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Abstract—Causes of software architectural change are clas-
sified as perfective, preventive, corrective, and adaptive. Change
classification is used to promote common approaches for address-
ing similar changes, produce appropriate design documentation
for a release, construct a developer’s profile, form a balanced
team, support code review, etc. However, automated architectural
change classification techniques are in their infancy, perhaps due
to the lack of a benchmark dataset and the need for extensive
human involvement. To address these shortcomings, we present
a benchmark dataset and a text classifier for determining the
architectural change rationale from commit descriptions. First,
we explored source code properties for change classification
independent of project activity descriptions and found poor
outcomes. Next, through extensive analysis, we identified the
challenges of classifying architectural change from text and pro-
posed a new classifier that uses concept tokens derived from the
concept analysis of change samples. We also studied the sensitivity
of change classification of various types of tokens present in
commit messages. The experimental outcomes employing 10-
fold and cross-project validation techniques with five popular
open-source systems show that the F1 score of our proposed
classifier is around 70%. The precision and recall are mostly
consistent among all categories of change and more promising
than competing methods for text classification.

Index Terms—Architectural change; text classification; concept
extraction; code review

I. INTRODUCTION

Software architecture is concerned with the partitioning
of a software system into parts, with a specific set of
relations among the parts [10]. A meaningful architectural
document helps reduce the cognitive load and maintenance
activities of the software development team [16]. Moreover,
appropriate architectural formulation is becoming more critical
to circumvent software bloat, scalability, and security backdoors
[11]. However, elements of architecture can be changed [20]
continuously as code components of a software system changes
to support continuous development and maintenance [29] such
as adding new features, restructuring the design models, and
fixing flaws. Architectural change can affect many aspects
of a software system and, for this, change analysis is a
crucial task. Development team can group architectural changes
leveraging change classification process based on the cause of
the change, type of change, location of the change, the size of
the code modification, and impact of change [40], [15]. For
example, four major causes of architectural changes have been
defined explicitly in the literature [40], [8], [29]: (i) perfective
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– adjusting new behaviour, (ii) preventive – prevent bad design,
(iii) corrective – correct discovered problems, and (iv) adaptive
– adapting to new platform.

Grouping causes of change is beneficial for post-release
analyses, where design change activities are not explicitly an-
notated [8]. Change classification is also required for composing
a developer’s profile, building a balanced team, and handling
anomalies in the development process [21]. Furthermore, code
review process involving architectural change is complex
than local or atomic change [38], which is dependent on
determining change type. Moreover, an automated technique
can be employed to produce design documentation for every
release recording types of structural changes happened and
associated components [17]. Automated architectural change
classification technique [40], [32] can be used to develop strate-
gies for implementing a system change, support continuous
architecture, augment DevOps and Model-Driven Engineering
tools [6], [12], [11]. Existing active software projects (even if
we consider a tiny portion of the 100 million repositories
in GitHub [1]) could immediately benefit if a structural
change classification technique is available to help develop an
architectural versioning schema.

However, while architectural change can be identified from
source code change, identifying the design decision, reason,
and categories of changes requires analyzing the development
team’s intention. The intention can be extracted from textual
description of the developer’s tasks and discussions [6], [29].
Literature has focused on classifying typical software changes,
architectural design concerns and design solutions [41], [28],
[14]. Yet, supporting architectural change classification is still
in its infancy [29], [11], perhaps, due to lack of benchmark data
and requirements of laborious human analysis. Nevertheless,
a few of the studies explored for both manual [8], [32] and
semi-automated [29] techniques for classifying architectural
changes. In these studies, a small collection of samples is being
experimented where challenges are not identified properly,
which leads to developing infeasible models. Besides, the
traditional text classification techniques [7], [42] might not
handle the scenario when keywords are present among multiple
concepts within the description of a task.

To address the shortcomings, we design a benchmark data
and propose a text classifier called ArchiNet for architectural
change classification. In particular, we focus on the two
research questions: RQ1: How can source code properties
that are independent of the description of project activities



classify the rationale of architectural changes?, and RQ2: How
can we improve text classification to predict the rationale of
architectural changes leveraging commit descriptions?

