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Abstract—Cloud computing has evolved into an infrastructure tool 
for scientific research and computing application. For many 
enterprises, it has become a trend to migrate their applications 
from the local to cloud. To leverage cloud computing 
infrastructure, some legacy code for special business process need 
to be refactored to the programming models of cloud computing. 
The desired approach is to design an automatic tool for refactoring 
legacy code to the target code that can execute on cloud computing 
platform effectively. In this paper a new approach is proposed, 
which can automatically refactor Java sequential program into 
MapReduce paradigm. The approach works by first translating 
input code into functional representation, with loops succinctly 
encapsulated by fold operations. Then, guided by the transforming 
rules, the approach generates equivalent MapReduce programs. 
The rules use group-by operations to enable greater parallelism. 
Finally, a series of mapping rules is applied to map immediate code 
to the target code running on Spark. A new tool designed using this 
approach, JMRT, was evaluated using real world benchmarks. 
The experimental results show that the approach can generate the 
desired MapReduce program and the business execution efficiency 
can be improved. 

Keywords-Automatic Refactoring;MapReduce;Fold Operation；
Parallelism;Program Transformation 

I.  INTRODUCTION  
In the past decade, MapReduce [1] has attracted interest as a 

parallel programming model, independent of difficulties of 
distributed computation [2]. Main-stream MapReduce 
frameworks equip average developers with the tools that can 
instantly transform them into distributed system developers 
[3,4,5]. Specifically, we can select the appropriate variation by 
looking at the type information of the λm function used by map. 
The tool provides developers with abstract data-parallel 
operators map and reduce that shield them from the complexity 
of distributed computing. Therefore, the use of cloud platforms 
is increasing rapidly. In addition to developing new applications 
directly on the cloud, more and more applications are being 
migrated from local servers to cloud servers. 

There is a problem in the process, how to reduce the 
migration cost. To maximize the performance of cloud 
applications, the code migration method needs to transform their 
programming model from sequential to parallel. This 
transformation is the most difficult part of the code migration 
procedure because it requires analyzing data dependency and 
then refactoring the source code. Sometimes, it is impossible to 
transform legacy code due to data dependency and the costs. 
Therefore, it is necessary to find a way to automatically translate 
sequential code into executable code under the MapReduce 
programming model. 

In the current research, most of the work aim to refactor the 
code using traditional parallel transformation methods. A 
common method is to obtain the code data access pattern and 
determine the order of retrieving data values during the program 
runtime, and then use the data reordering method to complete 
code transformation [6]. However, this method is not suitable for 
the transformation of Java code to MapReduce programming 
model, and many extensions to this method cannot effectively 
solve this problem. In addition, there is work aimed at 
refactoring code using design code templates. Paper [7] 
classifies the source code according to business logic, and then 
proposes corresponding reconstruction rules for each type. The 
approach is limited to specific access patterns, without 
considering all the code scenarios, it is necessary to propose a 
more comprehensive method to achieve effective reconstruction 
of Java code. To sum up, the existing refactoring methods are 
not perfect, and the refactoring tools are not mature enough. It is 
necessary to propose a more comprehensive method to achieve 
effective reconstruction of Java code in cloud migration. 

In this paper, a comprehensive automatic translation method 
for sequential code to MapReduce programming model is 
proposed, which can effectively implement Java code to 
MapReduce code refactoring. A tool that implements our 
method is generated, which can handle complex input programs. 

Fig. 1 illustrates the design of our method, which translates 
sequential code into equivalent MapReduce programs. The 
method includes the following steps. The first step of the method 
is to translate the input program into a functional representation 
via GSA (Gated Single Assignment) form [8]. Although the 
functional form is semantically equivalent to the original 
imperative code, unfortunately exposes no parallelism. since a 
simple data-parallel program consists of at least a map followed 
by a reduce. To address these problems, the transforming rules 
are designed to govern where map functions can be introduced 
in a semantics-preserving manner. In more complex cases where 
loop iterations access overlapping locations, this method uses 
Spark's groupByKey operation to group operations by access, 
exposing more fine grained parallelism than the previous 
method. Final, a series of mapping rules are designed to map the 
executable MapReduce program to the target Spark platform. 

