
An Efficient ROS Package Searching Approach
Powered By Knowledge Graph

Long Chen1, 2, Xinjun Mao1, 2
∗
, Yinyuan Zhang1, 2, Shuo Yang1, 2, Shuo Wang1, 2

1College of Computer,National University of Defense Technology, Changsha, China
2Key Laboratory of Software Engineering for Complex Systems, National University of Defense Technology, Changsha, China

{chen long, xjmao, yinyuanzhang, yangshuo11, wangshuo15} @nudt.edu.cn

Abstract—Over the past several years, the Robot Operating
System (ROS), has grown from a small research project into the
most popular framework for robotics development. It offers a
core set of software for operating robots that can be extended
by creating or using existing packages, making it possible
to program robotic software that can be reused on different
hardware platforms. With thousands of packages available per
stable distribution, encapsulating algorithms, sensor drivers, etc.,
it is the de facto middleware for robotics. However, finding the
proper ROS package is a nontrivial task because ROS packages
involve different functions and even with the same function, there
are different ROS packages for different tasks. So it is time-
consuming for developers to find suitable ROS packages for
given task, especially for newcomers. To tackle this challenge,
we build a ROS package knowledge graph, ROSKG, including
the basic information of ROS packages and ROS package char-
acteristics extracted from text descriptions, to comprehensively
and precisely characterize ROS packages. Based on ROSKG, we
support ROS packages search with specific task description or
attributes as input. A comprehensive evaluation of ROSKG shows
the high accuracy of our knowledge construction approach. A
user study shows that ROSKG is promising in helping developers
find suitable ROS packages for robotics software development
tasks.

Index Terms—Knowledge Graph, ROS package searching,
NLP

I. INTRODUCTION

Writing software for robots is difficult, particularly as the
scale and scope of robotics continue to grow. As a framework
for building robotics software, ROS is designed with the
promise of making development easier through modular design
and code reuse1. It offers an abstraction layer between the
hardware and application layers, providing hardware manipu-
lation primitives that hide the heterogeneity of the underlying
hardware, as well as helping manage the communication
between robots.

ROS also provides a package management system to sim-
plify code reuse, so developers can contribute their own
applications back to ROS in the form of packages. It is widely
used by robotics developers and contains 6,191 packages
across its 13 distributions2. The ROS architecture and package

DOI:10.18293/SEKE2021-063
* Corresponding author.
1http://wiki.ros.org/ROS/Introduction
2https://index.ros.org/stats/

system have led to the success of ROS: ROS is considered as
the de facto standard for robot programming [4].

When developers need a new feature, developers use a
search engine to look for an existing package that implements
the feature. But for beginners, since they do not know the
ecosystem well, they may choose the inappropriate ROS pack-
age during the reuse process, causing the task to fail [4]. For
ROS-based robotics software development, ROS Wiki3 is the
most commonly used knowledge search community, especially
for newcomers. It provides the most basic keyword search
function to meet the most basic requirements for developers to
find knowledge to solve tasks. Like many other search engines,
what it returns are related web links, not direct answers to the
task, so developers need to find relevant software packages
from the detail page of these web links. Moreover, it can
return a limited number of links (Related ROS packages, Q&A
posts, tutorials), and requires the developer to click on the
link and read the details page to obtain relevant information.
Once the searched keywords are not included in the relevant
ROS package, it becomes difficult to retrieve and developers
need to constantly adjust according to the existing retrieval
information, which is time-consuming.. So the current search
for ROS package knowledge does not meet the needs of
developers well.

