
Formal specification and model checking of
a recoverable wait-free version of MCS

Duong Dinh Tran, Kentaro Waki, and Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: {duongtd,kentaro.waki,ogata}@jaist.ac.jp

Abstract—MCS is widely known as one of the most efficient
and influential spinning lock mutual exclusion protocols. The
protocol, however, only works under the assumption that
processes do not crash while acquiring/releasing the lock or
being in the critical section. Furthermore, the exit segment
pseudo-code of MCS’s algorithm is not wait-free since a
process releasing the lock needs to wait for the next process
in the virtual queue to perform some steps. A new version
of MCS has been proposed by S. Dhoked and N. Mittal
such that the new version is wait-free and recoverable (i.e.,
if some processes crash, the protocol can recover and work
normally). In this paper, we formally specify the recoverable
wait-free version of MCS and conduct model checking to check
whether the protocol enjoys the mutual exclusion property.
Our experiments say that: (1) the property is not satisfied
if crashes are allowed to occur without any restriction, (2) the
protocol enjoys the property if crashes never happen at all, or
(3) if crashes have not occurred recently. We also describe
the challenge of how to formally specify dynamic memory
allocation and present our solution to solve that problem.

Keywords-mutual exclusion; MCS protocol; wait-free algo-
rithm; recoverable; dynamic allocation

I. INTRODUCTION

Concurrent or distributed systems require efficient mech-
anisms to handle conflict between concurrent accesses to
resources shared among several processes. Mutual exclusion
locks are known as one of the most common techniques
to solve such problems. Mutual exclusion guarantees that a
process only can access the shared resources inside the critical
section, and at most one process is allowed to enter the critical
section at any time. In 1991, J. M. Mellor-Crummey and M.
L. Scott proposed MCS mutual exclusion protocol [1]. Since
then, MCS itself together with several variants of it were
implemented and used in various environments. For example,
variants of MCS have been used in Java Virtual Machines.
The numerous implementations and extensive uses imply
that the protocol is one of the most efficient and influential
mutual exclusion algorithms.

However, a drawback of the MCS algorithm is that its
exit segment pseudo-code is not wait-free. An algorithm

This research was partially supported by JSPS KAKENHI Grant Number
JP19H04082.

DOI reference number: 10.18293/SEKE2021-065

is wait-free if every action of it by a process completes
within a bound number of steps regardless of the behavior of
other processes. In MCS, when a process leaving the critical
section and releasing the lock, it needs to wait for the next
process in the virtual queue to perform some steps. MCS also
only works under the assumption that processes do not crash
while acquiring/releasing the lock or while in the critical
section. Failures or crashes, however, are often possible to
happen in real systems. In [2], R. Dvir and G. Taubenfeld
have proposed an extension to the original MCS to make
the exit segment code wait-free. Based on the augmented
MCS in [2], S. Dhoked and N. Mittal [3] have continously
proposed another new version such that it is recoverable and
wait-free. The recoverable property says that a process may
crash at any point during its execution, but the protocol is
able to recover and work as normal. Hereinafter, let us call
the recoverable & wait-free version of MCS as RWfMCS.

In this paper, we formal specify RWfMCS and conduct
model checking to confirm that when the protocol enjoys
the mutual exclusion property and when it does not. Our
experiments say that: (1) the protocol does not satisfy the
mutual exclusion property if there is not any restriction
to the occurrence of crashes; (2) the protocol enjoys the
mutual exclusion property if crashes never happen; and (3)
the protocol satisfies the mutual exclusion property if crashes
have not occurred recently.

Formal specification of RWfMCS has a challenge in
specifying dynamic memory allocation. When a process
wants to enter the critical section, it first requests for
allocating memory to initialize an empty node. Roughly
speaking, nodes associated with processes are dynamically
created. Unfortunately, modeling dynamic allocation in
particular or dynamic systems in general is a non-trivial
problem in formal method. P. C. Attie and N. A. Lynch [4]
have addressed this problem and presented dynamic I/O
automata, which is an extension of I/O automata to model
and analyze dynamic systems. In this paper, we overcome
that problem by providing a fixed list of “empty nodes” from
the beginning. Every time a process requests for allocating
memory to construct a new empty node, a top node of the
list is extracted and used.