The structure of the article is as follows. In the approach 
presented in this article, code under two different programming 
models needs to be transformed, an IR (intermediate 
representation) is needed to assist in the transformation. 
Therefore, the generation process of functional IR is described 
in the chapter 2. Since Java sequential code cannot be 
transformed directly to intermediate code, a representation that 
helps Java code to be transformed to IR is needed. In the first 
section of the second chapter, this form is briefly described; in 
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the second section, the algorithm for translating sequential code 
to this form is shown; in the third section, the functional IR used 
in this paper is described; and in the fourth section, the rules for 
generating intermediate code are described. Once the functional 
IR has been got, the next step is to generate the executable code 
under the MapReduce programming model. Therefore, in 
chapter 3, we first introduce the transformation rules that 
introduce parallelism into intermediate code, and then introduce 
the mapping rules that generate executable code on the target 
platform. The refactoring tools and experimental validation are 
presented in chapter 4. 

 
Figure 1. Overview of the method 

II. GENERATING FUNCTIONAL IR 

A. Introduction of GSA Form 
Since the source code cannot be directly transformed to the 

IR, a form is needed to help the transformation. GSA form is a 
representation based on static single value assignment (SSA) 
[9,10], which is a representation generated by static code 
analysis [11，12]. The GSA form assigns unique names to 
variables in the program and embeds the gated predicate 
information φ function, so as to realize the analysis of program's 
data flow and control dependency information. Specialized 
gating functions (γ, η and µ) are introduced in GSA to include 
the predicate of conditional branches. Different pseudo-
functions replace the φ functions at different confluence nodes 
in the program control flow graph. 

A program in GSA form is essentially a functional program, 
which facilitates program transformation. The functional 
intermediate form is derived from program in GSA form. GSA 
form is the basis for converting imperative loops to a 
MapReduce style. 

B. Construction of GSA Form 
An algorithm of translating source code to GSA form is 

proposed in this paper. Two steps are required to translate source 
program to GSA form. The first step is to insert the special 
assignment statement φ functions into certain places of the 
program and replace the φ function with µ, γ and η function. In 
the second step, each reference to v in the program is replaced 
by a reference to one of the new names vi. 

In order to transform sequential code to GSA form, the data 
structure CFG [13] and the dominance relation [14] between 
nodes exists in the CFG are used in this paper. 

Dominance Frontiers are used to find where φ functions are 
needed. The dominance frontier DF(X) of a CFG node X is the 

set of all CFG nodes Y such that X dominates a predecessor of 
Y but does not strictly dominate Y. 

The method for placing φ functions is: Whenever node X 
contains a definition of some variable v, any node in the 
dominance frontier of X needs insert a φ function for v. The 
following code shows how to insert φ functions. The input of the 
algorithm is the CFG information of the source program. Then, 
the output of the algorithm is a CFG which contain the φ function. 
Several data structures are used: P is an array that stores the CFG 
nodes being processed. Process is an array of flags, one for each 
CFG node. When node X is currently added to P, the Process(X) 
is 1. DomFron is an array of flags, one for each node. When the 
φ function about variable v has been inserted in node X, 
DomFron(X) is 1. 

Algorithm: Insert φ functions. 
1 for each v do      // Assign each variable as follows  
2     P←0       
3     Process←0       
4     DomFron←0 
5     for each X Î S(v) do      //Iterate the node that contains the 

assignment statement for the variable v 
6         Process (x) ←1 
7         P←P∪{x} 
8     end 
9     while P >=1do       
10       take (x,p)      //Fetch node X from the collection of nodes being 

processed 
11       for each Y Î DF(X) do      //Iterates through the nodes in the 

DF set of node X 
12           if DomFron (Y)=0 
13               then do 
14               add  φ-function for v to Y      //Inserts the φ function of 

the variable v in the node Y 
15               DomFron (Y) ← 1  
16               if Process(Y)=0 
17                   then do 
18                   Process (Y) ← 1 
19                   P ← P∪{Y} 
20               end 
21            end 
22         end 
23     end 
24  end 

Use a more precise control predicate function in the code of 
the GSA form. The use of three functions improves the analysis 
accuracy of variables, and ultimately improves the accuracy of 
parallelization. The third step uses the following rules to replace 
the φ function in the program to complete the transformation of 
Java source code to GSA form. 