In this paper, we focus on extracting the rich semantic
expression of ROS package and its related information(e.g.,
related dependencies and messages, etc.). Based on this, we
can more effectively characterize the ROS package to better
support the recommendation of the related ROS package.
Specifically, we firstly design a web crawler framework to
obtain ROS package descriptions and some structured infor-
mation (e.g., sensor, motor and robot which ROS package
belongs to). Then we use natural language processing methods
to parse the description text to obtain more fine-grained
features. In order to make up for the lack of description
information, we extract and analyze features from the ROS
package names. Finally, we apply our approach to the Kinetic
distribution of the ROS packages, and obtain 25,484 entities
and 62,854 relationships. All the above information serves as
the foundation for constructing a comprehensive Knowledge
Graph of ROS package (ROSKG) to enable efficient ROS

3http://wiki.ros.org/

package search. We conduct two experiments to evaluate our
approach. A comprehensive evaluation of ROSKG shows the
high accuracy of our knowledge construction approach. A user
study shows that ROSKG is promising in helping developers
find suitable ROS package for robotics software development
tasks.

Our main contributions are summarized as follows:
• We introduce the idea of using knowledge graph based

on semantics representation of package information for
the task of ROS package searching. To the best of our
knowledge, this is the first study to build a knowledge
graph of ROS package and address the problem of ROS
package selection.

• We leverage techniques of relation linking and text pro-
cessing to convert semi-structured and unstructured ROS-
related knowledge into a knowledge graph, and develop
a search engine, which uses natural language as query
input, to solve ROS package searching problems.

• We evaluate the quality of the key steps for ROS package
knowledge graph construction and the usefulness of the
knowledge graph on ROS package searching.

The rest of the paper is organized as follows. In the
next section, we review some related works. The details of
our approach are presented in Section III. We provide the
evaluation of our work in Section IV. We discuss the threats of
validity in Section V. Finally, we conclude our work in Section
VI.

II. RELATED WORK

A. ROS

In recent studies, researchers pay more attention to the
ecology of ROS and the dependencies between ROS packages,
etc. Pichler et al. studied the interdependencies between ROS
packages on GitHub, BitBucket, and the rosdistro, and how
quality propagates through the dependency network [10]. In
an empirical study consisting of interviews and a survey
with ROS developers, Estefo et al. investigated the difficulties
that ROS users encounter when reusing ROS packages, main
contribution bottlenecks in ROS ecosystem [4]. In a separate
prior study, Estefo et al. studied code duplication in ROS
packages [3]. Alami et al. conducted a qualitative study to
better understand quality assurance practices within the ROS
community [1]. Kolak et al. focused on ecosystem structure,
collaboration, code reuse, and ecosystem health. They found
that the most widely used ROS packages belong to a small
cluster of foundational working groups (FWGs) [6].

The above is mainly concerned with the problems of ROS
ecosystem and the status quo of ROS packages reuse but does
not involve how to better realize ROS packages reuse.

B. Knowledge Graph in Robotics Development

Recently, knowledge graphs as a form of structured knowl-
edge have drawn great research attention from both the
academia and the industry [5], but few researchers have studied
the knowledge graph about robotics development. Zamanirad
et al. designed a bot programming platform that dynamically

 Task of
Searching

ROS Package

Entity
Linking

Characteristics
Matching

KG Construction

ROS Package Search

Structured
Content

 Text
Description

Internal
Information of
ROS Package

Hardware

ROS
Package

Meta-
package

Feature
Extraction

Functionality
& Category

Mining the Deep
Characteristics

Characteristics
Extraction

(TOP-K)
Search Result

KG of
ROS

Package

Fig. 1: The Overall Framework of Our Approach

synthesizes natural language user expressions into API invoca-
tions and constructed an API knowledge graph to encode and
evolve APIs to help robot understand the natural language
spoken by humans [14]. Although their knowledge graph is
applied in the field of robot, it is not specific to the robotics
software development, what we are more concerned about.

III. METHODOLOGY

We propose a knowledge graph based approach to overcome
the barriers mentioned above. Fig. 1 presents the key steps
in our approach, which contains two main parts: mining
ROS package knowledge graph from official website page
information and searching ROS package based on the mined
knowledge graph. We first use the popular web crawler tool
Scrapy4 to crawl structured content and text description. Then
we extract package-related knowledge from structured content
and establish connections, including the relevant content of the
software package what it provides (launch file, service, plugin
and message, etc), metapakckage (A set of ROS packages
related to a certain function) and the hardware to which
it belongs (sensor, motor or robot, etc). In order to get
more characteristics information about ROS packages, we
use natural language processing methods to obtain category
and functionality from the description text to express ROS
packages more abundantly. Since the description information
of the ROS package is not very complete, and some even
do not have it at all, therefore we extract features from the
package name. At last, we build a knowledge graph called
ROSKG based on the knowledge above for retrieval.

