
Refactoring Java Code to MapReduce Framework

Rui Feng
 Inner Mongolia University

 Hohhot,China
15506597902@163.com

Junfeng Zhao*
 Inner Mongolia University

Hohhot,China
cszjf@imu.edu.cn

Abstract—Cloud computing has evolved into an infrastructure tool
for scientific research and computing application. For many
enterprises, it has become a trend to migrate their applications
from the local to cloud. To leverage cloud computing
infrastructure, some legacy code for special business process need
to be refactored to the programming models of cloud computing.
The desired approach is to design an automatic tool for refactoring
legacy code to the target code that can execute on cloud computing
platform effectively. In this paper a new approach is proposed,
which can automatically refactor Java sequential program into
MapReduce paradigm. The approach works by first translating
input code into functional representation, with loops succinctly
encapsulated by fold operations. Then, guided by the transforming
rules, the approach generates equivalent MapReduce programs.
The rules use group-by operations to enable greater parallelism.
Finally, a series of mapping rules is applied to map immediate code
to the target code running on Spark. A new tool designed using this
approach, JMRT, was evaluated using real world benchmarks.
The experimental results show that the approach can generate the
desired MapReduce program and the business execution efficiency
can be improved.

Keywords-Automatic Refactoring;MapReduce;Fold Operation；
Parallelism;Program Transformation

I. INTRODUCTION
In the past decade, MapReduce [1] has attracted interest as a

parallel programming model, independent of difficulties of
distributed computation [2]. Main-stream MapReduce
frameworks equip average developers with the tools that can
instantly transform them into distributed system developers
[3,4,5]. Specifically, we can select the appropriate variation by
looking at the type information of the λm function used by map.
The tool provides developers with abstract data-parallel
operators map and reduce that shield them from the complexity
of distributed computing. Therefore, the use of cloud platforms
is increasing rapidly. In addition to developing new applications
directly on the cloud, more and more applications are being
migrated from local servers to cloud servers.

There is a problem in the process, how to reduce the
migration cost. To maximize the performance of cloud
applications, the code migration method needs to transform their
programming model from sequential to parallel. This
transformation is the most difficult part of the code migration
procedure because it requires analyzing data dependency and
then refactoring the source code. Sometimes, it is impossible to
transform legacy code due to data dependency and the costs.
Therefore, it is necessary to find a way to automatically translate
sequential code into executable code under the MapReduce
programming model.

In the current research, most of the work aim to refactor the
code using traditional parallel transformation methods. A
common method is to obtain the code data access pattern and
determine the order of retrieving data values during the program
runtime, and then use the data reordering method to complete
code transformation [6]. However, this method is not suitable for
the transformation of Java code to MapReduce programming
model, and many extensions to this method cannot effectively
solve this problem. In addition, there is work aimed at
refactoring code using design code templates. Paper [7]
classifies the source code according to business logic, and then
proposes corresponding reconstruction rules for each type. The
approach is limited to specific access patterns, without
considering all the code scenarios, it is necessary to propose a
more comprehensive method to achieve effective reconstruction
of Java code. To sum up, the existing refactoring methods are
not perfect, and the refactoring tools are not mature enough. It is
necessary to propose a more comprehensive method to achieve
effective reconstruction of Java code in cloud migration.

In this paper, a comprehensive automatic translation method
for sequential code to MapReduce programming model is
proposed, which can effectively implement Java code to
MapReduce code refactoring. A tool that implements our
method is generated, which can handle complex input programs.

Fig. 1 illustrates the design of our method, which translates
sequential code into equivalent MapReduce programs. The
method includes the following steps. The first step of the method
is to translate the input program into a functional representation
via GSA (Gated Single Assignment) form [8]. Although the
functional form is semantically equivalent to the original
imperative code, unfortunately exposes no parallelism. since a
simple data-parallel program consists of at least a map followed
by a reduce. To address these problems, the transforming rules
are designed to govern where map functions can be introduced
in a semantics-preserving manner. In more complex cases where
loop iterations access overlapping locations, this method uses
Spark's groupByKey operation to group operations by access,
exposing more fine grained parallelism than the previous
method. Final, a series of mapping rules are designed to map the
executable MapReduce program to the target Spark platform.