II. PRELIMINARIES

A Kripke structure K is 〈S, I, T, P, L〉, where S is a set
of states, I ⊆ S is the set of initial states, T ⊆ S × S is a
total binary relation over S, P is a set of atomic propositions
and L is a labeling function whose type is S → 2P . Each
element (s, s′) ∈ T is called a state transition from s to s′ and
T may be called the state transitions (with respect to K). For
a state s ∈ S, L(s) is the set of atomic propositions that hold
in s. A path π is an infinite sequence s0, . . . , si, si+1, . . . of
states such that si ∈ S and (si, si+1) ∈ T for each i. Let πi

be si, si+1, . . . and π(i) be si. Let P be the set of all paths.
π is called a computation if π(0) ∈ I . Let C be the set of
all computations.

The syntax of a formula ϕ in LTL for K is ϕ ::=
> | p | ¬ϕ | ϕ ∧ ϕ | © ϕ | ϕ U ϕ, where p ∈ P . Let F
be the set of all formulas in LTL for K. An arbitrary path
π ∈ P of K and an arbitrary LTL formula ϕ ∈ F of K,
K,π |= ϕ is inductively defined as K,π |= >, K,π |= p iff
p ∈ L(π(0)), K,π |= ¬ϕ1 iff K,π 6|= ϕ1, K,π |= ϕ1∧ϕ2 iff
K,π |= ϕ1 and K,π |= ϕ2, K,π |=© ϕ1 iff K,π1 |= ϕ1,
and K,π |= ϕ1 U ϕ2 iff there exists a natural number i
such that K,πi |= ϕ2 and for all natural numbers j < i,
K,πj |= ϕ1, where ϕ1 and ϕ2 are LTL formulas. Then,
K |= ϕ iff K,π |= ϕ for each computation π ∈ C of K. The
temporal connectives© and U are called the next connective
and the until connective, respectively. The other logical
and temporal connectives are defined as usual as follows:
⊥ , ¬>, ϕ1 ∨ϕ2 , ¬(¬ϕ1 ∧¬ϕ2), ϕ1 ⇒ ϕ2 , ¬ϕ1 ∨ϕ2,
♦ϕ , > U ϕ, and �ϕ , ¬(♦¬ϕ). The temporal connectives
♦ and � are called the eventually connective and the always
connective, respectively.

In this paper, to express a state of S, we use an associative-
commutative collection of name-value pairs. Associative-
commutative collections are called soups, and name-value
pairs are called observable components. That is, a state
is expressed as a soup of observable components. The
juxtaposition operator is used as the constructor of soups.
Let oc1, oc2, oc3 be observable components, and then
oc1 oc2 oc3 is the soup of those three observable components.
A state is expressed as {oc1 oc2 oc3}. There are multiple
possible ways to specify state transitions. In this paper, we
use Maude [5], a programming/specification language based
on rewriting logic, to specify them as rewrite rules. Maude
makes it possible to specify complex systems flexibly and is
also equipped with model checking facilities (a reachability
analyzer and an LTL model checker). A rewrite rule starts
with the keyword rl, followed by a label enclosed with
square brackets and a colon, two patterns (terms that may
contain variables) connected with =>, and ends with a full
stop. A conditional one starts with the keyword crl and
has a condition following the keyword if before a full stop.
The following is a form of a conditional rewrite rule:

crl [lb] : l => r if . . . /\ ci /\ . . .

where lb is a label and ci is part of the condition, which may
be an equation lci = rci. The negation of lci = rci could
be written as (lci =/= rci) = true, where = true could
be omitted. If the condition . . . /\ ci /\ . . . holds under
some substitution σ, σ(l) can be replaced with σ(r).

Let init be the only initial state of K and ϕ be an LTL
formula. Then, the Maude LTL model checker checks that
K satisfies ϕ by the following command:

red modelCheck(init,ϕ) .

where red is an abbreviation of reduce. Executing this
command, Maude will return either true if ϕ is satisfied, or
a counterexample when ϕ is not satisfied.