To answer RQ1 and RQ2, we collect around 1,133 archi-
tectural change instances from 5K commits of five popular
projects (shown in Table I). After extensive analysis of the
created dataset, we have successfully identified the challenges
of categorizing the architectural changes both from the source
code and the texts. One of the challenges is that typical
operations in the source code do not have a significant number
of distinguishing patterns in various changes, and classification
performance is not promising (F1 score is 33%). A major
challenge in the commit description is that multiple concepts
are presented, whereas only one or two concepts indicate the
intention. Furthermore, many words are common for expressing
the reasons for changes, such as keyword update is used
to describe both perfective and adaptive changes. Such a
phenomenon is not acute in many other text classification tasks
[19]. All things considered, we propose a new technique for
classifying the changes from the text where trained keywords
from concept analysis of different changes play a crucial role.
The training process of our proposed technique is different
from the traditional NLP training process. For training, we first
define the relevant concepts (contextual occurrence of words
and tokens such as {update,API, version} indicate adaptive
change more confidently) within each sample. Next, all tokens’
weights appeared within all the concepts for a relevant change
class are calculated. These weights are distributed among all of
the classes leveraging a statistical model. Thus, our technique
does not consider all the words within a description. Finally,
a given commit is predicted to one of the four classes using
a probability model from the trained database. Experimental
outcome of our classifier with different datasets shows that
the F1 score is around 70% and promising compared to the
competing techniques (including deep learning).

The paper continues as follows. In Section II we discuss the
background of architectural change detection and classification.
Section III describes our dataset creation process. Section IV
explains the challenges of change classification. Our proposed
classifier is presented in Section V. Section VI reports our
experimental outcome and Section VII discusses threats to
validity. Section VIII discusses related studies and Section IX
concludes our paper with future direction.

II. BACKGROUND

Architectural Change Instance: Studying typical changes
from version control systems does not require a change
detection strategy as it provides differences. However, archi-
tectural change detection [20], [24], even from the version
control system (diff ), is challenging. Some of the widely used
change metrics are DSM [5], MoJo [39], MoJoFM [39], graph
kernel structure [30], A2A [20], C2C [24] and include-symbol
dependencies [24]. These metrics are calculated based on the
following operations: adding components, removing compo-
nents, replacing components, splitting components, merging
components, relocating, module dependency graph, and usage

Fig. 1: Two commits of Hadoop where new components are
added, dependency added and deleted.

dependency. We focus on intermediate-level architecture for col-
lecting change samples and employ A2A and include+symbol
dependency metrics for change detection. A2A considers
component addition, removal and moves; include+ symbol
dependency considers including/removing header file, program
file, importing class, and importing interface. Causes for
architectural changes are grouped as follows.

Adaptive (A) change: This change would be a reflection [40],
[22], [37] of system portability, adapting to a new platform
such as commit 1© in Fig. 1. Adaptive change also happen for
imposing new organisational and governmental policies.

Corrective (C) change: A corrective change is the reactive
modification of a software product performed after deployment
to correct discovered problems [40]. Specifically, this change
refers to defect repair, and the errors in specification, design
and implementation.

Preventive (PV) change: Preventive change [37], [40] refers
to actionable means to prevent, retard, or remediate code decay.
In other meanings, preventive changes happen to improve file
structure or to reduce dependencies between software modules
and components may later impact quality attributes such as
understandability, modifiability, and complexity.

Perfective (PF) change: Perfective changes are the most
common and inherent in development activities. This change
mainly focuses on adjusting new behaviour or requirements
changes [37]. Also, these changes are aimed at improving
processing efficiency and enhancing the performance of the
software (such as commit 2© in Fig. 1) that is both functional
and non-functional optimizations.

This classification is essential to deal with various challenges
(discussed in the Introduction) since different types of change
influence them in different ways. Among the change categories,
preventive and corrective changes are directly related to major
design debt management. A few of the change types in the two
commits in Hadoop is shown in Fig. 1. Commit descriptions
simply express their intentions. Commit 1© is an adaptive change
in 2015 and commit 2© is a perfective change in 2018. It is
noticeable from commit 2© that a dependency change between
two components (htrace and hdfs) increases performance by
reducing CPU usage, which is also an architectural change.
Both of the changes happen almost a decade later of the first



TABLE I: Candidate projects for our study (in inspection time).