µ function: Replaces those φ functions at the head of a loop. 
Each µ function combines the index value initialized by the loop 
with the index value calculated in the loop body. In the first 
iteration, the µ function returns the first argument i0, which is the 
value assigned before entering the loop, otherwise, it returns the 
second argument i1, which is the value from the previous 
iteration. It involves the change of loop index and places it in the 
loop header. 
γ function: Replaces those φ functions located at the 

confluence nodes that have no incoming back edges. The back 
edge is the edge from the descendants to the ancestors in DT. 
The γ function selects the value of a variable computed by the if 
statements, and the condition in if statements as the parameter. 
η function: Replaces φ functions at the nodes that contain 

loop exit edges as incoming edges. It selects the last value at the 
end of the loop. The function is placed where the loop exits. The 



GSA form is derived from the CFG of the source program, so 
the semantic equivalence is verified. 

The following code shows the construction of the GSA form. 
S is a stack that stores every write operation of variable v, one 
for each variable. Count is an integer, one for each variable. The 
Count value of any v represents how many assignments to v have 
been processed. The algorithm uses a depth-first search method 
to access the Dominator Tree (DT)，which contains information 
about variables and is directly generated by existing algorithms, 
and the search starts with Entry, where the entry value of v is 
represented by an empty assignment on the right. In DT, the 
children of a node X are all immediately dominated by X. After 
renaming each variable v to vi, the search will continue to other 
nodes. When the statement of each node on the variable v is 
processed, the stack of the current variable v is cleared. The 
words predecessor and successor refer to CFG. The words parent, 
child, ancestor, descendant refer to the DT. 

Algorithm: Construct GSA form. 
1 Count←0 
2 S is empty 
3 call Visit (Entry)      //Start the search with the entry node 
4 Visit(X):      //When you search for node X 
5     for each assignment A in X do      //Do the following for the 

assignment statement in the node 
6         for each variable v in RHS(A) 
7             rename v with vi where i = top(S(v)) 
8         end 
9         for each variable v in LHS(A) 
10           i ← the Count value of v 
11           rename v with vi in A 
12           push (S, i) 
13           the Count value of v ← i+1 
14         end 
15      end 
16      for each φ function in X do      //Rename a variable in a function 

within a node 
17          rename j-th variable v in φ with vi where  
18         i = top(S(v)) 
19      end 
20      for each YÎ children (X) do      //Continue to call the children 

of the current node 
21          call Visit(Y) 
22 end 

C. Functional IR 
In current work, the intermediate representation is typed 

lambda calculus. Lambda calculus is the basic mathematical 
theory of functional programming language [15]. It can describe 
and analyze programming language and use λ expression to 
represent programming language. The current IR is a typed 
functional language based on lambda calculus. Typed lambda 
calculus assigns each item in the lambda calculus a type, which 
can be int, string, etc. A simple example: if the variable x has 
type σ and there is an expression M, then λ x:σ.M defines a 
function that maps any x in σ to the value given by M. For 
translating an entire program block to λ expression, a reasonable 
typed grammar is let x = M in N, which means to constrain x to 
M within N. In other words, the value of let x = M in N is the 
value obtained by setting x to M in N. a[b] and a [b: =c] are read 
and write access at index b of a map(array) a. Table 1 lists the 
set of operations in our IR. These expressions are well-known. 

TABLE 1.IR 
IR operations Description 

var a | b |c |… | <var,var,…> variable declaration 

Exp 𝜆  Var[:Type].Exp|  
let Var=Exp in Exp |  

Exp Exp | <Exp,Exp,…> | expression declaration 
Exp[Exp] | Exp[Exp:=Exp]   

Type A | B | C|…| Type	⟶Type|  
  <Type,Type,…> | Type[Type] type declaration 

Figure 2 shows the data structure in the intermediate code 
and the functions operating on it. Most of these structures are 
well known, and they are described as needed in the article. 

(data structures) 
𝑀[𝐴]: multiset with values of type A 

𝑀[𝐾, 𝑉]：map with keys of type K and values of type V 
(functions) 

𝑚𝑎𝑝: (𝐴 → 𝐵) → (𝑀[𝐴] → 𝑀[𝐵]) 
𝑚𝑎𝑝: (< 𝐾, 𝑉 >→ 𝑊) → (𝑀[𝐾, 𝑉] → 𝑀[𝐾,𝑊]) 
𝑔𝑟𝑜𝑢𝑝𝐵𝑦𝐾𝑒𝑦: (𝐴 → 𝐾) → (𝑀[𝐴] → 𝑀[𝐾,𝑀[𝐴]]) 

Figure 2. Built-in data structures and functions. 