III. THE RECOVERABLE WAIT-FREE MCS PROTOCOL

The pseudo-code of RWfMCS protocol for each process i
can be written as follows:

re : if state[i] = LEAVE then goto ex1;
else if state[i] = TRY and pred[i] = mine[i]

then goto ex1;
else if state[i] = FREE then {
state[i] := INIT; mine[i] := null; }

en1 : if state[i] = INIT {
en2 : if mine[i] = null then mine[i] := newNode();
en3 : nextmine[i] := null; lockmine[i] := true;

pred[i] := mine[i]; state[i] := TRY; }
en4 : if state[i] = TRY then {
en5 : if pred[i] = mine[i] {
en6 : temp := FAS(tail,mine[i]);
en7 : pred[i] := temp; | crash and goto re; }
en8 : if pred[i] 6= null
en9 : if CAS(nextpred[i],null,minei)
en10 : repeat while lockmine[i];
cs : state[i] := InCS; }
ex1 : state[i] := LEAVE; CAS(tail,mine[i],null);
ex2 : if not CAS(nextmine[i],null,mine[i])
ex3 : locknextmine[i]

:= false;
ex4 : state[i] = FREE; goto re;

RWfMCS maintains a queue of processes based on a linked
list. That is why we call the queue is the virtual queue. Each
element of the linked list is a node that contains the following
two fields:
• next: stores the address of its successor (or next) node

in the virtual queue if any and null otherwise.
• lock: stores a Boolean value. A process needs to spin to

wait for its turn while trying to enter the critical section
if its lock value is true.

nexti and locki can be regarded as the local variables of
process i. RWfMCS uses the following global variables (i.e.,
shared among all processes):
• pred: an array where each element pred[i] contains an

address referring to the predecessor node of process i
in the virtual queue if any and null otherwise.

• mine: an array where each element mine[i] stores an
address referring to the node associated with process i.

• state: an array where each element state[i] receives
one of the following values: FREE, INIT, TRY, InCS,
or LEAVE.

• tail: contains the address of the last node in the virtual
queue if the queue is not empty and null otherwise.

The algorithm consists of four segments code: recover
section (label re), entering section (labels en1 to en10),
critical section (label cs), and exiting section (labels ex1 to
ex4). The function newNode() at the label en2 dynamically
allocates memory, then initializes and returns an empty node.
The body of the loop at the label en10 (between repeat
and while) is empty. The algorithm uses the following two
non-trivial atomic instructions:

• FAS (fetch-and-store): FAS(x, y) atomically does the
following: x is set to y and the old value of x is returned.

• CAS (compare-and-swap): CAS(x, y, z) atomically
does the following: if x equals y then x is set to z
and true is returned, otherwise false is just returned.

We suppose that each process is located at one of the
sixteenth labels, such as re, ex1, cs. Initially, each process is
located at re; nexti is null; locki is false; mine[i], pred[i],
and tail are null; state[i] is FREE. When a process wants
to enter the critical section, it first moves to en1 from re.

To reduce the number of transitions so that to make it
possible to conduct model checking later, at some labels (e.g.,
en3, ex1), we combine multiple assignments or instructions
into only one transition. Furthermore, we suppose that crashes
can only occur at en7. When a process is located at en7, it
either performs assigning temp’s value to its pred or crashes
and goes back to the recover section non-deterministically.
As mentioned in [3], the algorithm has only one “sensitive
instruction” (i.e., the mutual exclusion property may not be
satisfied if a process crashes immediately after executing this
instruction) that is the one involving the FAS instruction at
the label en6. That is the reason why we suppose that crashes
can only be occurred at en7, after successfully performing
the FAS instruction, but not yet storing the result to pred[i].
Whenever a process crashes, it loses the information about its
local variables (i.e., next and lock), but the shared variables
do not be affected.