Project All A. Domain Source
Hadoop 22631 266 Distributed Computing gt/apache/hadoop
HibernateORM 9811 261 Object/Relational Mapping gt/hiber../hibernate-orm
LinuxTools 10630 265 C&C++ IDE for Linux gt/eclipse/linuxtools
JavaClient 1477 136 Java bind for Appium Tests gt/appium/java-client
JVMcouchbase 914 205 JVM core for Couchbase

Server
gt/couchbase/couchbase-
jvm-core

Total 45463 1133

A: architectural changes in selected 1K commits; gt: github.com

release of Hadoop. Components of the htrace module are at
the center of these two changes (commit 1© and commit 2©)
although the second change occurred after three years of the
occurrence of the first change.

III. DATASET PREPARATION

A few of the studies [8], [29] created datasets for archi-
tectural change classification from the development history.
The recent dataset created by Mondal et al. [29] consists
of 362 samples of four projects (26 of them are adaptive).
This dataset might be insufficient for detecting some of the
text classification challenges such as various concept tokens
including code elements and framework name. Created dataset
by Pixao et al. [32] contains architectural change only for new
features and other categories are not annotated (recently they
updated their dataset with fixing issues but not specifically
annotated to four groups discussed widely in the literature
[40], [8], [29]). Another dataset is constructed by Ding et al.
[8] which is not publicly available (thanks to the authors for
providing us 37 samples). Therefore, we prepare a new dataset
containing a large collection of commits (shown in Table I).

1) Architectural Change Commits Filtering: We selected five
open source projects that are widely experimented in literature
for software change and architectural analysis [28], [20], [17],
[32], ensuring a diversity of domains. We also ensure that the
projects are in active development for at least several years. The
selected projects are: Hadoop, Hibernate ORM, Linux Tools,
Java Client, and Couchbase JVM Core have 45,463 commits
which are infeasible to analyze manually. Since determining and
categorising architectural change instances require huge human
efforts, in our dataset creation process, we restrict primary
selection of commit samples into 5K. We randomly choose 1K
commits from each of the projects containing more than two
words in the messages excluding stop words, non-alpha words
(that contains non-letters such as issue-110) along with the
words having Change-Id: or Signed-off-by: and so on as shown
in Fig. 1. We separate the architectural change samples from the
primary collection (around 5K) if A2A and include+ symbol
dependency metrics are changed. However, as suggested by
the literature [25], we do not consider system library usage
from native (Java, Python) framework for dependency change.
In this way, we get around 1133 samples (distribution of them
is shown in Table I) as architecturally changed commits.

2) Architectural Change Category Annotation: In the next
step of our study, we manually label those samples by two
authors independently into one of the four categories described

TABLE II: Training and test samples in the golden set.

Split Perfective Corrective Preventive Adaptive Total
Train 425 122 185 68 800
Test 173 49 73 39 333
Total 598 171 258 107 1133

in the existing studies [29], [8]. There are ambiguities in some
of the descriptions of four types of changes. We review most
of the relevant papers referred by [40], [8], [29] for more
explanation to resolve the ambiguity (details are discussed in
Section II). Our manual annotation process has two iterations.
In the first iteration, two of the authors having three years of
average software industry experience, categorized the samples
separately. In this step, we get many samples mismatched in
annotation. In the second iteration, we recheck the mismatch
samples and resolve the disagreements by discussion. Total
number of samples in each of the annotated categories from
the candidate projects is shown in Table II. The finalization
of our dataset took one month of two person-hours, indicating
that manual change analysis is expensive. In the next section,
we investigate the automatic change classification challenges.

IV. CHANGE CLASSIFICATION CHALLENGES

For examining the challenges of classification, we divide
the samples into two parts: training and test sets. As empirical
study [18] suggests that 30% test samples are ideal for real
data, we split around 70% of the architectural commits for
training purposes and around 30% for testing purposes with
random sampling. However, we could not extract meaningful
concepts (Section IV-B2) for some of the samples due to lack
of information, and skip those during the training and testing
phases. Distribution of change types in the train and test sets
are shown in Table II. Both the train and test sets contain the
conflicted samples accordingly.

A. Classification from Source Code

First, we explore classification options leveraging source
code operations. Yamauchi et al. [41] cluster the change
commits based on source code modifications: identifiers,
method name, and class name into as many groups dependent
on component-requirement relations. Their technique cannot
be used for a fixed number of classes. The clustering basically
groups the commits into related components attached to an
implemented functional requirement, not the reason for changes.
Therefore, we explore a technique utilizing the distribution of
change operations of the architectural components (static). We
examine the abstract operations (O) occurred in the source
code of a commit: import added or deleted, class file added or
deleted, file or package rename, and function added or deleted
as properties of change classification since they are universal
and independent of project context.

