as follows: Section Ⅱ 
introduces existing works on activity suffix prediction. A 
detailed description of our approach is presented in Section Ⅲ. 
Section Ⅳ evaluates the effectiveness of our method and 
conducts comparisons with the optimal result of other 
researches on real-life datasets. Eventually, conclusions and 
future work are demonstrated in Section Ⅴ. 



II. RELATED WORK 
A variety of researches have been put forward to realize 

activity suffix prediction in the past decade, which are roughly 
divided into two types according to whether process structures 
are extracted from event logs, i.e., process-aware methods and 
non-process-aware methods [5].   

Process-aware methods for activity suffix prediction 
require constructions of process models such as petri net and 
then apply the models to accomplish prediction. For example, 
Spoel et al. [6] first mine a causality graph from the event log. 
Then, they adjust and apply a well-known shortest path 
algorithm (i.e., Floyd-Warshall algorithm) over the mined 
causality graphs to find a path whose sum of weights is the least. 
Similarly, Polato et al. [7] construct a transition system based 
on the event log and annotate its edges with transition 
probabilities. Then, they define a cost (i.e., the opposite of the 
logarithm of the transition probability) between two nodes and 
apply a shortest path algorithm on annotated transition systems 
for activity suffix forecasting.  

Recently, neural networks especially RNN and LSTM are 
widely applied to achieve activity suffix prediction, which are 
typical non-process-aware methods. Tax et al. [8] and 
Evermanna et al. [9] employ LSTM to forecast activity suffixes 
for ongoing traces while Lin et al. [11] apply RNN to achieve 
activity suffix prediction. The similarity of their works is that 
they all iteratively forecast next activity to realize activity suffix 
prediction. Specifically, Tax et al. [8] construct a prediction 
model to forecast both the type of the next event (i.e., next 
activity) and its timestamp at the same time using a shared 
LSTM layer. Evermann et al. [9] realize the similar works as 
[8], however, they encode attributes via embedding space 
instead of one-hot encoding. Lin et al. [10] propose a RNN-
based predictive model called MM-Pred to predict next 
activities and related attributes, and conduct iteration of the 
model to obtain the remaining event sequence. In addition, 
Taymouri et al. [11] present an encoder-decoder architecture 
grounded on Generative Adversarial Networks (GANs), which 
generates a sequence of activities and their timestamps in an 
end-to-end way.  

Summarily, most of the current researches adopt neural 
networks to accomplish activity suffix prediction, which lacks 
deep mining on event logs as well as interpretation of the 
predictive results. Therefore, in this paper, we attempt to 
propose a novel approach to accomplish the task, where process 
discovery and trace replay techniques are employed to simulate 
the real trace execution environment and LSTM is applied to 
characterize the correlation between executed information and 
future execution of ongoing traces. Eventually, sequence 
matching is applied to achieve the final prediction based on the 
above information.  

III. APPROACH 

A. Preliminaries 
1) Event logs 

Definition 3.1 (Event; Trace; Event log). An event is one 
single execution of an activity in different contexts, represented 

as , where  is the case to which 
the event belongs,  represents the associated activity, 

 is resources required for execution,  and  represent 
the start and end timestamp respectively, and  
represent the other basic attributes. A trace is a finite ordered 
sequence of events expressed as , where 

 is the length of . An event log  is a collection of 
multiple traces, which is expressed as , and 

 denotes the number of traces in . 
Definition 3.2 (Prefix Trace, PT; Suffix Trace, ST). A PT is 
the first  events of a trace , which is denoted as 

. Correspondingly, a ST is the last  
events of trace  and is represented by  

.  
Definition 3.3 (Activity Sequence, AS). Given a trace , its 
activity sequence is composed by activities of its events, which 
is expressed as  . 
Definition 3.4 (Event encoding; Encoded matrix). An event 
encoding is a function  that transforms the attribute 
values of event  into a numerical vector (one-hot encoding for 
category attributes and normalization for numeric attributes), 
where  denotes the dimension of the encoded vector. Then, 
for each trace , we integrate encoded vectors of its events by 
time order and obtain an encoded matrix expressed as 

. 
2) Petri net 

Definition 3.5 (Petri Net). A petri net is an explicit 
representation of an event log consisting of nodes (places and 
transitions) and direct arcs. Each place holds a non-negative 
integer number of tokens, which can be transferred according to 
firing rules (Definition 3.7). The number of tokens in place  
is expressed as . A petri net is defined as a six-tuple, i.e., 

, where: 
•  is a finite and non-empty set of 

places. 