The structure of the article is as follows. In the approach
presented in this article, code under two different programming
models needs to be transformed, an IR (intermediate
representation) is needed to assist in the transformation.
Therefore, the generation process of functional IR is described
in the chapter 2. Since Java sequential code cannot be
transformed directly to intermediate code, a representation that
helps Java code to be transformed to IR is needed. In the first
section of the second chapter, this form is briefly described; in

DOI 10.18293/SEKE2021-059

the second section, the algorithm for translating sequential code
to this form is shown; in the third section, the functional IR used
in this paper is described; and in the fourth section, the rules for
generating intermediate code are described. Once the functional
IR has been got, the next step is to generate the executable code
under the MapReduce programming model. Therefore, in
chapter 3, we first introduce the transformation rules that
introduce parallelism into intermediate code, and then introduce
the mapping rules that generate executable code on the target
platform. The refactoring tools and experimental validation are
presented in chapter 4.

Figure 1. Overview of the method

II. GENERATING FUNCTIONAL IR

A. Introduction of GSA Form
Since the source code cannot be directly transformed to the

IR, a form is needed to help the transformation. GSA form is a
representation based on static single value assignment (SSA)
[9,10], which is a representation generated by static code
analysis [11，12]. The GSA form assigns unique names to
variables in the program and embeds the gated predicate
information φ function, so as to realize the analysis of program's
data flow and control dependency information. Specialized
gating functions (γ, η and µ) are introduced in GSA to include
the predicate of conditional branches. Different pseudo-
functions replace the φ functions at different confluence nodes
in the program control flow graph.

A program in GSA form is essentially a functional program,
which facilitates program transformation. The functional
intermediate form is derived from program in GSA form. GSA
form is the basis for converting imperative loops to a
MapReduce style.

B. Construction of GSA Form
An algorithm of translating source code to GSA form is

proposed in this paper. Two steps are required to translate source
program to GSA form. The first step is to insert the special
assignment statement φ functions into certain places of the
program and replace the φ function with µ, γ and η function. In
the second step, each reference to v in the program is replaced
by a reference to one of the new names vi.

In order to transform sequential code to GSA form, the data
structure CFG [13] and the dominance relation [14] between
nodes exists in the CFG are used in this paper.

Dominance Frontiers are used to find where φ functions are
needed. The dominance frontier DF(X) of a CFG node X is the

set of all CFG nodes Y such that X dominates a predecessor of
Y but does not strictly dominate Y.

The method for placing φ functions is: Whenever node X
contains a definition of some variable v, any node in the
dominance frontier of X needs insert a φ function for v. The
following code shows how to insert φ functions. The input of the
algorithm is the CFG information of the source program. Then,
the output of the algorithm is a CFG which contain the φ function.
Several data structures are used: P is an array that stores the CFG
nodes being processed. Process is an array of flags, one for each
CFG node. When node X is currently added to P, the Process(X)
is 1. DomFron is an array of flags, one for each node. When the
φ function about variable v has been inserted in node X,
DomFron(X) is 1.

Algorithm: Insert φ functions.
1 for each v do // Assign each variable as follows
2 P←0
3 Process←0
4 DomFron←0
5 for each X Î S(v) do //Iterate the node that contains the

assignment statement for the variable v
6 Process (x) ←1
7 P←P∪{x}
8 end
9 while P >=1do
10 take (x,p) //Fetch node X from the collection of nodes being

processed
11 for each Y Î DF(X) do //Iterates through the nodes in the

DF set of node X
12 if DomFron (Y)=0
13 then do
14 add φ-function for v to Y //Inserts the φ function of

the variable v in the node Y
15 DomFron (Y) ← 1
16 if Process(Y)=0
17 then do
18 Process (Y) ← 1
19 P ← P∪{Y}
20 end
21 end
22 end
23 end
24 end

Use a more precise control predicate function in the code of
the GSA form. The use of three functions improves the analysis
accuracy of variables, and ultimately improves the accuracy of
parallelization. The third step uses the following rules to replace
the φ function in the program to complete the transformation of
Java source code to GSA form.

µ function: Replaces those φ functions at the head of a loop.
Each µ function combines the index value initialized by the loop
with the index value calculated in the loop body. In the first
iteration, the µ function returns the first argument i0, which is the
value assigned before entering the loop, otherwise, it returns the
second argument i1, which is the value from the previous
iteration. It involves the change of loop index and places it in the
loop header.
γ function: Replaces those φ functions located at the

confluence nodes that have no incoming back edges. The back
edge is the edge from the descendants to the ancestors in DT.
The γ function selects the value of a variable computed by the if
statements, and the condition in if statements as the parameter.
η function: Replaces φ functions at the nodes that contain

loop exit edges as incoming edges. It selects the last value at the
end of the loop. The function is placed where the loop exits. The

GSA form is derived from the CFG of the source program, so
the semantic equivalence is verified.