In the original MCS, when a process leaving the critical
section and releasing the lock, it first tries to set tail to null
if tail is still the process itself by using the CAS instruction.
If tail now refers to a different node (CAS return false), the
virtual queue must contain at least another process requesting
for the lock. In that case, the process releasing the lock needs
to wait until its next field contains a non-null reference (i.e.,
point to its successor in the virtual queue). However, the
link between the process releasing the lock and its successor
is created by the successor process, then the exit segment
code of the original MCS algorithm is not wait-free. To

overcome that problem, RWfMCS is augmented with some
modifications at labels ex2 and en9. At label ex2, a process
leaving the critical section sets the next field of it to itself if
the link from it to its successor process in the virtual queue
has not been created yet in order to inform the next process
in the queue that the lock is now free. While at label en9,
by performing the CAS instruction, the next process in the
queue checks the value of the next field of its predecessor
is null or not. If the value is null, indicating that the lock is
now free, then the process can enter the critical section. On
the other hand, it creates the link between its predecessor
and itself, and spins to wait until its lock becomes false.

IV. FORMAL SPECIFICATION THE PROTOCOL

In this paper, a state is expressed as a soup of observable
components. To formalize RWfMCS as a Kripke structure
KMCS, we use the following observable components:
• (tail : p) - it says that tail is p,
• (pc[p] : l) - it says that process p is located at label l,
• (next[p] : q) - it says that nextp refers to q,
• (lock[p] : b) - it says that lockp is b,
• (pred[p] : q) - it says that pred[p] refers to q,
• (state[p] : s) - it says that state[p] is s,
• (mine[p] : q) - it says that mine[p] refers to q,
• (temp[p] : q) - it says that tempp refers to q,

where p and q are two process IDs, l receives one of the
sixteenth label values, b is a Boolean value, s receives one
of five values of the state. Although in the pseudo-code,
temp is used as a temporary variable, in the specification,
we explicitly use different temp for each process to avoid
undesirable behavior caused by jointly reading/writing temp.

Each state in SMCS is expressed as {obs}, where obs is a
soup of those observable components. If two processes p1
and p2 participate in RWfMCS, one initial state of IMCS

namely init is defined as follows:

{(tail: null) (pc[p1]: re) (pc[p2]: re)
(next[p1]: null) (next[p2]: null)
(lock[p1]: false) (lock[p2]: false)
(pred[p1]: null) (pred[p2]: null)
(mine[p1]: null) (mine[p2]: null)
(temp[p1]: null) (temp[p2]: null)
(state[p1]: FREE) (state[p2]: FREE)} .

There are seventeenth transitions for each process p:
• rcv: p performs the recover action (if crashed before)

and moves to either en1 or ex1 from re,
• chsta: p checks the if condition at en1 and moves to

either en2 or en4 from en1,
• initmine: p moves to en3 from en2,
• init: p moves to en4 from en3,
• chsta2: p checks the if condition at en4 and moves

to either en5 or ex1 from en4,
• chprd: p checks the if condition at en5 and moves to

either en6 or en8 from en5,

• sttail: p moves to en7 from en6,
• stprd: p moves to en8 from en7,
• chprd2: p checks the if condition at en8 and moves

to either en9 or cs from en8,
• stnxt: p performs the CAS instruction at en9 and

checks the returned value to move to either en10 or cs
from en9,

• chlck: p tries to move to cs from en10,
• exit: p moves to ex1 from cs,
• ststa: p moves to ex2 from ex1,
• stnxt2: p performs the CAS instruction at ex2 and

checks the returned value to move to either ex3 or ex4
from ex2,

• stnxt2: p moves to ex4 from ex3,
• go2rcv: p goes back to re from ex4,
• crash: when p is located at en7, p crashes and goes

back to re.
Let OCs be a Maude variable of observable component

soups, P, Q, Q1 be Maude variables of process IDs, and S
be Maude variable receives one of five values of the state.
The rewrite rule exit is simply defined as follows:

rl [exit] : {(pc[P]: cs) (state[P]: S) OCs}
=> {(pc[P]: ex1) (state[P]: InCS) OCs} .

The rewrite rule says that when a process P is located at
cs, P moves to ex1; and state[P] changes to InCS; other
observable components do not change.

The rewrite rule rcv is defined as follows:

rl [rcv] : {(pc[P]: re) (state[P]: S)
(pred[P]: Q) (mine[P]: Q1) OCs}
=> {(pc[P]: (if S == LEAVE then ex1 else (
if S == TRY and Q == Q1 then ex1 else en1 fi)
fi)) (state[P]: (if S == FREE then INIT else S
fi)) (mine[P]: (if S == FREE then null else Q1
fi)) (pred[P]: Q) OCs} .