Considering these properties, we design a classifier us-
ing Ci(wO) in (1) as described in Section V to evaluate
how significant the prediction is using these operations as
metrics and has the following outcome with 10 fold cross-
validation. The best F1 score (among different combinations
of the operation types) for perfective, preventive, corrective,



adaptive, and all combined are 0.33, 0.53, 0.08, 0.13, and
0.33 respectively. F1 for the corrective and adaptive classes
are negligible. In summary, source code properties are not
promising for architectural change classification; this answers
our RQ1. In the next section, we explore existing change
classification techniques from commits messages.

B. Change Classification from Text

1) Explored Models: Next, we examine the explored models
of Mondal et al. [29], where the best model produces 39% F1
scores with our dataset. Following these approaches, we also
develop a discriminating feature selection (DFS) model from
the distribution of words in our training dataset. Similar to
Mondal et al., our DFS model has many common keywords in
the top list. Considering such overlapping of keywords, existing
techniques based on the DFS model discussed in DPLSA [42],
LLDA [34], and SemiLDA [9] predict more false positives
since such a model also considers the words that might be
irrelevant to the original intentions. With our new collection,
the best DFS model produces 46% F1 score with precision
45.6% which is similar to the outcome of the best method in
[29]. Our DFS model for the dataset in [29] produces an F1
score of 20% that is significantly lower than the previous model.
In summary, the DFS models are not promising and possibly
biased to the project contexts. Therefore, we focus on a more
advanced classifier identifying the challenges within the textual
descriptions. We discuss classifiers from traditional machine
learning and neural word embedding models in Section VI.

2) Concept Analysis: As we have a large number of samples,
we are able to identify the specific challenges within the
message description. One of the significant challenges present
in many commit messages is developers express more than one
concept (contextual occurrence of words) for a single intention.
An N-gram model might capture continuous sequences of n-
words involved in such concepts within a sentence [35], [36].
However, in multiple iterations of our inspection, we find that
concept words are scattered among multiple sentences in many
commit descriptions. We also prioritize such scattered words
while categorizing the commits. Traditional text classification
techniques do not address this particular scenario (including the
n-gram model). We also attempt to determine the dominating
concepts from multiple concept tokens. Lets consider the
corrective change message “adding more support for services
down..”; here adding support and down keywords will
influence to predict a category by tf − idf [31], LLDA,
SemiLDA, and DPLSA techniques. Unfortunately, adding
and support keywords will measure more weight to other
categories because they are present among the list of the top
keywords. However, if we prioritize the down keyword as the
dominating concept, it is more likely to be a corrective category.
We annotated such keywords for the dominating categories.

In the list from Section IV-B1, some dominating words
(such as issue and leak) for this corrective category are hardly
used for others. But, many samples contain negative words
which are not meant faults, such as -“...This changeset moves
the responsibility of sending into the locators, which has two

TABLE III: Ambiguity of concepts appeared in description.

Base words Not failure Faults
Not complex
Doesn’t need work, release
Error message −network, −fix
Can’t change

Symbol ‘−’ indicates located before the base word.

benefits:- No Node[] allocations since nothing needs to be
signalled back.- The code doesn’t need to iterate through the
list again ...” is more likely to be a preventive change despite
too many negative words. This is significantly an opposite
concept in the sentiment analysis [4], which would treat this
as negative for such words. The existing techniques falsely
classify such a description as a corrective one. However, in
many samples, when the word not co-locates with the word
working, it indicates flaws in the system. Therefore, we should
not skip such keywords during concept extraction. Furthermore,
some code elements are used for assuming a corrective
concept such as NullPointerException and LinkedError. For
the adaptive category, the dominating concept is indicated
by mostly multiple words. From the example in Fig. 1, we
notice that update, and version form a dominating concept
together where domain specific terms (such as htrace, API,
library, and so on) need to be included. Again, these words
are present in other categories. We have manually re-analyzed
all the training samples to find such concepts containing the
minimal number of words. Overall, there are ambiguities of
concepts (and top keywords) among all the categories. The most
ambiguities are found in the perfective category to define the
related concept uniquely with the minimum number of words.
While manual annotation is easier for the perfective categories,
defining the dominating concept, as discussed previously, is
the most difficult. We have seen that a word might indicate
different concepts with co-occurring different terms as shown
in Table III. In the next section, we describe our proposed
solution based on this finding.