•  is a finite and non-empty set of 
transitions. Transitions in petri net are associated with 
activities of an event log by a function , that is, 

, ,  , where  is the activity 
set of an event log and  represent non-observable 
activities. Transitions interrelated to non-observable 
activities are hidden (invisible) transitions.  

•  is the set of directed arcs 
connecting places and transitions. 

•  is the marking that represents the state (the token 
distribution of places) of the petri net and is denoted as 

, where  can be 
expressed as , . 
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Definition 3.6 (Input Set, Output Set). Given a node  
, its input set is denoted as 

 and its output set is 
represented by . 
Definition 3.7 (Firing rules). A transition  is enabled iff  

. Besides, when the transition  is enabled, 
it can be fired and current marking  converts into a new 
marking , where  is calculated as: 

  (1) 

B. Sequence-matching-based activity suffix prediction  
After presenting basic concepts and definitions of this 

paper, this section introduces the procedure of sequence-
matching-based activity suffix prediction, which is divided into 
three parts, i.e., behavioral context replay, data context 
prediction and sequence matching. 

1) behavioral context replay  
Trace replay is a technique that executes traces of an event 

log on a process model to measure the conformance between 
the event log and the model [1]. In this paper, inspired by Theis 
et al. [12], we develop a new application of trace replay to 
simulate the real-life environment of process executions, i.e., 
behavioral context replay. Since rare behaviors cannot be 
characterized by the process model, we adjust the firing rules in 
Definition 3.7 to guarantee that all the transitions related to 
activities of traces to be enabled. Specifically, when a transition 

 is not enabled, we first obtain its input set and find places 
with token missing. Then, to fill requirements of tokens in these 
places, we further enable some hidden transitions that connects 
these places with other places which hold tokens. If  still 
cannot reach the enabled state by the above operations, we 
manually add tokens to these places to fulfill the firing 
requirement of transition . 

In detail, we first conduct process discovery on an 
historical event log to obtain a petri net using Inductive Miner 
(IM), which is easy to operate and friendly to implement trace 
replay [13]. Then, for each trace  in the event log, we replay 
it on the obtained petri net according to the adjusted firing rules 
to simulate its execution. Specifically, during the replay of , 
whenever a transition  related to activity  is fired, we 
update the token value of each place and acquire a new marking 

. When the trace ends its replay, we integrate all markings 
and obtain the behavioral context information of , which is 
denoted as . The whole 
process of behavioral context replay is illustrated in Figure 1. 

To measure the behavioral context consistency between 
two traces, we further introduce a definition named trace 
behavioral similarity (TBS), whose mathematical expression is 
illustrated as (2). 

  
 

 
Figure 1.  The whole process of behavioral context replay. 

Definition 3.8 (Trace Behavioral Similarity, TBS). Given 
two traces  and , 
their TBS is defined as: 

  (2) 

  (3)  

Where  represents the token equivalence of place  after 
the i-th activity is executed. The average equivalence of 

 and  is calculated as 
. Besides, if the dimension of  

and  is not consistent, we stuff the one with 
smaller dimension using padding vectors, i.e., vectors filled 
with 0. 

2) Data context prediction 
During the execution of process instances, a variety of data 

information is produced and recorded as attributes (i.e., 
resource, cost and so on) in event logs, which is collectively 
considered as data context in this paper. Data context 
characterizes the variations of essential attributes, which has 
significant influence on future execution. In this section, we 
attempt to mine the correlation between executed information 
and future execution, and use LSTM model to predict the future 
data context of ongoing traces.  