D.Transform GSA Form to Functional IR 
New transformation rules are proposed to transform GSA 

form code into an IR. Transformation rules transform loop and 
non-loop statements in code, respectively. 

1) Non-loop Rules 
The method transforms GSA form to the functional IR by 

applying the rules in Fig. 3. Simple rules are discussed first. Each 
non-GSA assignment statement is directly converted to the 
corresponding let ... in ... statement. Any branch instruction is 
skipped, left to be handled when reaching its associated node. 
The return instruction is replaced with the returned variable, 
which eventually sits at the innermost level of the let nest. 
Transform each γ instructions into a functional if statement 
whose condition comes from a branching instruction, and the 
branches being the arguments of the γ instruction. As the 
instructions are visited in topological order, the variables 
holding the result for each of the two branches are already 
available in scope. 

𝑥 = 𝐸 ≺ 𝑅 → 𝑙𝑒𝑡	𝑥 = 𝐸	𝑖𝑛	𝑅 
𝑎[𝑥: = 𝑦] → 𝑎[𝑥: = 𝑦] 

𝑟𝑒𝑡𝑢𝑟𝑛		𝑥 → 𝑥	
𝑥 = 𝜂 𝐶, 𝑥I, 𝑥J ≺ 𝑅 → 𝑙𝑒𝑡	𝑥 = 𝑖𝑓	𝐶	𝑡ℎ𝑒𝑛	𝑥I	𝑒𝑙𝑠𝑒	𝑥J	𝑖𝑛	𝑅 

Figure 3. Non-loop Rules. 

2) Loop Rules 
The transformation of loops is essential to introduce 

parallelism, so it is very important to translate the loop structure. 
Fold operation is introduced to solve this problem. In functional 
programming, fold is a standard operator that encapsulates a 
pattern of function for processing recursive calls. Moreover, the 
fold operator is equipped with a proof principle called 
universality, which provides a mathematical principle for 
solving rule proofs. Fold has been introduced to ensure the 
correctness and availability of loop transformations. 

                    𝑓𝑜𝑟 𝑖 = 𝜑 𝑖O, 𝑖OO , 𝑖 < 𝑙, 𝐸 𝑥J = 𝜑 𝑥JO , 𝑥JOO . . . →      
                       				𝑙𝑒𝑡	𝑓 = 𝜆	𝑥J, 𝑥Q, … , 𝑥S. 𝐸	𝑖𝑛 
                           				𝑙𝑒𝑡		𝑥S = 𝑓𝑜𝑙𝑑U VWX ,VY

X ,…,VZX 𝑓 	𝑖𝑛	𝑟𝑎𝑛𝑔𝑒(𝑖, 𝑙) 
Figure 4. Loop Rules 

The more complex rule translates loops to applications of the 
fold operator. In Fig.4, a loop is specified in terms of its φ 



variables, which include the index variable i and other variables 
	𝑥J, 𝑥Q ,updated in the loop body. These variables characterize 
all possible effects of the loop visible to subsequent code. For 
each φ variable 𝑥S , we use	𝑥S′ to refer to the value coming from 
outside the loop, and 𝑥S′′ for the new value produced by the loop. 
The loop gets translated to a fold over the domain of values for 
the index variable, from 𝑖 to l. The function 𝑓 takes as arguments 
the current 𝑥S values, runs the body of the loop E once for those 
values, and returns the new 𝑥Svalues. The initial value for the 
fold is a tuple of the 𝑥S′ values coming from outside the loop. 

To obtain the fold operation over different types of input 
variables, the function E must first be obtained. The code is then 
transformed using the definition of the fold operation. 

The definition of the functor of the following expression is 
used to construct the function E. Functor	E associated with each 
constructor		C]: (t],J, . . . , t],_`) → T(𝛼J, . . . , 𝛼c) is a (p+1)-adic function 
(Where p is the number of universally quantified type variables 
in the left-hand side of T’s type equation): 

E]U 𝑓J, … , 𝑓U = 𝜆(𝑥],J, . . . , 𝑥],_`). (𝑘[𝑡],J]𝑥],J, . . . , 𝑘[𝑡],_`]𝑥],_`) 
where the bound variable 𝑥]e  has type, 𝑡]e  and 

𝑘 𝑡],f 	 represents a function that can be obtained by the 
following rules： 

𝐾 𝑇 𝛼J, … , 𝛼c = 𝑓U  
𝑘 𝑡J, 𝑡Q = 𝜆	𝑥J, 𝑥Q. (𝑘[𝑡J]𝑥J, 𝑘[𝑡Q]𝑥Q) 

𝑢 → 𝑣 = 𝜆	ℎ. 𝑘 𝑢 ∘ 𝑘 𝑣 ∘ ℎ 
Now, it is possible to describe the fold operator for any loop 

with expression and functions. The fold function over 
T	(αJ. . . αk) is defined by the following equations. 