V. OUR PROPOSED CLASSIFIER: ARCHINET

From the empirical observations, it is evident that handling
overlapping words among the descriptions is the key to develop
a promising solution. We conjecture that no word should be in
the distinguishing list to a single category. Instead of the logic
of the previous techniques, we assign a strength of a word for
each of the categories. For example, for the strength of the
words presented in Table IV for different concepts, if the words
add, support, down appear within a text description, then the
total value for the category C1 is 0.52 + 0.38 + 0 = 0.90, and
the total value for the category C2 is 0.03 + 0 + 1 = 1.03. As
1.03 > 0.90, the sample would be for the category C2. For
simplicity, we explain with weight addition; more complex
situations (with various token strengths) are handled with a
probabilistic prediction technique described in Section V-3.
Therefore, this gives more importance to the co-occurrence of
the words add and down, and such a solution might handle
the described challenges in a promising way. In our solution,
the crucial point is to get the concept tokens and their weights



distribution efficiently, and then predict a class confidently. We
describe our proposed method in three steps.

TABLE IV: Strength of words within the concepts C1 and C2.

Word Strength in C1 Strength in C2

add 0.52 0.03
support 0.38 0
down 0 1

1) Concepts Extraction: In this stage, we define and extract
concepts from the commit messages of all the annotated
samples that express the corresponding intention of a task
( as discussed in Section IV-B2). Even, the top words (such as
support) among the defined concepts contain many overlapping
words. However, we have found some patterns in many samples
for expressing different concepts when these terms are co-
occurred with other tokens which are stop words, code elements,
and API, library or framework name. Some of the examples are
discussed in earlier sections. Before training, natural words are
stemmed with PorterStemmer. In the next section, we discuss
our training and weight distribution process from the extracted
concept tokens.

2) Training Model Generation: In this phase, we train a
model by assigning weights to the concept tokens using (1)
from a set of preclassified commits into four change categories.
This is motivated by the core idea of how the model for a
word’s sentiment is generated [2]. These weights represent the
strengths while present within the concepts of the categories.
The trained model produces a collection of unique concept
tokens denoted by S having weights wi to the classes Ci:

Ci(wS) ⇒
⋃
tεS

wi(t)
i∑
1
wi(t)

∪ Ci(wO), S = {tw, tp, ts, ta} (1)

wi(tw) =
f(tw)

Ni
, wi(tp) =

F (tp)

Ni
, wi(ts) =

F (ts)

Ni
, (2)

wi(ta) =
F (ta)

Ni
, wi(to) =

F (to)

Ni
where O = {to} (3)

Here, f(t) frequency of a token t within the concepts S of all
samples in a category Ni, and Ci(wO) is the weight of the
tokens defined with source code change operation types (O)
associated with S, Ciε{PF, PV,C,A}. wi(t) can be calculated
by adopting various metrics such as frequency value or tfidf .
A concept S consists of various types of tokens such as tw
is natural words without stop words, tp is some specific stop
words such as negation words, ts is some special code elements
such as NullPointerException and LinkedError, ta is api, library
or framework name, and to is code operation types treated
as tokens; each of these types has a collection of tokens.
We utilized frequency normalized sum for calculating the
probability value. We calculated the frequency values differently
represented by bold F in (2) and (3): F (tp) considers only
inclusive stop words, F (ts) consider the issue related token
parts (such as Exception and Error from the mentioned tokens)
extracted from a code element using camel case parsing, F (ta)
is calculated by converting all the api names into a unique token
(“AA/BB” in our experiment), and F (to) consider one or
more instances of each token in to as value 1 within a commit.

All the values in (1) and (2) are adjusted when new concepts
are defined with new trained samples. Then, we employ a
classifier from these trained weights.

3) Classification: During the classification phase, the gen-
erated models (M ) from the training phase (in (1)) are used
to evaluate the probability (Pm(C)) that a given class C is
associated with the commit m. Only the tokens identified in
the concepts (S) from phase one and tokens as the source code
operations (O) in Section IV-A are considered from commit
message and code change. The classification score is then
defined as follows.

