
DOI reference number: 10.18293/SEKE2021-075

Remaining Activity Sequence Prediction for
Ongoing Process Instances
Xiaoxiao Sun*, Yuke Ying, Siqing Yang and Hujun Shen

School of Computer Science and Technology
Hangzhou Dianzi University

Hangzhou, China
sunxiaoxiao@hdu.edu.cn, yingyuke_hdu@163.com, yangsiqing@hdu.edu.cn, 191050007@hdu.edu.cn

Abstract—Remaining activity sequence prediction (i.e., Activity
suffix prediction) aims at recommending the most likely future
behaviors for ongoing process instances (traces), which enables
process managers to rationally allocate resources and detect
process deviations in advance. Recently, techniques of neural
networks have found promising applications in activity suffix
prediction by training a prediction model for next activity and
iteratively performing the model to achieve the whole sequence
prediction. However, the iterative prediction accumulates the
deviations of each iteration and the result also lacks
interpretability. In this paper, we propose a novel method to
predict activity suffixes from the perspective of control flow and
data flow for ongoing traces, where process discovery and trace
replay techniques are employed to simulate executions of traces
under real conditions and Long Short-Term Memory (LSTM) is
applied to characterize the correlation between executed
information and future execution. Sequence matching between
historical prefix traces and ongoing traces are performed based on
the above information to select the optimal-matched (i.e., most
similar) activity suffix for ongoing process instances. Experiments
on real-life datasets demonstrates that our proposed method
outperforms other methods.

Keywords-activity suffix prediction; process discovery; trace
replay; LSTM; sequence matching

I. INTRODUCTION
Business process management (BPM) is a technique that

modifies and extends business processes for enterprises by
continuously mining, modeling, and monitoring process
instances (traces) [1]. As a concrete practice that supports the
businesses of enterprises, Process Aware Information System
(PAIS) [2] record execution information of process instances
(i.e., event logs) such as activity (i.e., event type), timestamp,
resources and so on, which is further analyzed for process
optimization and improvement. Traditional process mining
pays attention to offline analysis like process discovery,
conformance checking between logs and process models while
recent focus of researchers has gradually turned to online
analysis, especially predictive business process monitoring
(PBPM). PBPM dedicates to predicting future execution
information for ongoing traces such as next activity, remaining
time, final outcome, remaining activity sequence (i.e., activity
suffix) and so on, which provides reference information for
process executors and helps process managers to take effective
measures for optimizing process executions.

Among all prediction tasks of PBPM, next activity
prediction and remaining time prediction are the most widely
studied tasks while activity suffix prediction is seldom
considered as a single theme. However, compared to next
activity prediction and remaining time prediction, activity
suffix prediction provides more extensive future information
for both process executors and process managers. Accurate
prediction of activity suffix helps process managers to perceive
early deviations and resource shortages, which can be prevented
by timely and effective measures.

Recently, techniques of neural networks especially
Recurrent Neural Network (RNN) [3] and Long-Short Term
Memory (LSTM) [4] are widely employed in the fields of
PBPM. These works address the tasks of PBPM as regression
problems or classification problems and utilize historical traces
to train prediction models. However, the diversity of activity
suffix categories makes this solution inapplicable. Currently, a
variety of researches achieve activity suffix prediction by
constructing a prediction model for next activity and iteratively
performing the model to predict the whole sequence. These
methods, however, are super sensitive to hyper-parameters and
each iteration would add deviations to the final result.

Therefore, in this paper, we propose a novel sequence-
matching-based approach from the perspective of both control
flow and data flow for activity suffix prediction. Summarily, the
main contribution of this paper is as follows:

• The techniques of process discovery and trace replay are
applied to simulate the real behavioral context of trace
executions.

• LSTM is employed to train a prediction model that
implicitly characterizes the correlations between
executed information and future execution.

• Sequence matching is performed between historical
prefix traces and ongoing traces based on the above
information to obtain the most similar activity suffixes
for ongoing traces.

The rest of this paper is structured as follows: Section Ⅱ
introduces existing works on activity suffix prediction. A
detailed description of our approach is presented in Section Ⅲ.
Section Ⅳ evaluates the effectiveness of our method and
conducts comparisons with the optimal result of other
researches on real-life datasets. Eventually, conclusions and
future work are demonstrated in Section Ⅴ.