𝑓𝑜𝑙𝑑U(𝑓) = 𝑓𝑜𝑙𝑑U(𝐸]U(𝑓J, . . . , 𝑓S), . . . ) 
where	𝑓 = (𝑓J, . . . , 𝑓S). Each 𝑓] in 𝑓	is a function. 
The functional intermediate form is semantically equivalent 

to the original imperative code but unfortunately exposes no 
parallelism, since the loop operation is still sequential. 

III. GENERATING EXCUTABLE MAPREDUCE CODE 

A. Parallelize transformation rules 
In the previous chapter, a functional IR with fold operations 

that is semantically equivalent to sequential code is generated. 
However, the current IR is still sequential and does not show any 
parallelism. Therefore, the parallelization transformation rule 
shown in Fi.6 is proposed to reveal the parallelism. 

(extract map from fold) 
𝑓𝑜𝑙𝑑l VW

m,…,VZm 𝜆	𝑇 𝑥I, … , 𝑥S . 𝐸U

𝑓𝑜𝑙𝑑l VW
m,…,VZm 𝜆	𝑇S 𝑥I, … , 𝑥S . 𝑓S

UZ ∘ 𝑚𝑎𝑝	𝜆	𝑇n 𝑥I, … 𝑥S . 𝑓n
Uo

 

(extract groupByKey) 
𝑓𝑜𝑙𝑑pm𝜆	𝑟	𝑣. 𝑟[𝐸: = 𝐵]

(𝑚𝑎𝑝	𝜆	𝑘	𝑙. 𝑓𝑜𝑙𝑑pm q 	𝜆	𝑔	𝑣. 𝐶 𝑙) ∘ (𝑔𝑟𝑜𝑢𝑝𝐵𝑦𝐾𝑒𝑦	𝜆	𝑣. 𝐸)
 

Figure 5. Rules Revealing parallelism. 

The transformation that reveals parallelism is the “extract 
map from fold” rule in Fig.5. It transforms a fold by extracting 
independent computations from the function f and transform it 
into a (parallelizable) map operation. An independent function 
must make no reference to an accumulator parameter. For 
example, foldl(λ	r	k	v. r, f	k	v) is transformed to	foldl(λ	r	k	vz. r + vz) ∘
(map	λ	k	v. f	k	v), as (f	k	v) is independent. After the transformation, 
the purely functional map can be easily parallelized. 

The “extract map from fold” rule, shown in Fig.5, matches 
on any fold taking any type variables and functions. The fold 

operation E  is split into the composition of functions 𝑓S ∘
𝑓n.	such that 𝑓n is independent of other “iterations” of the fold's 
execution. If the fold is seen as a loop, 𝑓n does not have any loop 
carried dependencies. 𝑓n is pulled out into a map. 

While the “extract map from fold” rule exposes significant 
parallelism, it cannot handle the situation when distinct loop 
iterations can update the same array location. MapReduce 
applications like word count mentioned earlier often work 
around such issues by using a shuffle operation to group inputs 
by some key and then process each group in parallel. 

The transformation used for grouping by word is an 
application of the “extract groupByKey” rule shown in Fig. 5. 
The groupByKey operation clusters the elements of a collection 
of type M[A] according to the result of the function A to K. It 
returns a map from keys K to lists M [A] of elements in the 
original collection that map to a specific key. The rule matches 
any fold with a body which is an update of a collection at an 
index E. 

The output code first groups the elements of the collection 
by the index expression (groupBy	λ	v. E), and then it folds each 
of the groups using the update expression B from original body 
of the loop. groupByKey's output is a Map from each distinct 
value of E to the corresponding subset of the input collection. 
The map operation's parameters are k, which bounds to the keys 
of the grouped collection), and l which contains subset of the 
input collection. The fold starts from the k value of r�, and folds	l 
using the operation C , which is original expression B  with 
accesses to index E of the old reducer replaced with g, the new 
parameter corresponding only to the k-index of r. 