Pm(C) =

∑
tε(S∪O)∩C

M(w(t))∑
tε(S∪O),Ci

M(w(t))
(4)

where the numerator is computed as the sum of the token
weights (w(t)) of all types that are contained in C, and the
denominator is the sum of the token weights for all types
for all classes (Ci). The probabilistic classifier for a given
commit m will assign a higher score Pm(C) to class C that
contains several strong tokens for concept S and operation
O. However, if the probabilities Pm(Ci) are same for more
than one class, ArchiNet considers the class which contains
the highest weighted word.

VI. PERFORMANCE EVALUATION

Our created dataset contains both an architectural change set
three times larger than that of [29] and a list of concept-words
with strength. Our proposed classifier ArchiNet is designed
to handle the overlapping words and includes various tokens
discussed in Section IV-B2 within the change description. We
compare the performance of ArchiNet based on recall (R) –
quantitative correctness of retrieving relevant categories; preci-
sion (P) – the rate of accuracy among the predicted samples,
and the F1 score – 2PR/(P +R) calculated from precision
and recall. We have also compared with the published dataset
and classifiers [29], [42]. The performance is also compared
with other promising techniques in literature [14], [28], [36],
[23] for text classification. These techniques include RCNN-
LSTM the state-of-the-art Deep Neural Learning (DNL), Naive
Bayes (NB), Bag-of-words (BoW) model, Decision Tree (DT ),
Random Forest (RF ), DPLSA, LLDA, and SemiLDA. Our
training model is significantly faster than RF and DNL, but
we will not discuss time complexity since it is less critical
if a model is built once for application. We evaluated the
performance of ArchiNet in the following four phases.

1) Testing with the Golden Set: We train our proposed
method (ArchiNet) and other methods with the training set.
Train and test set partitioning is described in Section IV. Then,
the classification performance is tested with the test set (from
Table II); comparison of the outcome is presented in Fig. 2.
Please note that only methods having close performance are
shown here. The most promising method in the baseline work
by Mondal et al. is DPLSA, where discriminating keywords
for the individual classes are used as features in a probabilistic
model. The difference in the percentage of F1 score between
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Fig. 2: F1 score comparison of ArchiNet with the most
promising classifiers explored in [29], [36], [14].

ArchiNet and DPLSA for all classes is 24 points higher, while
this difference is 35 points higher for the adaptive category.
The F1 score of our model for the test data in [29] is 63%
(shown in Table VI), which is 18 points higher compared to
their best model (45% gain in performance). We have employed
a DNL based text classifier [19], [36] with Google Tensorflow
[3]. The DNL network where encoded words are embedded
with the RCNN-LSTM strategy shows a 61% F1 score, which
is 2 points lower than ArchiNet. The configuration of our DNL
model has 64 layers, 64 units, epoch size 10, relu activation
function, and cross-entropy as loss function [36].

Furthermore, we adopted the best algorithms suggested by
Hindle et al. [14] to classify large change commits into five
categories, and Soliman et al. [35] to classify architectural
discussions. We also explore Naive Bayes (NB), Decision
Trees (DT ), and Random Forest (RF ) [23], [14], [35] for
our dataset with the WEKA [13] tool utilizing word-to-vector
features [27]. Among them, the most promising classifiers such
as NB, and DT have less than 55% F1. However, Random
Forest (RF ), which forms a group of DT s, produces around
58% F1 score for our dataset. The F1 score produced by our
technique for the adaptive category is much higher than the
competing methods. The ranges of precision and recall rate of
ArchiNet among the individual categories are 42.4–77.8% and
64–73.7% respectively, which are more consistent than other
classifiers. Notably, from the graph, we can see that F1 scores
of RF and DNL for the perfective category is higher than
ArchiNet, while significantly lower in the adaptive category
because many samples from adaptive might be falsely predicted
(high recall rate) into the perfective category (due to lack of
handling mechanism of the overlapped concepts). We also see
this pattern in the 10-fold validation phase. In this evaluation
phase, the distribution of P, R, and F1 scores to all the classes
with the test sets indicates a better and stable outcome of
ArchiNet with the concept-words.