II. RELATED WORK
A variety of researches have been put forward to realize

activity suffix prediction in the past decade, which are roughly
divided into two types according to whether process structures
are extracted from event logs, i.e., process-aware methods and
non-process-aware methods [5].

Process-aware methods for activity suffix prediction
require constructions of process models such as petri net and
then apply the models to accomplish prediction. For example,
Spoel et al. [6] first mine a causality graph from the event log.
Then, they adjust and apply a well-known shortest path
algorithm (i.e., Floyd-Warshall algorithm) over the mined
causality graphs to find a path whose sum of weights is the least.
Similarly, Polato et al. [7] construct a transition system based
on the event log and annotate its edges with transition
probabilities. Then, they define a cost (i.e., the opposite of the
logarithm of the transition probability) between two nodes and
apply a shortest path algorithm on annotated transition systems
for activity suffix forecasting.

Recently, neural networks especially RNN and LSTM are
widely applied to achieve activity suffix prediction, which are
typical non-process-aware methods. Tax et al. [8] and
Evermanna et al. [9] employ LSTM to forecast activity suffixes
for ongoing traces while Lin et al. [11] apply RNN to achieve
activity suffix prediction. The similarity of their works is that
they all iteratively forecast next activity to realize activity suffix
prediction. Specifically, Tax et al. [8] construct a prediction
model to forecast both the type of the next event (i.e., next
activity) and its timestamp at the same time using a shared
LSTM layer. Evermann et al. [9] realize the similar works as
[8], however, they encode attributes via embedding space
instead of one-hot encoding. Lin et al. [10] propose a RNN-
based predictive model called MM-Pred to predict next
activities and related attributes, and conduct iteration of the
model to obtain the remaining event sequence. In addition,
Taymouri et al. [11] present an encoder-decoder architecture
grounded on Generative Adversarial Networks (GANs), which
generates a sequence of activities and their timestamps in an
end-to-end way.

Summarily, most of the current researches adopt neural
networks to accomplish activity suffix prediction, which lacks
deep mining on event logs as well as interpretation of the
predictive results. Therefore, in this paper, we attempt to
propose a novel approach to accomplish the task, where process
discovery and trace replay techniques are employed to simulate
the real trace execution environment and LSTM is applied to
characterize the correlation between executed information and
future execution of ongoing traces. Eventually, sequence
matching is applied to achieve the final prediction based on the
above information.

III. APPROACH

A. Preliminaries
1) Event logs

Definition 3.1 (Event; Trace; Event log). An event is one
single execution of an activity in different contexts, represented

as , where is the case to which
the event belongs, represents the associated activity,

 is resources required for execution, and represent
the start and end timestamp respectively, and
represent the other basic attributes. A trace is a finite ordered
sequence of events expressed as , where

 is the length of . An event log is a collection of
multiple traces, which is expressed as , and

 denotes the number of traces in .
Definition 3.2 (Prefix Trace, PT; Suffix Trace, ST). A PT is
the first events of a trace , which is denoted as

. Correspondingly, a ST is the last
events of trace and is represented by

.
Definition 3.3 (Activity Sequence, AS). Given a trace , its
activity sequence is composed by activities of its events, which
is expressed as .
Definition 3.4 (Event encoding; Encoded matrix). An event
encoding is a function that transforms the attribute
values of event into a numerical vector (one-hot encoding for
category attributes and normalization for numeric attributes),
where denotes the dimension of the encoded vector. Then,
for each trace , we integrate encoded vectors of its events by
time order and obtain an encoded matrix expressed as

.
2) Petri net

Definition 3.5 (Petri Net). A petri net is an explicit
representation of an event log consisting of nodes (places and
transitions) and direct arcs. Each place holds a non-negative
integer number of tokens, which can be transferred according to
firing rules (Definition 3.7). The number of tokens in place
is expressed as . A petri net is defined as a six-tuple, i.e.,

, where:
• is a finite and non-empty set of

places.

• is a finite and non-empty set of
transitions. Transitions in petri net are associated with
activities of an event log by a function , that is,

, , , where is the activity
set of an event log and represent non-observable
activities. Transitions interrelated to non-observable
activities are hidden (invisible) transitions.

• is the set of directed arcs
connecting places and transitions.