B. Object Code Generation  
When the program is translated, IR with MapReduce 

programming logic is generated. The mapping of the 
intermediate code to the target platform only involves the 
transformation of syntax in different programming languages 
and does not involve the conversion of semantics. Therefore, the 
corresponding mapping rules are constructed according to the 
syntax structure of the target platform and API calls. We list a 
subset of such mapping rules for the Spark RDD API [16]. 

map(Input,λm:T→list(Pair)) = Input.flatToPair([[λm]]); 
map(Input,λm:T→list(U)) = Input.flatMap([[λm]]); 

map(Input,λm:T→U) = Input.map([[λm]]); 
reduce(Input:list(U),λr) = Input.reduce([[λr]]); 

reduce(Input:list(Pair),λr) = Input.reduceByKey([[λr]]); 

An expression in the IR language is used as input, and the 
output is an equivalent expression in Spark. Since Spark 
provides multiple variations for the operators defined in our IR, 
such as a map, we can select the appropriate variation by looking 
at the type information of the λm function used by the map. For 
example, if λm returns a list of Pairs, we translate to 
JavaRDD.flatMapToPair. 

IV. REFACTORING TOOL AND EXPERIMENTAL EVALUATION 

A. Refactoring Tool 
Although there are many loops in legacy code, not all of 

them can be refactored in parallel based on the MapReduce 
model. Another work by our research group has proposed a way 
to identify parallelizable loops and annotate them with specific 



parallel tags [17]. Based on the refactoring method proposed in 
this paper, a tool named JMRT supporting refactoring is 
designed. The tool obtains the code in the program according to 
the parallel mark, and then uses the components designed by the 
above method to refactor the code. The working process of the 
tool is shown in Fig.6. 

 
Figure 6. Working process of JMRT. 

As seen in the picture, the components of JMRT comprise: 
receiving processor receives the sequential program that needs 
to be process; obtaining processor obtains the GSA 
representation of the source code; transforming processor 
translates the GSA representation to lambda representation; 
replacing processor replaces the loop with rules to generate 
executable parallel programs; and generating processor 
generates the executable MapReduce program on spark. In one 
example, any steps may be carried out in the order or the steps 
may be carried out in another order. 

B. Experimental Verification and Result Analysis 
1) Refactoring Experiment 

In this section, a benchmark is used to test the feasibility of 
JMRT. Phoenix [18] is a standard MapReduce benchmark suite 
that provides both MapReduce and corresponding sequential 
implementations. It contains the main calculations from the 
application domain, such as enterprise computing (Word Count, 
Reverse Index, String Match), scientific computing (Matrix 
Multiply), artificial intelligence (KMeans, PCA, Linear 
Regression), and image processing (Histogram). Table 2 shows 
the number of loops and loop nests in the original programs, and 
whether the translation is successful or not. 

TABLE 2. Program information and results. 
Program Loop nests Loops Translation 

Word Count 1 1 √ 
Histogram 1 1 √ 

String Match 1 1 √ 
Linear Regression 1 1 √ 

Matrix Product 3 2 √ 
PCA 2 5 √ 

KMeans 2 6 √ 

A concrete example is used to demonstrates how JMRT 
translates sequential code into MapReduce programs. Fig. 7 
shows the sequential Java code, our starting point. The program 
iterates through a list of documents inputs, accumulating the 
word counts into the map. 

1 static Map<String, Integer> wordCount(List<String> inputs) { 
2        Map<String, Integer> map = new HashMap< > (); 
3       for (int i=0; i<inputs.size (); i++) { 
4           String [] inputSplit = inputs.get(i). split (" "); 
5           for (int j=0; j<inputSplit.length; j++) { 
6               String word = inputSplit[j]; 
7               System.out.printLn("value"+word); 
8               Integer value = map.get(word); 
9               System.out.printLn("key"+map.get(word)); 
10               if (value == null) 

11                   value = 0; 
12               map.put (word, value+1); 
13               System.out.printLn(map.values ());} 
14         } 
15         return map; 
16 } 

Figure 7. Java sequential code. 
The section “construction of GSA form” explains how 

translate the inner loop part of input program into a GSA form. 
Fig. 8 gives the obtained GSA form using the algorithm. 