2) 10-folds Validation: In this phase, we show how our
classifier is performing with cross-fold validation since it
provides a more accurate evaluation against the over-fitting
problem [14], [28]. However, we experiment with the promising
methods proven in the first phase. We compare the performance
of ArchiNet with DNL and RF by 10-fold cross-validation
technique. In 10 iterations, we take 90% samples as the training
set, and 10% as the test set exclusively for each of the iterations
[28]. The performance comparison is presented in Table V. The
F1 score of ArchiNet is around 69%, which is 7 points better

TABLE V: Performance (%) comparison of ArchiNet (A),
Random Forest (RF ), and Deep Neural Learning (DNL).

M
et

ri
c Perfect Correct Prevent Adapt Combined

A R
F

D
N

L

A R
F

D
N

L

A R
F

D
N

L

A R
F

D
N

L

A R
F

D
N

L

P 77.5 62.7 77.6 63.4 88 50.3 77.8 91 66.5 42.4 96 40.1 69.1 76 62

R 73.7 99 69 66.25 19 62 63.8 43 62.1 64 25 28 69 67 62.1

F1 76 77 73 63 30 50 70 58 64 51 40 33 69 62.2 62

Ar DNLr RFr
20

40

60

80

100

Ap DNLp RFp

20

40

60

80

100

Fig. 3: Range of Recall (r) and precision (p) rate of all classes

than the two classifiers. Deep learning with RCNN-LSTM
[19], [36] shows 62% F1 score; RF has a similar outcome
as of DNL. F1 scores for some other classifiers are between
50 to 60% with the word-to-vector [27] features. From the
median and range values in box plots in Fig. 3, it is observed
that the precision and recall rate of ArchiNet (in the ranges
40.1–77.8% and 63.8–73.7% represented by Ap and Ar) are
consistent with all the classes (recall is highly consistent than
others indicated by DNLr and RFr). For the adaptive and
corrective categories, the outcome of ArchiNet is significantly
higher. Poor recall rate of RF and DNL (marked with circles in
Table V) for the adaptive category and high recall rate for the
perfective category indicates that many samples from adaptive
are falsely retrieved into perfective by both of the classifiers. A
similar trend is observed with the corrective category except for
lower precision for DNL. Since RF and DNL do not distinguish
and select words based on concepts/semantics, they produce
more unstable outcomes. In summary, our proposed classifier
has better performance for all metrics (F1, P, and R scores)
compared to other classifiers because concept-words handle
various influential tokens from a commit message efficiently.
This exploration answers the research question RQ2.

3) Project-wise Validation: We also conduct cross-projects
validation of our proposed approach. We train the classifier
with four projects and test with the remaining project in each
iteration for the five projects. The project-wise outcomes for
both ArchiNet and DNL are presented in Fig 4. Combined F1
scores of each of the projects produced by ArchiNet are better
than that of DNL. None of the project’s F1 scores is below 60%
for ArchiNet, while the highest is 69%. The highest precision
is 85%, and the recall is 80% (for the perfective and preventive
category) for our method. However, the precision and recall
can be low for the adaptive category as can be seen in the Fig
4. On the other hand, the adaptive category’s F1 score reaches
62 for the ArchiNet (whereas 23 for DNL). Performance of
some of the projects is lower than 10-fold validation because
of insufficient training data. Overall, Hadoop’s outcome for
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both ArchiNet and DNL is the most promising because the
commit messages in Hadoop might contain a less ambiguous
explanation compared to other projects.

4) Sensitivity of Tokens: The performance sensitivity of
ArchiNet (for 10-folds) for various token-weights (w(t))
combination (in (1) and (2)) is shown in Fig. 5. The best
performance is shown for the combination {tw, tp, ts, ta} which
is three points (69% F1) better than only considering natural
terms (tw) (66% F1). Including API, library, and framework
name (ta) increments the performance by two points as there
is more likely to be an adaptive category for those compared
to others. As can be observed from precision and recall in Fig.
5, the adaptive category is the most sensitive. However, we
notice that combining source-code operations (to) affects the
performance slightly negatively (66% F1, whereas it is 65%
with tw); therefore, source code operations are not promising
features for classifying the architectural change.

VII. THREATS TO VALIDITY

One of the greatest threats to the validity of our result is that
annotating the intention of change is subject to human bias. To
reduce this threat, two of the authors independently annotated,
and then conflicts are resolved by discussion. Any classifier
may suffer an over-fitting problem. To overcome this, we
experimented with our classifier with a tenfold cross-validation
technique and found a promising result. Another concern of
our classification model is how general it predicts change from
different programming languages and cross-projects. One of our
test sets is collected from Mondal et al. [29] that also contains
projects of Python language, and have similar outcome as
shown in Table VI. A few of the projects such as Hadoop has

TABLE VI: F1 of ArchiNet with our data and data in [29].