• is the marking that represents the state (the token
distribution of places) of the petri net and is denoted as

, where can be
expressed as , .

1(, , , , , ,...,)s e me c a t t r d d= c CÎ
a AÎ

r RÎ st et

1,..., md d

1 2 | |, ,...,e e es s s
ss =< >

| |s s L

1 2 | |{ , ,..., }LL s s s=

| |L L

k s

1 2() , ,...,k kPT e e es s ss =< > r
s

| | 1 | |() ,...,r rST e es s
s ss - +=< >

s

1 2 | |() . , . ,..., .AS e a e a e as s s
ss =< >

: mf e D®
e

m
s

1 2 | |() [(), (),..., ()]EM f e f e f es s s
ss =

ip
()ipb

(, , , , ,)pn P T F A Mp=

0 1 | | 1{ , ,..., }PP p p p -=

0 1 | | 1{ , ,..., }TT t t t -=

p
()a tp= t TÎ { }a A tÎ ! A

{ }t

() ()F P T T PÍ ´ ´!

M

0 1 | | 1[(), (),..., ()]PM p p pb b b -= ()ipb
[]M i 0 | |i P£ <

Definition 3.6 (Input Set, Output Set). Given a node
, its input set is denoted as

 and its output set is
represented by .
Definition 3.7 (Firing rules). A transition is enabled iff

. Besides, when the transition is enabled,
it can be fired and current marking converts into a new
marking , where is calculated as:

 (1)

B. Sequence-matching-based activity suffix prediction
After presenting basic concepts and definitions of this

paper, this section introduces the procedure of sequence-
matching-based activity suffix prediction, which is divided into
three parts, i.e., behavioral context replay, data context
prediction and sequence matching.

1) behavioral context replay
Trace replay is a technique that executes traces of an event

log on a process model to measure the conformance between
the event log and the model [1]. In this paper, inspired by Theis
et al. [12], we develop a new application of trace replay to
simulate the real-life environment of process executions, i.e.,
behavioral context replay. Since rare behaviors cannot be
characterized by the process model, we adjust the firing rules in
Definition 3.7 to guarantee that all the transitions related to
activities of traces to be enabled. Specifically, when a transition

 is not enabled, we first obtain its input set and find places
with token missing. Then, to fill requirements of tokens in these
places, we further enable some hidden transitions that connects
these places with other places which hold tokens. If still
cannot reach the enabled state by the above operations, we
manually add tokens to these places to fulfill the firing
requirement of transition .

In detail, we first conduct process discovery on an
historical event log to obtain a petri net using Inductive Miner
(IM), which is easy to operate and friendly to implement trace
replay [13]. Then, for each trace in the event log, we replay
it on the obtained petri net according to the adjusted firing rules
to simulate its execution. Specifically, during the replay of ,
whenever a transition related to activity is fired, we
update the token value of each place and acquire a new marking

. When the trace ends its replay, we integrate all markings
and obtain the behavioral context information of , which is
denoted as . The whole
process of behavioral context replay is illustrated in Figure 1.

To measure the behavioral context consistency between
two traces, we further introduce a definition named trace
behavioral similarity (TBS), whose mathematical expression is
illustrated as (2).

Figure 1. The whole process of behavioral context replay.

Definition 3.8 (Trace Behavioral Similarity, TBS). Given
two traces and ,
their TBS is defined as:

 (2)

 (3)

Where represents the token equivalence of place after
the i-th activity is executed. The average equivalence of

 and is calculated as
. Besides, if the dimension of

and is not consistent, we stuff the one with
smaller dimension using padding vectors, i.e., vectors filled
with 0.

2) Data context prediction
During the execution of process instances, a variety of data

information is produced and recorded as attributes (i.e.,
resource, cost and so on) in event logs, which is collectively
considered as data context in this paper. Data context
characterizes the variations of essential attributes, which has
significant influence on future execution. In this section, we
attempt to mine the correlation between executed information
and future execution, and use LSTM model to predict the future
data context of ongoing traces.