In detail, we first split historical traces in event logs into 
PTs and STs. Then, several time-related features are added 
including year, month, day, weekday, hour and duration for the 
purpose of enriching information. Subsequently, we perform 
event encoding on PTs and STs, whose encoded matrixes are 
considered as the input and training target of LSTM 
respectively to learn their correlation. Meanwhile, to reduce 
memory consumption during the training, we conduct 
dimensionality reduction on suffix matrixes using a popular 
technique named Uniform Manifold Approximation Projection 
(UMAP) [14] before training, which is used to deal with high-
dimensional data. The matrix of ST  after dimensionality 
reduction is denoted as . After training, the 
correlation between executed data information and future 
execution is implicitly expressed in the prediction model. For 
an ongoing trace, we import its encoded matrix to the prediction 
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model and the output is the predicted data context we need for 
further sequence matching. 

3) Sequence matching 
After introducing the behavioral context replay and data 

context prediction, we further describe the procedure of 
sequence matching in this section, which is divided into four 
steps: 

Step 1: To better simulate real-life executions, we sort 
traces in event logs by time and take the first 70% of traces as 
training set and the remaining 30% of traces as testing set. We 
further divide the traces in training set and testing set into PTs 
and STs, where PTs and STs of training set are employed for 
sequence matching while PTs of testing set are considered as 
ongoing traces and STs are utilized for evaluation. 

Step 2: Subsequently, we perform process discovery on 
training set using IM and obtain a petri net. For each PT  in 
training set and testing set, we replay it on the petri net and 
acquire its behavioral context information . 

Step 3: Traces in training set is applied to train the 
prediction model for data context as mentioned above. Then, for 
each PT  in testing set, we import its encoded matrix into 
the prediction model and obtain its predictive data context, 
which is denoted as . 

Step 4: After step 2~3, each PT  in testing set is 
associated to  and . Then, 
we perform sequence matching between PTs in testing set and 
PTs in training set. Specifically, for each PT  in testing set , 
we traverse PTs in training set and select PTs with the highest 
TBS as . Then, we further calculate the Euclidean Distance 
(ED) between the data suffix matrixes of selected PTs and 

 to select the most similar PT as . Finally, 
the activity suffix of the selected PT is considered as the 
predictive activity suffix of . Algorithm 1 illustrates the 
procedure of Step 4. 

IV. EVALUATION 

A. Datasets 
In order to verify the effectiveness of our proposed 

approach, we perform evaluation using four real-life datasets, 
which can be download from 4TU Centre (https://data.4tu.nl/). 
The concrete description of datasets is present below and 
characteristics of datasets is shown in Table Ⅰ, where “#Trace” 
and “#Event” indicate the total count of traces and events in the 
datasets separately, “#Activity” and “#AS” denote the number of 
the different activities and activity sequences in the datasets 
respectively, and “#Avg. length” represents the average length 
of traces in dataset. 
Helpdesk: This dataset contains events from a ticketing 
management process of the help desk of an Italian software 
company. All cases in the log start with the insertion of a new  
ticket into the ticketing management system and end when the 
issue is resolved and the ticket is closed. 
(https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb) 
 

Algorithm 1: The procedure of Step 4.  
INPUT:  1. Training set ;   2. A PT  in the testing set; 

OUTPUT:  The predictive activity suffix of , ; 
BEGIN 

01: 

02: 

03: 

04: 

05: 

06: 

07: 

08: 

09: 

10: 

11: 

12: 

; ; ; 

FOREACH trace  in  DO: 

     FOREACH  in  DO: 

          ; 

           IF  DO: 

                ;  ; 

                ; 

           ELIF  DO: 

                ; 

                IF  DO: 

                       ;  ; 

RETURN ; 

END 
Sepsis: This real-life event log contains events of sepsis cases 
from a hospital, which were recorded by the Enterprise 
Resource Planning (ERP) system.  
(https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460) 
BPIC2012W_Complete: BPIC2012 dataset is an event log 
taken from a Dutch Financial Institute and represents the 
process of an application process for a personal loan or 
overdraft within a global financing organization, which can be 
split into three sub-processes, i.e., the application itself 
(BPIC2012A), the work items belonging to applications 
(BPIC2012W) and the offer (BPIC2012O). In this paper, events 
with the transition lifestyle of “completed” in BPIC2012W are 
employed to conduct experiments, which is called 
BPIC2012W_Complete. 
(https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f) 
BPIC2012W_Deduplication: Since BPIC2012W_Complete 
contains a lot of self-loops, i.e., some activities are continuously 
executed several times, we further perform experiments on 
BPIC2012W_Complete without self-loops, which preserves the 
first loop of traces and removes the others. The processed 
dataset is named as BPIC2012W_Deduplication. 