A. ROS Package Characteristic Extraction

Category and functionality: In order to dig out more
information about the ROS package, we parse the package
description sentence to extract the category and functionality
of the package. We first use Stanford CoreNLP tool [9]
to obtain the Part-of-Speech(POS) tags of the description
sentence. Tokenization is used to break the text into words,
phrases, or symbols. POS will represent the category of
words which has similar grammatical properties. Then we

4https://scrapy.org/

S

Category

ROS NNP interface NN

for IN Category

the DT grid JJ map NN library NN

to TO Functionality

manage VB two-dimensional JJ grid NN maps. NN

Fig. 2: Result of Category and Functionality Chunking

use rule-based chunking technique [15] to chunk category and
functionality of the package. In our system, the category and
functionality are identified by the regular expressions as shown
in Table I. The terms in the table have the same meaning as
[15]. Specifically, we extract verb (or verb phrase) followed
by noun (or noun phrase) as functionality and noun (noun
phrase) as category. We stipulate that noun and noun phrase
in functionality do not belong to category. For example, The
description of ROS package “grid map ros”, “ROS interface
for the grid map library to manage two-dimensional grid
maps.”, we chunk category “ROS interface” and “the grid map
library”; functionality “manage two-dimensional grid maps” as
shown in Fig. 2.

TABLE I: Regular Expression of Different Chunks
Name Regular Expression

Functionality (MD)*(VB.*)+(CD)*(DT)?(CD)*(JJ)*(CD)*-
(VBD|VBG)*(NN.*)*(POS)*(CD)*(VBD|VBG)*-
(NN.*)*(VBD|VBG)*(NN.*)*(POS)*(CD)*(NN.*)+

Category (CD)*(DT)?(CD)*(JJ)*(CD)*(VBD|VBG)*(NN.*)*-
(POS)*(CD)*(VBD|VBG)*(NN.*)*-
(VBD|VBG)*(NN.*)*(POS)*(CD)*(NN.*)+

Feature: Not all ROS packages have description informa-
tion, which are even incomplete or missing. It is not enough
to rely on description information to characterize the ROS
package. We notice that the words that make up a package
name can well reflect its characteristics. For example, turtle-
bot3 in the package turtlebot3 navigation reflects this package
belonging to the robot turtlebot3, and navigation reflects that
it is a package of the navigation type.

After the above analysis, we extract the last word of the
package name of all ROS packages and analyze. However,
there are many words that are just different in expression,
but the actual meaning is the same in the robot software
development process. So we classify words with the same
meaning into one category and use one of the words to
represent them. For example, “msg” is the abbreviation of
“message”, “message” is the singular form of “messages”,
so we use “message” to represent them. After the above
processing, we select words that appear more than 5 times and
analyze their actual meaning. Then we give their definitions.
As shown in table II, we show the most frequent words (top
10) and their definitions.

B. Linking Entity to ROS Package

Since the category and functionality of ROS package is
originally extracted from the description of ROS package, the
connection is naturally established. In this phase, we mainly
introduce how to link the extracted entities to ROS package,

TABLE II: Definitions of ROS Package Features (TOP 10)
Feature Definition

Message packages related to message types, which contains
specific message definitions, e.g., geometry msgs

Description packages related to URDF description,
e.g., heron description

Config packages automatically generated with all the
configuration, including launch files and scripts,
e.g., hironx moveit config

Driver packages related to driver of hardware,such as
camera, sensor, robot, e.g., dynamixel driver

Gazebo packages related to gazebo simulation,
e.g., turtlebot3 gazebo

Control packages related to controller to ensure the
safe operation, e.g., roch safety controller

Support packages to support to realize certain functions,
e.g., choreo kr5 arc support

ROS packages related to ROS wrapper, e.g., packml ros

Tool packages related to additional tool kit,
e.g., nodelet topic tools

including package feature introduced in Section III-A and
hardware entities.