In detail, we first split historical traces in event logs into
PTs and STs. Then, several time-related features are added
including year, month, day, weekday, hour and duration for the
purpose of enriching information. Subsequently, we perform
event encoding on PTs and STs, whose encoded matrixes are
considered as the input and training target of LSTM
respectively to learn their correlation. Meanwhile, to reduce
memory consumption during the training, we conduct
dimensionality reduction on suffix matrixes using a popular
technique named Uniform Manifold Approximation Projection
(UMAP) [14] before training, which is used to deal with high-
dimensional data. The matrix of ST after dimensionality
reduction is denoted as . After training, the
correlation between executed data information and future
execution is implicitly expressed in the prediction model. For
an ongoing trace, we import its encoded matrix to the prediction

x P TÎ !

{ | (,) }x y y P T y x F• = Î Ù Î!

{ | (,) }x y y P T x y F• = Î Ù Î!

t TÎ
: () 0i ip t pb" Î• > t

M

tM []tM i
[] 1,

[] [] 1,
[],

i

t i

M i p t
M i M i p t

M i otherwise

- Î•ì
ï= + Î •í
ï
î

t

t

t

s

s

it ia

it
M

s

0 1 | | 1
() [, ,...,]t t tBehavContext M M M

s
s

-
=

An event
log L

Process discovery
(Inductive Miner)

...
Trace
replay

1p 2p 3p 4p
[1 0 0 0]
[0 1 1 0]
[0 0 0 1]

Behavioral context

...s

1s

1p

1t 2p

2t 3p

3t 4p

Petri net

2

11 1 2 | |, ,...,e e ess =< >

22 1 2 | |, ,...,e e ess =< >

| || | 1 2 | |, ,...,
LL e e ess =< >

1 1 1

11 1 2 | |, ,...,e e es s s
ss =< > 2 2 2

22 1 2 | |, ,...,e e es s s
ss =< >

1 20 max(| |,| |),0 | |
1 2

1 2

(,)
| | *max(| |,| |)

ij
i j P

Eq
TBS

P
s ss s

s s
£ < £ <=

å

1 2

1 2

1 2

1, () 0 () 0
| () () |

1 ,
max(() , ())

ij ij

ij ijij

ij ij

BehavContext BehavContext
BehavContext BehavContextEq

otherwise
BehavContext BehavContext

s s

s s
s s

= =ì
ï

-= í -ï
î

!

ijEq jp

1()BehavContext s 2()BehavContext s

1 2(,)TBS s s 1()BehavContext s

2()BehavContext s

st
()UMAPEM st

model and the output is the predicted data context we need for
further sequence matching.

3) Sequence matching
After introducing the behavioral context replay and data

context prediction, we further describe the procedure of
sequence matching in this section, which is divided into four
steps:

Step 1: To better simulate real-life executions, we sort
traces in event logs by time and take the first 70% of traces as
training set and the remaining 30% of traces as testing set. We
further divide the traces in training set and testing set into PTs
and STs, where PTs and STs of training set are employed for
sequence matching while PTs of testing set are considered as
ongoing traces and STs are utilized for evaluation.

Step 2: Subsequently, we perform process discovery on
training set using IM and obtain a petri net. For each PT in
training set and testing set, we replay it on the petri net and
acquire its behavioral context information .

Step 3: Traces in training set is applied to train the
prediction model for data context as mentioned above. Then, for
each PT in testing set, we import its encoded matrix into
the prediction model and obtain its predictive data context,
which is denoted as .

Step 4: After step 2~3, each PT in testing set is
associated to and . Then,
we perform sequence matching between PTs in testing set and
PTs in training set. Specifically, for each PT in testing set ,
we traverse PTs in training set and select PTs with the highest
TBS as . Then, we further calculate the Euclidean Distance
(ED) between the data suffix matrixes of selected PTs and

 to select the most similar PT as . Finally,
the activity suffix of the selected PT is considered as the
predictive activity suffix of . Algorithm 1 illustrates the
procedure of Step 4.