Dataset Perfective Corrective Preventive Adaptive All
Our data 65 58 68 51 63
Data [29] 55 61 80 16 63

substantial industrial participation [17]. Therefore, our study
also mitigates generalizability threat to some extent.

Our model can be trained with different metrics. Therefore,
for (2) in Section V, we also have trained our model with
the tf-idf metrics. However, the result is not as promising
as the direct probability value, but still shows a better result
than DPLSA, LLDA, and SemiLDA. With this metric, the
best F1 scores for the data in [29] are 47% and 51% for our
benchmark data. Yan et al. [42] utilized DPLSA for predicting
multiple categories of usual changes (three types). We found
only a few of the samples in our data have multiple intentions
when architectural changes happened. ArchiNet can handle
such scenarios to some extent as we experiment on that mode;
when the predicted sample is in Hit@2 [35], [33] (within the
top 2 ranks), the F1 score is 83.5%. Notably, our proposed
classifier is versatile and does not require parameter tuning,
unlike others. Our dataset and trained models are available in
github.com/akm523/archinet for further investigation.

VIII. RELATED WORK

1) Architectural Design Issues and Solutions Classification:
Yamauchi et al. [41] proposed a technique considering program
identifiers to group the large commits into related components
having relations with the functional requirements. An early
approach of committed code classification was studied for
architectural tactics (design solutions such as resource pooling,
secure session management, and so on) [28] based on code
identifiers (such as heartbeat) mapped with text description
(heartbeat emitter and receiver) from a set of trained samples,
and commits are predicted using a term-frequency based
classifier. Solaiman et al. [35] reported Bayesian Network
and Naive Bayes as the best algorithms to classify architectural
discussions related to six ontology classes (such as technology)
into three design steps focusing ambiguous concepts (such as
server has different meanings for different cases), concepts
expressing reasons of architectural changes are different than
those. However, although these classes were either subset or
irrelevant to architectural changes, they were not specialized
in four architectural changes. In our work, we explore both
source code features and concept-token properties to predict
the reasons for architecture changes.

2) Architectural Change Classification: We are aware of
only one study by Mondal et al. [29] to categorize four
architectural changes from the text. Their model was generated
by popular discriminating feature selection techniques DPLSA
[42], SemiLDA [9], and LLDA [34] originally proposed [42]
for classifying all software changes into three groups, and
none of the techniques could handle the twists and challenges
of architectural change classification properly. Consequently,
the outcome of their proposed technique is poor. Another
study by Hindel et al. [14] close to ours explored various
machine learning techniques for classifying large commits
(commits with many files changed) into five groups. We also
explore the promising classifiers reported by them: Naive Bayes,
Decision Trees, and so on. However, Random Forest (RF),
an advanced version of Decision Trees, produces promising



outcomes with our dataset (but 7 points lower F1 than
ArchiNet). Recently, word embedding technique that captures
contextual and semantic information with deep learning is
being successfully used for software artifacts analysis and
classification [19], [36], [26]. However, due to the overlapping
of concept words, deep learning might not produce the best
outcome, which is mostly inexplicable when multiple intentions
are required to extract from a single message. Our proposed
classifier ArchiNet handles these concerns considering other
tokens and gains in performance.

IX. CONCLUSION

In this paper, we present a dataset collected from five popular
projects and a promising classifier for architectural change
categorization from texts. Our study identifies the challenges
of classifying changes from both source code properties and
textual properties. We address those challenges with a concept
analysis approach that indicate the developers’ intentions. Both
10-fold cross-validation and cross-projects validation show
that our technique is promising in all aspects compared to
traditional methods (F1 score is 70%). We also explore the
sensitivity of the performance of our classifier for various
tokens. Besides, we extract around 237 keywords (with trained
weights for each change category) from the training set. Given
the success, many of the text analysis approaches to support
the ten activities of software architecture discussed by Bi et
al. [6] might be enhanced by adopting our proposed technique.
In future, we will explore automatic design documentation
generation and architectural versioning schema applying our
change classification technique.
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