1 j0 = 0 
2 do j1 = µ (j0, j2) ,inputSplit.length 
3     word = inputSplit[j2] 
4     value0 = map0[word] 
5     value2 = γ (value0 == null, value0, value1) 
6     count = value2 + 1 
7     map1 = map0[word: = count] 
8     j2 = j1 + 1 
9 enddo 
10 j3 = η (j0, j2) 
11 map2 = η (map1, map0) 

Figure 8.GSA form for the inner loop of the code. 

Then the program is translated into the functional IR. Thus, 
the code in Fig. 8 is converted to: 

      foldm ({λ m word. 
        let value = map[word] in 

map [word: = (if value == null then 0 else value) + 1] 
                  }) inputSplit 

JMRT generates a solution for parallelization. Rather than 
directly avoiding non-linear variables in the code, the program 
can examine them to reveal parallelism. Therefore, use the 
parallelization rule to transform the above example into code 
like the following: 

     map (λ k l. foldm(λ g w.g+1)l)	∘(groupByKey λ word.word)  
Finally,the tool generates the code as follows: 

                    . mapl ({(i, inputs) => inputs.Split (" ")}) 

                    . mapl ({(key, value) => (key, 1)}) 

                    . reducel ({(value0, value1) => value0 + value1}) 
Each document is divided into multiple words, and then they 

are processed into (word, 1) pairs using the map function. The 
reduce function groups "1" values by their key, and then reduces 
the grouping by the add operation, thereby effectively counting 
the number of words. In this way, it reaches a form similar to the 
traditional MapReduce solution for the WordCount problem. 
The documents are split into words, which are then shuffled and 
the numbers of elements in each word package is counted. 
Finally, the corresponding Spark code is shown as follws. 
          val wordCount = inputs.split(inputs=>inputs. Split (" ")) 
          val pairs =wordCount.map (word=> (word, 1)) 

      val results = pairs.reduceByKey((value1,value2)=>value1+ value2) 

2) Result Analysis 
In terms of the experimental environment, the experiments 

were run on a quad-core Intel i7 at 2.6GHz with 16GB of RAM. 
One of the defining characteristics of translation results is 
performance, especially execution speed. We create a 
performance test experiment to test the performance of this 
translation method. 

Fig.9 compares the execution time of the sequential code 
and refactored code on Spark. The Spark translations the tool 
generated for this benchmark performed 10.9× faster on 
average than the sequential versions. When the input data set is 



small, the execution efficiency of sequential code is better than 
the executable code under the reconstructed MapReduce 
programming model. When the input data set is gradually 
enlarged, the advantages of the reconstructed code are gradually 
highlighted, and the corresponding execution efficiency is also 
continuously improved. This is because it takes a certain 
amount of time for each cluster to start and load data. When the 
input data set is small and there are many nodes, the time 
overhead brought by communication far exceeds the time 
advantage brought by parallel computing. Therefore, the 
execution efficiency of sequential code is better than that of the 
reconfigured code. However, the size of the input data set when 
the two types of code execution efficiency are demerged is not 
measured in this article, because it depends on many factors 
such as the network of the cloud platform. 

    
Figure 9. Runtime comparison 

V. RELATED WORK 
Source-to-Source Compilers. MOLD [19] is a compiler that 
relies on syntax-directed translation rules to translate Java 
programs into executable code under the cloud computing 
programming model.  
Program Refactoring. M2M (Matlab-to-MapReduce) [20] is a 
refactoring tool for scripting languages. This tool can be used 
for basic numerical calculations. It can translate Matlab code to 
MapReduce code in a short time, far exceeding programmer 
Efficiency of hand coding. YSmart [21] is also a scripting 
language refactoring tool that can provide a general framework 
to transform complex SQL queries into optimized MapReduce 
jobs and efficiently execute them in distributed cluster systems. 
J2M [7] is a refactoring tool for programming languages. It 
needs to design function templates related to MapReduce, fill 
the template with code fragments extracted from the source 
program, and complete the conversion. In [22], a refactoring 
method is proposed, which divides the types of businesses that 
can be processed by MapReduce, and defines corresponding 
refactoring rules for different business types. This method 
realizes the automatic generation of target code. 

VI. CONCLUSION  
This article describes a method for translating sequential 

Java code snippets into executable code under the MapReduce 
framework. Code snippets are transformed by defining a 
transformation rule in the method, which introduces the map 
and groupByKey functions to introduce parallelism. Our 

experiments show that JMRT can transform benchmarks in 
real-world applications. The generated code executes faster 
than the original code and is competitive with handwritten code. 
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