IV. EVALUATION

A. Datasets
In order to verify the effectiveness of our proposed

approach, we perform evaluation using four real-life datasets,
which can be download from 4TU Centre (https://data.4tu.nl/).
The concrete description of datasets is present below and
characteristics of datasets is shown in Table Ⅰ, where “#Trace”
and “#Event” indicate the total count of traces and events in the
datasets separately, “#Activity” and “#AS” denote the number of
the different activities and activity sequences in the datasets
respectively, and “#Avg. length” represents the average length
of traces in dataset.
Helpdesk: This dataset contains events from a ticketing
management process of the help desk of an Italian software
company. All cases in the log start with the insertion of a new
ticket into the ticketing management system and end when the
issue is resolved and the ticket is closed.
(https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb)

Algorithm 1: The procedure of Step 4.
INPUT: 1. Training set ; 2. A PT in the testing set;

OUTPUT: The predictive activity suffix of , ;
BEGIN

01:

02:

03:

04:

05:

06:

07:

08:

09:

10:

11:

12:

; ; ;

FOREACH trace in DO:

 FOREACH in DO:

 ;

 IF DO:

 ; ;

 ;

 ELIF DO:

 ;

 IF DO:

 ; ;

RETURN ;

END
Sepsis: This real-life event log contains events of sepsis cases
from a hospital, which were recorded by the Enterprise
Resource Planning (ERP) system.
(https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460)
BPIC2012W_Complete: BPIC2012 dataset is an event log
taken from a Dutch Financial Institute and represents the
process of an application process for a personal loan or
overdraft within a global financing organization, which can be
split into three sub-processes, i.e., the application itself
(BPIC2012A), the work items belonging to applications
(BPIC2012W) and the offer (BPIC2012O). In this paper, events
with the transition lifestyle of “completed” in BPIC2012W are
employed to conduct experiments, which is called
BPIC2012W_Complete.
(https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f)
BPIC2012W_Deduplication: Since BPIC2012W_Complete
contains a lot of self-loops, i.e., some activities are continuously
executed several times, we further perform experiments on
BPIC2012W_Complete without self-loops, which preserves the
first loop of traces and removes the others. The processed
dataset is named as BPIC2012W_Deduplication.

TABLE I. CHARACTERISTICS OF DATASETS

Dataset #Trace #Event #Activity #AS #Avg. length
Helpdesk 4580 21348 14 226 4.66
Sepsis 1050 15214 16 895 13.64
BPIC2012W_
Complete 9658 72413 6 2263 7.50

BPIC2012W_
Deduplication 9658 29410 6 71 3.05

B. Evaluation metrics
Similar as references [8], [10] and [11], we employ

Demerau-Levinstain similarity (DLS,) to measure
the similarity of the true activity suffix (TAS) and the predictive
activity suffix (PAS). The mathematical representation of DLS
is illustrated as (4), where is the Demerau-

pt

()BehavContext pt

pt

()DataContext pt
pt

()BehavContext pt ()DataContext pt

pt

pt

()DataContext pt pt

pt

trainingS pt

pt ()PAS pt

0maxTBS¬ minDist¬¥ ()PAS pt null¬

s trainingS
i (1,| | +1)range s

(, ())icurTBS TBS pt PT s¬

curTBS maxTBS>

maxTBS curTBS¬ | |() (())iPAS pt AS TSs s-¬

| |((()), ())UMAP iminDist ED EM TS DataContext pts s-¬

curTBS maxTBS==

| |((()), ())UMAP icurDist ED EM TS DataContext pts s-¬

curDist minDist<

minDist curDist¬ | |() (())iPAS pt AS TSs s-¬

()PAS pt

[0,1]DLS Î

(,)DL PAS TAS

Levinstain distance between and , and
and represent the length of and
respectively. Demerau-Levinstain distance is the minimum
number of single-character editions (i.e., insertion, deletion,
substitution, and transposition) required to transform one
sequence into another.

 (4)

C. Experimental setup
Our experiments were run on a 10 core Intel(R) Core (TM)

i9-7900X CPU @ 3.30GHz with 64 GB RAM. The approach
was implemented in Python 3.6, Keras 2.2.4 with Tensorflow
1.15.0 backend and Pm4py 2.1.0, using CUDA 10.1 and UMAP
0.5.1. The hyper-parameters of LSTM and UMAP are shown in
Table Ⅱ, where is the length of the longest trace in the
log.