The rewrite rule says that when a process P located at re, if
its state is LEAVE or its state is TRY and its pred equals
to its mine, P then moves to ex1, otherwise, P moves to
en1; if its state is FREE, its state changes to INIT and
mine[P] is reset to null, otherwise, nothing changes; other
observable components do not change.

One challenge we need to deal with during formally
specifying RWfMCS is how to specify dynamic memory
allocation. In the algorithm, when the function newNode()
at label en2 is invoked, a new memory location is allocated
from which an empty node is constructed and assigns to
mine[i]. After the process i successfully enters the critical
section, releases the lock, and goes back to the recover
section, mine[i] is reset to null (at label re). This assignment
simply points mine[i] to a null pointer, but the memory
that contains the old node mine[i] is still alive without any
effect. Roughly speaking, the values returned by the function
newNode are different from time to time every time process
i requests for allocating memory to construct a new empty
node. Furthermore, resetting the value of mine[i] to null does

not affect the old value of mine[i]. It is, however, not simple
to make the formal specification satisfying those behaviors.

To solve the problem of formally specifying dynamic
memory allocation mentioned above, our solution is to
provide a fixed list of “empty nodes” from the beginning.
Every time a process requests for allocating memory to
construct a new empty node (i.e., calls to the function
newNode() at label en2), a top node of the list is extracted
and used. When a process makes a request for a new node
but the list of nodes now is empty, we let the process move
to the terminal state in which the process spins there forever.
We add one more observable component (nodes: lp), where
lp is a list of process IDs, to represents the list of “empty
nodes” used for dynamic allocation. Consequently, we add
the following observable component to init:

(nodes: (q1 q2 q3 q4 q5 q6))

where qk is a process ID for each k = 1, . . . , 6. Here
we provide six “empty nodes” for dynamic allocation. The
rewrite rule initmine now is defined as follows:

rl [initMine] : {(mine[P]: Q) (nodes: (Q1 LP))
(pc[P]: en2) OCs} => {(pc[P]: en3) (mine[P]:
(if Q == null then Q1 else Q fi)) (nodes:
(if Q == null then LP else (Q1 LP) fi)) OCs} .

where LP is a Maude variable whose value is a list of
process IDs (possibly empty). The rewrite rule says that
when a process P is located at en2 and nodes is not empty
(i.e., consists of Q1 and LP), P moves to en3; if mine[P]
is null then two assignments are performed: assigning the
top element of nodes (i.e., Q1) to mine[P], and updating
nodes by removing its top element.

We need to add a new rewrite rule to represent the
transition when a process requests for allocating a new node
but nodes now is empty. The rewrite rule is defined as
follows:

rl [terminate] : {(pc[P]: en2) (mine[P]: null)
(nodes: empty) OCs} => {(pc[P]: terminal)
(mine[P]: null) (nodes: empty) OCs} .

where terminal is a new process location in addition
to the sixteenth existing locations. When a process moves
to terminal, it will stay there forever by the stutter
rewrite rule that is defined as follows:

rl [stutter] : {(pc[P]: terminal) OCs}
=> {(pc[P]: terminal) OCs} .

The remaining transitions can be defined likewise.

V. MODEL CHECKING

A. Model checking without any restriction to crashes

To model check that KMCS satisfies some desired proper-
ties, we define PMCS and LMCS. PMCS contains an atomic
proposition namely inCs which takes a process IDs as its
argument. LMCS is initially specified as follows:

eq {(pc[P] : cs) OCs} |= inCs(P) = true .
eq {OCs} |= PROP = false [owise] .

Figure 1. A counterexample shows that RWfMCS does not enjoy the mutual exclusion property if there is not any restriction to the occurrence of crashes

where owise is the abbreviation of otherwise, indicating
that this equation will only be applied if all of the previous
equations above it can not be applied. The equations say that
inCs(P) holds in a state s iff s contains (pc[P] : cs).
We then specify the mutual exclusion property as the
following LTL formula:

eq mutex = ([] ∼(inCs(p1) /\ inCs(p2))) .

where [] is �, ∼ is ¬, and /\ is ∧. The equation (or
formula) says that it is always the case such that p1 and p2
are not located at cs at the same time. We use Maude model
checker to check that RWfMCS satisfies the mutual exclusion
property or not by using the following Maude command:

red modelCheck(init,mutex) .