TABLE I.  CHARACTERISTICS OF DATASETS 

Dataset #Trace #Event #Activity #AS #Avg. length 
Helpdesk 4580 21348 14 226 4.66 
Sepsis 1050 15214 16 895 13.64 
BPIC2012W_ 
Complete 9658 72413 6 2263  7.50 

BPIC2012W_ 
Deduplication 9658 29410 6 71 3.05 

B. Evaluation metrics 
Similar as references [8], [10] and [11], we employ 

Demerau-Levinstain similarity (DLS, ) to measure 
the similarity of the true activity suffix (TAS) and the predictive 
activity suffix (PAS). The mathematical representation of DLS 
is illustrated as (4), where  is the Demerau-
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Levinstain distance between  and , and  
and  represent the length of  and  
respectively. Demerau-Levinstain distance is the minimum 
number of single-character editions (i.e., insertion, deletion, 
substitution, and transposition) required to transform one 
sequence into another.  

  (4) 

C. Experimental setup 
Our experiments were run on a 10 core Intel(R) Core (TM) 

i9-7900X CPU @ 3.30GHz with 64 GB RAM. The approach 
was implemented in Python 3.6, Keras 2.2.4 with Tensorflow 
1.15.0 backend and Pm4py 2.1.0, using CUDA 10.1 and UMAP 
0.5.1. The hyper-parameters of LSTM and UMAP are shown in 
Table Ⅱ, where  is the length of the longest trace in the 
log. 

TABLE II.  HYPER-PARAMETERS OF LSTM AND UMAP 

Hyper-parameter Value Hyper-parameter Value 
LSTM layers  1 Epoch  200 
LSTM units 50 Dropout 0.5 
Optimizer Adam n_neighbors (UMAP) 5 
Batch size 128 min_dist (UMAP) 0.3 
Learning rate 0.001 n_components (UMAP) maxLen 
Loss mse     

D. Result 
Table Ⅲ summarizes the performance of our method on 

four datasets in terms of the average DLS. We further analyze 
the performances in three specific prefix lengths as short PTs, 
medium PTs and long PTs. As shown in the table, we calculate 
the average DLS of PTs whose length is more than 2, 4 and 6 
for Helpdesk and BPIC2012W_Deduplication while calculate 
average DLS of PTs whose length is more than 2, 5 and 10 for 
the other two datasets since the sequence length of Helpdesk 
and BPIC2012W_Deduplication is relatively shorter than the 
other two. Besides, All represents the average DLS of all PTs in 
the event log. From the table, we notice that Helpdesk achieve 
the best DLS, i.e., 84.01%, while BPIC2012W_Complete 
demonstrates relatively poor performance.  

TABLE III.  THE AVERAGE DLS OF OUR METHOD ON FOUR DATASETS 

Dataset 
DLS 

>= 2 >=4(5) >=6(10) All 
Helpdesk 0.8585  0.8946  0.7970  0.8401  
Sepsis 0.3402 0.3369  0.3152  0.3428  
BPIC2012W_Complete 0.2936 0.3014  0.3028  0.2821  
BPIC2012W_Deduplication 0.4575 0.4650  0.4748  0.4013  

Furthermore, to explore the reason for the difference of 
performances among datasets, we introduce a definition named 
Coincidence Degree (CD). 
Definition 4.1 (Coincidence Degree, CD). The CD of traces in 
an event log is defined as (5), where  and  mean 
the number of different activity sequences and the total count of 
traces in the log, respectively. The trace behavior of event logs 

with low CD are highly variable, which improves the difficulty 
of sequence matching. 