TABLE II. HYPER-PARAMETERS OF LSTM AND UMAP

Hyper-parameter Value Hyper-parameter Value
LSTM layers 1 Epoch 200
LSTM units 50 Dropout 0.5
Optimizer Adam n_neighbors (UMAP) 5
Batch size 128 min_dist (UMAP) 0.3
Learning rate 0.001 n_components (UMAP) maxLen
Loss mse

D. Result
Table Ⅲ summarizes the performance of our method on

four datasets in terms of the average DLS. We further analyze
the performances in three specific prefix lengths as short PTs,
medium PTs and long PTs. As shown in the table, we calculate
the average DLS of PTs whose length is more than 2, 4 and 6
for Helpdesk and BPIC2012W_Deduplication while calculate
average DLS of PTs whose length is more than 2, 5 and 10 for
the other two datasets since the sequence length of Helpdesk
and BPIC2012W_Deduplication is relatively shorter than the
other two. Besides, All represents the average DLS of all PTs in
the event log. From the table, we notice that Helpdesk achieve
the best DLS, i.e., 84.01%, while BPIC2012W_Complete
demonstrates relatively poor performance.

TABLE III. THE AVERAGE DLS OF OUR METHOD ON FOUR DATASETS

Dataset
DLS

>= 2 >=4(5) >=6(10) All
Helpdesk 0.8585 0.8946 0.7970 0.8401
Sepsis 0.3402 0.3369 0.3152 0.3428
BPIC2012W_Complete 0.2936 0.3014 0.3028 0.2821
BPIC2012W_Deduplication 0.4575 0.4650 0.4748 0.4013

Furthermore, to explore the reason for the difference of
performances among datasets, we introduce a definition named
Coincidence Degree (CD).
Definition 4.1 (Coincidence Degree, CD). The CD of traces in
an event log is defined as (5), where and mean
the number of different activity sequences and the total count of
traces in the log, respectively. The trace behavior of event logs

with low CD are highly variable, which improves the difficulty
of sequence matching.

 (5)

We analyze the correlation between CD and DLS for four
datasets, which is shown in Figure 2. In general, our method
demonstrates better performance in datasets with high CD while
performs relatively poor in datasets with low CD. For example,
the CD of Helpdesk is high and its average DLS is
correspondingly high while Sepsis demonstrates an opposite
situation. However, we notice that the CD of
BPIC2012W_Complete is high while its average DLS is low.
As mentioned above, this dataset contains a lot of self-loops,
which causes our approach to predict overly long sequences of
the same activity. From the figure, we conclude that the average
DLS of BPIC2012W_Deduplication improves a lot compared
to BPIC2012W_Complete, which demonstrates that the self-
loops have an adverse effect on our prediction.

Figure 2. The variation trends of DLS and CD in different datasets.

Furthermore, to explore the performance of our method on
PTs with different length, we analyze the variations of average
DLS at each prefix length in Figure 3, where the blue polyline
and the columnar in gray represent the average DLS and the
sample proportion at current prefix length, respectively. As
shown in the figure, with the increase of prefix length, the
sample proportion gradually decreases and even reaches 0 at
some long prefix length. We also notice that with the increase
of prefix length, the average DLS first shows a trend of slowly
rise since PTs with medium length carry more information than
PTs with short length but possess a similar sample proportion,
which corresponds to a better sequence prediction result.
Gradually, the polylines demonstrate dramatic changes with the
further increase of prefix length in all datasets. The reason is
that although PTs with long length carry more information, the
relatively small number of samples raises the bar of finding
historical PTs with consistent behaviors.

PAS TAS .PAS length
.TAS length PAS TAS

(,)(,) 1
max(. , .)

DL PAS TASDLS PAS TAS
PAS length TAS length

= -

maxLen

#AS #Trace

#1
#
ASCD
Trace

= -

Figure 3. The average DLS at different prefix lengths of four datasets.

E. Comparison with other methods
The comparison of our method with the results of other

researches in terms of DLS is shown in Table Ⅳ. In this paper,
we conduct comparison on Helpdesk, BPI2012W_Complete
and BPIC2012W_Deduplication datasets since only their
prediction results are reported in references as Tax et al. [8],
Evermann et al. [9], Lin et al. [10], and Taymouri et al. [11],
which all employ neural networks to achieve activity suffix
prediction. In addition, since reference [8], [9], [10] and [11]
only report prediction results of PTs at certain prefix lengths,
we also calculate the average DLS of the corresponding length
of our method to make comparisons. The result shows that our
method improves the average DLS over [8], [10] and [11] by
9.16%, 1.74% and 2.06 % in Helpdesk respectively, and
outperforms [9] and [11] by 0.44% and 2.74% in
BPIC2012W_Complete, respectively. The result of [8],
however, surpasses our result by 5.97% in
BPIC2012W_Complete. As for BPIC2012W_Deduplication,
[8] only improves the average DLS by 4.04% compared to
BPIC2012W_Complete while our method has a significant
improvement of 16.39%. Besides, our method outperforms [8]
by 6.38% in terms of average DLS on
BPIC2012W_Deduplication.