Hardware linking:Through the analysis of the package
name above, we find that in general, the first word of the
package name is likely to represent hardware information. So
we construct an entity dictionary, which contains all hardware
words, and we match hardware entities crawled from ROS
Wiki with the dictionary to establish the linking. In order
to more accurately match and establish relationship with
ROS package, we have also sort out synonyms for hardware
entities. For example, “Velodyne HDL-64E 3D LIDAR” is
often referred to simply as “Velodyne”. Furthermore, we take
the hardware dictionary to match the description to establish
potential relationship.

Feature linking: According to the source of the feature,
it is mainly reflected in the package name. But we find
that some packages contain more than one feature, such as
“ainstein radar gazebo plugins”, which includes gazebo and
plugin feature. So we split the package name according to
the underscore and use the constructed feature dictionary to
match to establish a relationship with ROS package. Hardware
entities are generally more domain-oriented vocabularies, and
feature entities are some commonly used vocabularies with a
higher frequency, so hardware can establish potential relation-
ships through description information. If the feature entities
do the same, it may establish many relationships that don’t

ROS Package

Robot
Category Robot

Launch
File

Function

Plugin

include

includebelong to

belong to

Service

Message

Metapackage

belong
 to

provide

Category

is

Sensor/Motor

Sensor/Motor
Category

Feature

has function

is

is

provide

ha
s f

ea
tur

e

has dependency

has

has

involved

Fig. 3: Conceptual Schema of ROS Package Knowledge Graph

exist.
The other relationship can be naturally established by

structured data, such as dependency, metapackage which the
package belongs to. These relationships can establish relation-
ships between packages that seem to be unconnected on the
surface, for example, the ROS package “turtlebot3 navigation”
depends on the other ROS package “amcl”.

C. ROSKG Empowered ROS Package Search

For a specific ROS package searching, the ROSKG can
group the ROS package that have the same attributes, e.g.,
sensor, robot, metapackage, etc, so developers can perform
search tasks based on these attributes and view the related
content, such as service, message, etc.

For ROS package searching related to specific tasks, given
a query phrase or sentence in natural language description,
which may not involve entities such as package names, we
first use the parsing techniques mentioned in Section III-B to
detect functionality and category in the query. We use the start-
of-the-art pre-trained word embedding BERT [2] to separately
vectorize the components in the query and the components in
the description sentence in the knowledge graph. The function-
alities and categories extracted from the description sentence
have been vectorized in advance. We then compute the phrase
similarity by the cosine similarity of phrase embedding. After
matching the functionalities and categories compartments of
the query sentence and the components in the ROSKG, we
rank the ROS package in the ROSKG by the sum of the
similarity of the matched counterparts. Finally we give top 10
ROS packages according to the similarity under the premise
that above the user-specified threshold (generally 0.8).

D. Proof-of-Concept Implementation

We apply our knowledge graph construction methods de-
scribed in Section III-B and Section III-C to the Kinetic
distribution and use Neo4j5, a graph database, to construct the
knowledge graph for the ROS package. The resulting ROSKG
consists of 25,484 entities and 62,854 relationships. Related
concepts and their relations can be explained by the conceptual
schema shown in Fig. 3.

5http://neo4j.com/

IV. EVALUATION

We conduct evaluations to explore the following research
questions:

• RQ1: How is the intrinsic quality of the knowledge
captured in the constructed ROSKG?

• RQ2: How does ROSKG perform in ROS package
searching task compared with ROS Wiki engine?

A. RQ1: Quality of The Constructed ROSKG

The knowledge is extracted from two main sources: struc-
tured document content and textual description. Since knowl-
edge extracted from structured information is intrinsically
accurate, we mainly evaluate the accuracy of the knowledge
extraction from text (i.e., functionality extraction, category
extraction, feature linking).