  (5)  

We analyze the correlation between CD and DLS for four 
datasets, which is shown in Figure 2. In general, our method 
demonstrates better performance in datasets with high CD while 
performs relatively poor in datasets with low CD. For example, 
the CD of Helpdesk is high and its average DLS is 
correspondingly high while Sepsis demonstrates an opposite 
situation. However, we notice that the CD of 
BPIC2012W_Complete is high while its average DLS is low. 
As mentioned above, this dataset contains a lot of self-loops, 
which causes our approach to predict overly long sequences of 
the same activity. From the figure, we conclude that the average 
DLS of BPIC2012W_Deduplication improves a lot compared 
to BPIC2012W_Complete, which demonstrates that the self-
loops have an adverse effect on our prediction. 

  
Figure 2.  The variation trends of DLS and CD in different datasets. 

Furthermore, to explore the performance of our method on 
PTs with different length, we analyze the variations of average 
DLS at each prefix length in Figure 3, where the blue polyline 
and the columnar in gray represent the average DLS and the 
sample proportion at current prefix length, respectively. As 
shown in the figure, with the increase of prefix length, the 
sample proportion gradually decreases and even reaches 0 at 
some long prefix length. We also notice that with the increase 
of prefix length, the average DLS first shows a trend of slowly 
rise since PTs with medium length carry more information than 
PTs with short length but possess a similar sample proportion, 
which corresponds to a better sequence prediction result. 
Gradually, the polylines demonstrate dramatic changes with the 
further increase of prefix length in all datasets. The reason is 
that although PTs with long length carry more information, the 
relatively small number of samples raises the bar of finding 
historical PTs with consistent behaviors. 
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Figure 3.  The average DLS at different prefix lengths of four datasets. 

E. Comparison with other methods 
The comparison of our method with the results of other 

researches in terms of DLS is shown in Table Ⅳ. In this paper, 
we conduct comparison on Helpdesk, BPI2012W_Complete 
and BPIC2012W_Deduplication datasets since only their 
prediction results are reported in references as Tax et al. [8], 
Evermann et al. [9], Lin et al. [10], and Taymouri et al. [11], 
which all employ neural networks to achieve activity suffix 
prediction. In addition, since reference [8], [9], [10] and [11] 
only report prediction results of PTs at certain prefix lengths, 
we also calculate the average DLS of the corresponding length 
of our method to make comparisons. The result shows that our 
method improves the average DLS over [8], [10] and [11] by 
9.16%, 1.74% and 2.06 % in Helpdesk respectively, and 
outperforms [9] and [11] by 0.44% and 2.74% in 
BPIC2012W_Complete, respectively. The result of [8], 
however, surpasses our result by 5.97% in 
BPIC2012W_Complete.  As for BPIC2012W_Deduplication, 
[8] only improves the average DLS by 4.04% compared to 
BPIC2012W_Complete while our method has a significant 
improvement of 16.39%. Besides, our method outperforms [8] 
by 6.38% in terms of average DLS on 
BPIC2012W_Deduplication. 

TABLE IV.  COMPARISON WITH STATE-OF-THE-ART METHODS 

Implementation 

Dataset 

Helpdesk BPIC2012W 
Complete 

BPIC2012W 
Deduplication 

>=2 >=3 >=2 >=5 >=2 
Our method 0.8585  0.8946  0.2936  0.3014  0.4575  
Tax et al.[8] 0.7669 - 0.3533  0.3937 
Evermann et al.[9] - - - 0.2970  - 
Lin et al.[10] - 0.8740  - - - 
Taymouri et al.[11] 0.8411  - 0.2662  - - 

 
Note: “-” represents that the corresponding result of the dataset is not reported in the reference 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a method to address the problem 

of activity suffix prediction, where process discovery and trace 
replay techniques are employed to simulate executions of traces 
under real conditions and LSTM is applied to predict and 
characterize future data context of ongoing process instances. 
Besides, the above information is eventually applied to perform 
sequence matching between historical PTs and the current 
traces. The result of our method outperforms the best result of 
most methods. 

Since our work only cope with the problem of activity 
suffix prediction, we plan to make suffix predictions related to 
other execution status such as resource, time and so on in the 
future, which would provide more reference information for 
both process executors and process managers. 
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