TABLE IV. COMPARISON WITH STATE-OF-THE-ART METHODS

Implementation

Dataset

Helpdesk BPIC2012W
Complete

BPIC2012W
Deduplication

>=2 >=3 >=2 >=5 >=2
Our method 0.8585 0.8946 0.2936 0.3014 0.4575
Tax et al.[8] 0.7669 - 0.3533 0.3937
Evermann et al.[9] - - - 0.2970 -
Lin et al.[10] - 0.8740 - - -
Taymouri et al.[11] 0.8411 - 0.2662 - -

Note: “-” represents that the corresponding result of the dataset is not reported in the reference

V. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a method to address the problem

of activity suffix prediction, where process discovery and trace
replay techniques are employed to simulate executions of traces
under real conditions and LSTM is applied to predict and
characterize future data context of ongoing process instances.
Besides, the above information is eventually applied to perform
sequence matching between historical PTs and the current
traces. The result of our method outperforms the best result of
most methods.

Since our work only cope with the problem of activity
suffix prediction, we plan to make suffix predictions related to
other execution status such as resource, time and so on in the
future, which would provide more reference information for
both process executors and process managers.

ACKNOWLEDGMENT
This work is supported by Natural Science Foundation of

China (No.61472112), Natural Science Foundation of Zhejiang
Province (No.LQ20F020017) and the Key Science and
Technology Project of Zhejiang (No.2017C01010).

REFERENCES
[1] Van Der Aalst, W. (2011). Process mining: discovery, conformance and

enhancement of business processes (Vol. 2). Heidelberg: Springer.
[2] M. Dumas, W.M. Van der Aalst, and A.H. Ter Hofstede. Process-aware

information systems: bridging people and software through process
technology. John Wiley & Sons, 2005.

[3] R.J. Williams, and D. Zipser, (1998). A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1(2).

[4] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural
computation, 1997, 9(8): 1735-1780.

[5] Marquez-Chamorro A E, Resinas M , Ruiz-Cortes A . Predictive
monitoring of business processes: a survey[J]. IEEE Transactions on
Services Computing, 2017:1-1.

[6] Spoel S V D, Keulen M V, Amrit C . Process Prediction in Noisy Data
Sets: A Case Study in a Dutch Hospital[C]// International Symposium on
Data-Driven Process Discovery and Analysis. Springer Berlin Heidelberg,
2012.

[7] Polato M, Sperduti A , Burattin A , et al. Time and Activity Sequence
Prediction of Business Process Instances[J]. Computing, 2016.

[8] N. Tax, I. Verenich, M.L. Rosa, and M. Dumas, (2017). Predictive
business process monitoring with LSTMs. Proceedings of the Twenty-
Sixth Benelux Conference on Machine Learning (BENELEARN).

[9] Evermann, J. , Rehse, J. R. , & Fettke, P. . (2017). Predicting process
behaviour using deep learning. Decision Support Systems, 100, 129-140.

[10] L. Lin, L. Wen and J. Wang, (2019). MM-Pred: A Deep Predictive Model
for Multi-attribute Event Sequence. SIAM International Conference on
Data Mining (SDM19).

[11] Taymouri, Farbod, and Marcello La Rosa. "Encoder-Decoder Generative
Adversarial Nets for Suffix Generation and Remaining Time Predication
of Business Process Models." arXiv preprint arXiv:2007.16030 (2020).

[12] Theis, J., & Darabi, H. (2019). Decay replay mining to predict next
process events. IEEE Access, 7, 119787-119803.

[13] Leemans S J J, Fahland D , Aalst W M P . Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach[C]//
Application and Theory of Petri Nets and Concurrency - 34th
International Conference, PETRI NETS 2013, Milan, Italy, June 24-28,
2013. Proceedings. Springer-Verlag, 2013.

[14] Mcinnes L , Healy J . UMAP: Uniform Manifold Approximation and
Projection for Dimension Reduction[J]. The Journal of Open Source
Software, 2018, 3(29):861.