1) Protocol: Similar to previous studies [8] [11] [13], we
adopt a sampling method [12] to ensure that the ratio observed
in the sample is within 5 confidence interval, and is extended to
the population at 95% confidence level. We randomly select
349 functionalities, 369 categories, and 342 feature links to
conduct the experiment.

Two developers (who are not involved in this study and
familiar with ROS) independently perform the examination.
All decisions are binary (the accuracy rates are Acc1 and Acc2
respectively). For the data instances that the two annotators
disagree, they have to discuss and come to a consensus. We
compute the final accuracy after resolving the disagreements
(AccF) and compute Cohen’s Kappa agreement (Kap.) [7] to
evaluate the inter-rater agreement. Based on the consensus
annotations, we evaluate the quality of the created knowledge
about ROS package.

2) Results and Analysis: The results are shown in Table III.
We can see the agreement rate are all above 0.78, indicating
substantial or almost perfect agreement. The accuracy is
generally high (above 0.91) except for the category extracted
from description sentences(above 0.73).

TABLE III: Accuracy of ROS Package Knowledge
Aspect Acc1 Acc2 AccF Kap.
Functionality 92.3% 91.7% 92.0% 0.78
Category 77.0% 73.4% 75.3% 0.80
Feature Linking 100.0% 100.0% 100.0% 1.00

Typical problems of ROS package characteristics extrac-
tion include: 1) POS tagging or dependency parsing error,
e.g., “This package” from sentence “This package contains
numerous examples of how to use SMACH” is tagged as a
noun; 2) meaningless characteristics, e.g., “is a ROS-Package”
from sentence “This is a ROS-Package for libviso2 a library
for visual odometry..” is extracted as a functionality of the
ROS package “libviso2”; 3) incomplete sentences caused
by incorrect HTML parsing or sentence splitting, e.g., “The
move base package provides an implementation of an action
(see the”; 4) overly simplistic description sentence, e.g., de-
scription sentence just repeats the ROS package name, but is
extracted as a category.

TABLE IV: Statistic of 11 Tasks including Subtasks in “ROS Robotics Projects”
Task Subtask Related package

1.Use ROS, opencv and dynamixel servo 1-1 driver for V4L USB camera usb cam
servos for face detection and tracking 1-2 servo motor for dynamixel dynamixel motor

1-3 opencv vision opencv
2.Build a chatbot like Siri in ROS 2-1 to translate commands sound play
3.Use ROS to control embedded circuit 3-1 ROS for arduino platforms rosserial arduino
boards 3-2 ROS for TivaC Launchpad boards rosserial tivac
4.Operate the robot remotely using gestures 4-1 turtlebot simulation turtlebot gazebo

5.Object detection and recognition 5-1 object detection and recognition find object 2d
object recognition

6.Use ROS and TensorFlow for deep learning 6-1 convert ROS message to OpenCV image data type cv bridge
6-2 use OpenCV capture object to capture camera image cv camera

7.Run ROS on MATLAB and Android 7-1 Android development package android core
rosjava

8.Building an autonomous mobile robot 8-1 to generate maps map server
9.Use ROS to create self-driving cars 9-1 Velodyne HDL-64E 3D LIDAR velodyne
10.Use VR headsets and Leap Motion to 10-1 gesture sensor leap motion
remotely control robots 10-2 visualization tool rviz

11.Control the robot through the network

11-1 websocket interface rosbridge suite
rosbridge server

11-2 to set and publish joint state values for a given URDF joint state publisher
11-3 HTTP Streaming of ROS Image in Multiple Formats web video server

The feature linking have 100% accuracy, which is unsur-
prising because the features are extracted form package name
and manually checked and filtered. So the feature linking can
maintain a better result.

Our ROS package characteristics and relationship extrac-
tion methods for constructing ROS package knowledge
graph are basically accurate, which can support practical
use.

B. RQ2: Usefulness Evaluation

We evaluate the usefulness of ROSKG in ROS package
searching tasks, that is, choosing the most suitable ROS
package for the specific task.