Unfortunately, a counterexample was found, which is vi-
sualized as in Fig. 1. Note that, the Figure does not show
all observable components, but only depicts pc[p1] and
pc[p2], and uninteresting transitions are omitted (e.g.,
chsta, initmine). When the virtual queue consists of
two processes p1 and p2 such that p1 is located at cs, p2
is located at en7, and tail is p2, process p2 crashes and
goes back to re. Because state[p2] now is TRY, it then
jumps to ex1, completes the exit segment in which it sets
tail to null by the CAS instruction. p2 then tries to enter
the critical section one more time. Since tail is null now,
if only transitions of p2 are executed until it reaches en8
(without crash again), pred[p2] will be null. That time, p2
gets permission to directly enter cs, leading to the mutual
exclusion property is not satisfied since there are two different
processes p1 and p2 located at the critical section.

The first experiment says that if there is not any restriction
to the occurrence of crashes, RWfMCS does not enjoy
the mutual exclusion property. In the upcoming subsection,
we report model checking under some assumptions of the

occurrence of crashes.

B. Model checking under crash assumptions

First assumption: crashes never happen at all

We add the following observable component to keep track
of the occurrence of crashes: (crash: b), where b is a
Boolean value. Then, the rewrite rule crash is modified to
become as follows:

rl [crash] : {(pc[P]: en7) (next[P]: Q)
(lock[P]: B) (crash: B1) OCs}
=> {(pc[P]: re) (next[P]: null)
(lock[P]: false) (crash: true) OCs} .

where B and B1 are Maude Boolean variables. The rewrite
rule says that when a process P is located at en7, it may
crash then go back to re, crash is set to true, and P loses
all information about its next and lock. crash does not
change in other transitions, and initially, it is set to false.

One more atomic proposition namely crashed is added
into PMCS. LMCS is modified by adding the following
equation before the existing owise statement at the end.

eq {(crash: true) OCs} |= crashed = true .

The equation says that crashed holds in a state s iff
s contains (crash: true). Since crash never can be
changed back to false from true, we can say that when
there is not any crash so far, crashed will not hold,
otherwise, it will. We model check the mutual exclusion
property under the assumption that crashes never happen at
all by using the following command:

red modelCheck(init,([]∼ crashed) -> mutex) .

No counterexamples were found. It took about 13 seconds for
Maude to complete the model checking. Consequently, we
can conclude that the protocol enjoys the mutual exclusion
property if crashes never happen.

Second assumption: “crashes have not occurred recently”

The assumption that crashes never happen seems so strong,
we should check it under a weaker assumption. In this section,
we model check that RWfMCS enjoys the mutual exclusion
property under the assumption: “crashes have not occurred
recently”. The key idea of this assumption is that after a crash,
crash can be set back to false from true if all processes
have state FREE. It means that after a crash, all requests
for entering the critical section before are satisfied, implying
the behavior of the protocol backs to normal as without
failures. To check the condition whether all processes have
state FREE, we need to introduce one more observable
component namely (noPsFree: n), where n is a natural
number. noPsFree maintains the number of processes that
have state FREE. Initially, noPsFree is set to the number
of processes participating in the protocol. When a process
P is located at re and state[P] is FREE, the transition rcv
will change its state to INIT, then noPsFree needs to be
decreased by one. Thus, the rewrite rule rcv is modified to
become as follows:

rl [rcv] : {(pc[P]: re) (state[P]: S)
(pred[P]: Q) (mine[P]: Q1) (noPsFree: N) OCs}
=> {(pc[P]: (if S == LEAVE then ex1 else (
if S == TRY and Q == Q1 then ex1 else en1 fi)
fi)) (state[P]: (if S == FREE then INIT else S
fi)) (mine[P]: (if S == FREE then null else Q1
fi)) (noPsFree: (if S == FREE then dec(N)
else N fi)) (pred[P]: Q) OCs} .