1) Task: We extract the main tasks from the book “ROS
Robotics Projects”6 written by Lentin Joseph, which is an
introductory book for ROS learners and has a high authority.
As shown in Table IV, the book mentions 11 ROS robotics
development tasks, and each task involves several subtasks,
each of which contains 1-2 ROS packages. Finally, we summa-
rize 18 subtasks, involving 21 ROS packages. The participants
can formulate any query they wish based on the search task
descriptions and the hints from previous search results.

2) Baseline: We use ROS Wiki’s search engine as the
baseline tool. For ROS-based robotics development, ROS Wiki
is the most commonly used knowledge search community,
especially for newcomers.

3) Protocol: We recruit 6 master students from our school
and all of them have almost no ROS-based robotics software
development experience. We believe these students are quali-
fied for our study. Furthermore, they also simulate the target
audience that our tool aims to assist, i.e., developers who may
lack relevant knowledge in finding suitable ROS packages for
the specific task. Then we randomly allocate them into two

6http://wiki.ros.org/ROS Robotics Projects

TABLE V: Accuracy of ROS Package Knowledge
Experimental Group

Ave Task Time(seconds) #Correct Answers
P1 55.4 13
P2 53.9 14
P3 56.4 16
Ave±stddev 55.2±1.0

Control Group
P4 79.8 12
P5 83.6 12
P6 88.2 14
Ave±stddev 83.9±3.4

equivalent groups: the control group uses the ROS Wiki’s
search engine (P1-P3), while the experimental group uses our
ROSKG to complete the tasks (P4-P6).

4) Results and Analysis: Table V shows the average task
completion time and the number of correct answers by each
participant in the two groups. We can see that two groups
have the similar answer correctness but the experimental group
complete the task faster with narrower standard deviation than
the control group. The participant in the experimental group
completed the tasks 52.0% faster (55.2 seconds on average)
than the control group.

Through interviews with participants, we know that the
control group participants often have to scroll the document
back and forth in ROS Wiki and compare several documents
to pinpoint and cross-validate the function of ROS packages.
In contrast, the experimental group participants can view ROS
package information in a more structured way, which can help
them understand the function of the ROS package faster. We
also look into the correct answer rate for each task, for some
tasks, both search engines perform well, such as Task#6/11.
But neither our search engine nor ROS Wiki performs well on
Subtask#5-1. That’s because the information about the ROS

package “find object 2d” cannot be obtained from our query
statement.

ROS Wiki can return very relevant online documents for
user queries, including tutorials, Q&A post and documents,
but not everyone can find the correct ROS package through
these resources. For example, the answer to Subtask#8-1 is
hidden in a Q&A post, P6 finds it but P4&P5 don’t.

We find that the participants have difficulty in choosing
since there are many similar packages related to the task.
For example, P5 searches both “rviz” and “octovis” for
Subtask#10-2. The relevant information for the two result actu-
ally contain “visualization tool”, but “octovis” is a specialized
tool for “OctoMap”, which may not meet the current task. P3
makes the similar mistake when carrying out the Subtask#1-2.

One of the biggest problems with ROS Wiki search is that
its search method is only keyword matching and only show
one page. Once the searched keywords are not included in
the relevant ROS package, it becomes difficult to retrieve and
time-consuming. For example, participants in control group
all return the wrong answer for Subtask#2-1, because the
information of the highest ranked ROS package only contains
keywords “commands” and “translate” separately, not phrases
“translate commands”. But for our search engine, we use the
fuzzy query method, even if it is not able to match keywords
completely, we can return the relevant software package based
on the similarity.

Although by no means conclusive due to the small-scale
of our study, our pilot user study demonstrates that our
approach significantly decreases the amount of time devel-
opers need for ROS package search tasks.

V. THREATS TO VALIDITY

A threat to internal validity is that some software packages
do not have descriptive information, that is to say, no textual
information is provided, which will make it impossible to link
to the corresponding software package via natural language.
Another threat to internal validity is that our database is
not complete enough to include all distributions of ROS
packages. In the future, we will continue the collection work
through automatic methods, which will contribute to further
development.