where N is a Maude variable of natural numbers, and dec(N)
is a function that decreases N by one.
noPsFree needs to be increment when a process updates

its state to FREE. In the algorithm, transition go2rcv is
the only one that can change the state of a process to FREE.
Therefore, the rewrite rule go2rcv is revised as follows:

rl [go2rcv] : {(pc[P]: ex4) (state[P]: S)
(noPsFree: N) (crash: B) OCs} => {(pc[P]: re)
(state[P]: FREE) (noPsFree: s(N)) (crash:
(if s(N) == 2 then false else B fi)) OCs} .

In addition to updating noPsFree, the rewrite rule also sets
the value of crash back to true if the value of noPsFree
after increasing is equal to the total number of processes
participating in the protocol (i.e., 2 in our case).

One more atomic proposition namely ncr (not recently
crash) is added into PMCS to express the assumption that
crashes have not occurred recently. LMCS is modified by
adding the following equation before the existing owise
statement at the end.

eq {(crash: false) OCs} |= nrc = true .

The equation says that nrc holds in a state s iff s contains
(crash: false). We model check the mutual exclusion
property under the assumption that crashes have not occurred
recently by using the following Maude command:

red modelCheck(init,

[] (nrc -> (∼ (inCs(p1) /\ inCs(p2))))) .

No counterexamples were found. It took about 5 minutes for
Maude to complete the model checking. Consequently, we
can conclude that the protocol enjoys the mutual exclusion
property if crashes have not occurred recently.

VI. CONCLUSION

We have presented model checking the recoverable wait-
free version of MCS protocol. The recoverable property
indicating that the protocol still works under the assumption
that crashes may occur during the execution of processes.
The wait-free property says that exit segment code of the
new version is wait-free (i.e., always completes in a finite
step regardless of the behavior of other processes). The first
experiment shows a counterexample in which the protocol
does not satisfy the mutual exclusion property. Analyzing the
counterexample, we could understand the scenario leading
to two different processes located at the critical section at
the same time if crashes are allowed to happen without any
restriction. The second experiment says that the protocol
enjoys the mutual exclusion property if crashes never happen.
The last experiment says that the protocol enjoys the mutual
exclusion property if crashes have not occurred recently. We
have also described the challenge of how to formally specify
dynamic allocation and presented our solution to solve that
problem during formal specifying the protocol.

One piece of our future work is to model check the protocol
satisfies the lock-out freedom property in particular or other
liveness properties in general. Model checking such properties
usually requires some fairness assumptions. However, the
formula to model check often becomes very complicated if
some fairness assumptions are included, leading to the model
checker could not terminate after a reasonable amount of
time. One possible way to make it feasible is by using the
technique presented in [6].

REFERENCES

[1] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for
scalable synchronization on shared-memory multiprocessors,”
ACM Trans. Comput. Syst., vol. 9, no. 1, pp. 21–65, 1991.

[2] R. Dvir and G. Taubenfeld, “Mutual exclusion algorithms with
constant RMR complexity and wait-free exit code,” in OPODIS
2017, ser. LIPIcs, vol. 95, 2017, pp. 17:1–17:16.

[3] S. Dhoked and N. Mittal, “An adaptive approach to recoverable
mutual exclusion,” in PODC 2020. ACM, 2020, pp. 1–10.

[4] P. C. Attie and N. A. Lynch, “Dynamic input/output automata:
A formal and compositional model for dynamic systems,” Inf.
Comput., vol. 249, pp. 28–75, 2016.

[5] M. Clavel, et al., Ed., All About Maude, ser. Lecture Notes in
Computer Science. Springer, 2007, vol. 4350.

[6] K. Ogata, “A divide & conquer approach to liveness model
checking under fairness & anti-fairness assumptions,” Frontiers
Comput. Sci., vol. 13, no. 1, pp. 51–72, 2019.

	Introduction
	Preliminaries
	The Recoverable Wait-free MCS protocol
	Formal specification the Protocol
	Model checking
	Model checking without any restriction to crashes
	Model checking under crash assumptions

	Conclusion
	References