The major threat to external validity is the generalization of
our results and usefulness study is small scale. In the future,
we will reduce this threat by applying our approach to more
open tasks related to robotic software development and release
our knowledge graph for public evaluation.

VI. CONCLUSION

In this paper, we propose an efficient ROS package search
approach based on knowledge graph. We leverage advanced
NLP techniques for extracting the rich characteristics to better
represent ROS packages. Our evaluation confirms the quality
of different kinds of knowledge in the knowledge graph, and
the usefulness of the generated ROS package search results. In
the future, we will refine text processing techniques and design

more rules to select meaningful characteristics to improve and
extend our approach.

ACKNOWLEDGEMENT

This work was supported in part by the National Key
Research and Development Program of China under Grant
2018YFB1004202.

REFERENCES

[1] Adam Alami, Yvonne Dittrich, and Andrzej Wasowski. Influencers of
quality assurance in an open source community. In 2018 IEEE/ACM 11th
International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), pages 61–68. IEEE, 2018.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[3] Pablo Estefó, Romain Robbes, and Johan Fabry. Code duplication in
ros launchfiles. In 2015 34th International Conference of the Chilean
Computer Science Society (SCCC), pages 1–6. IEEE, 2015.

[4] Pablo Estefo, Jocelyn Simmonds, Romain Robbes, and Johan Fabry.
The robot operating system: Package reuse and community dynamics.
Journal of Systems and Software, 151:226–242, 2019.

[5] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S
Yu. A survey on knowledge graphs: Representation, acquisition and
applications. arXiv preprint arXiv:2002.00388, 2020.

[6] Sophia Kolak, Afsoon Afzal, Claire Le Goues, Michael Hilton, and
Christopher Steven Timperley. It takes a village to build a robot: An
empirical study of the ros ecosystem. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages
430–440. IEEE, 2020.

[7] J Richard Landis and Gary G Koch. An application of hierarchical
kappa-type statistics in the assessment of majority agreement among
multiple observers. Biometrics, pages 363–374, 1977.

[8] Hongwei Li, Sirui Li, Jiamou Sun, Zhenchang Xing, Xin Peng, Mingwei
Liu, and Xuejiao Zhao. Improving api caveats accessibility by mining
api caveats knowledge graph. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 183–193. IEEE,
2018.

[9] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose
Finkel, Steven Bethard, and David McClosky. The stanford corenlp nat-
ural language processing toolkit. In Proceedings of 52nd annual meeting
of the association for computational linguistics: system demonstrations,
pages 55–60, 2014.

[10] Marc Pichler, Bernhard Dieber, and Martin Pinzger. Can i depend on
you? mapping the dependency and quality landscape of ros packages.
In 2019 Third IEEE International Conference on Robotic Computing
(IRC), pages 78–85. IEEE, 2019.

[11] Xiaoxue Ren, Xinyuan Ye, Zhenchang Xing, Xin Xia, Xiwei Xu, Liming
Zhu, and Jianling Sun. Api-misuse detection driven by fine-grained
api-constraint knowledge graph. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 461–472.
IEEE, 2020.

[12] Ravindra Singh and Naurang Singh Mangat. Elements of survey
sampling, volume 15. Springer Science & Business Media, 2013.

[13] Chong Wang, Xin Peng, Mingwei Liu, Zhenchang Xing, Xuefang Bai,
Bing Xie, and Tuo Wang. A learning-based approach for automatic
construction of domain glossary from source code and documentation. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 97–108, 2019.

[14] Shayan Zamanirad, Boualem Benatallah, Moshe Chai Barukh, Fabio
Casati, and Carlos Rodriguez. Programming bots by synthesizing natural
language expressions into api invocations. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 832–837. IEEE, 2017.

[15] Xuejiao Zhao, Zhenchang Xing, Muhammad Ashad Kabir, Naoya
Sawada, Jing Li, and Shang-Wei Lin. Hdskg: Harvesting domain specific
knowledge graph from content of webpages. In 2017 ieee 24th inter-
national conference on software analysis, evolution and reengineering
(saner), pages 56–67. IEEE, 2017.