The following code shows the construction of the GSA form.
S is a stack that stores every write operation of variable v, one
for each variable. Count is an integer, one for each variable. The
Count value of any v represents how many assignments to v have
been processed. The algorithm uses a depth-first search method
to access the Dominator Tree (DT)，which contains information
about variables and is directly generated by existing algorithms,
and the search starts with Entry, where the entry value of v is
represented by an empty assignment on the right. In DT, the
children of a node X are all immediately dominated by X. After
renaming each variable v to vi, the search will continue to other
nodes. When the statement of each node on the variable v is
processed, the stack of the current variable v is cleared. The
words predecessor and successor refer to CFG. The words parent,
child, ancestor, descendant refer to the DT.

Algorithm: Construct GSA form.
1 Count←0
2 S is empty
3 call Visit (Entry) //Start the search with the entry node
4 Visit(X): //When you search for node X
5 for each assignment A in X do //Do the following for the

assignment statement in the node
6 for each variable v in RHS(A)
7 rename v with vi where i = top(S(v))
8 end
9 for each variable v in LHS(A)
10 i ← the Count value of v
11 rename v with vi in A
12 push (S, i)
13 the Count value of v ← i+1
14 end
15 end
16 for each φ function in X do //Rename a variable in a function

within a node
17 rename j-th variable v in φ with vi where
18 i = top(S(v))
19 end
20 for each YÎ children (X) do //Continue to call the children

of the current node
21 call Visit(Y)
22 end

C. Functional IR
In current work, the intermediate representation is typed

lambda calculus. Lambda calculus is the basic mathematical
theory of functional programming language [15]. It can describe
and analyze programming language and use λ expression to
represent programming language. The current IR is a typed
functional language based on lambda calculus. Typed lambda
calculus assigns each item in the lambda calculus a type, which
can be int, string, etc. A simple example: if the variable x has
type σ and there is an expression M, then λ x:σ.M defines a
function that maps any x in σ to the value given by M. For
translating an entire program block to λ expression, a reasonable
typed grammar is let x = M in N, which means to constrain x to
M within N. In other words, the value of let x = M in N is the
value obtained by setting x to M in N. a[b] and a [b: =c] are read
and write access at index b of a map(array) a. Table 1 lists the
set of operations in our IR. These expressions are well-known.

TABLE 1.IR
IR operations Description

var a | b |c |… | <var,var,…> variable declaration

Exp 𝜆 Var[:Type].Exp|
let Var=Exp in Exp |

Exp Exp | <Exp,Exp,…> | expression declaration
Exp[Exp] | Exp[Exp:=Exp]

Type A | B | C|…| Type	⟶Type|
 <Type,Type,…> | Type[Type] type declaration

Figure 2 shows the data structure in the intermediate code
and the functions operating on it. Most of these structures are
well known, and they are described as needed in the article.

(data structures)
𝑀[𝐴]: multiset with values of type A

𝑀[𝐾, 𝑉]：map with keys of type K and values of type V
(functions)

𝑚𝑎𝑝: (𝐴 → 𝐵) → (𝑀[𝐴] → 𝑀[𝐵])
𝑚𝑎𝑝: (< 𝐾, 𝑉 >→ 𝑊) → (𝑀[𝐾, 𝑉] → 𝑀[𝐾,𝑊])
𝑔𝑟𝑜𝑢𝑝𝐵𝑦𝐾𝑒𝑦: (𝐴 → 𝐾) → (𝑀[𝐴] → 𝑀[𝐾,𝑀[𝐴]])

Figure 2. Built-in data structures and functions.

D.Transform GSA Form to Functional IR
New transformation rules are proposed to transform GSA

form code into an IR. Transformation rules transform loop and
non-loop statements in code, respectively.

1) Non-loop Rules
The method transforms GSA form to the functional IR by

applying the rules in Fig. 3. Simple rules are discussed first. Each
non-GSA assignment statement is directly converted to the
corresponding let ... in ... statement. Any branch instruction is
skipped, left to be handled when reaching its associated node.
The return instruction is replaced with the returned variable,
which eventually sits at the innermost level of the let nest.
Transform each γ instructions into a functional if statement
whose condition comes from a branching instruction, and the
branches being the arguments of the γ instruction. As the
instructions are visited in topological order, the variables
holding the result for each of the two branches are already
available in scope.

𝑥 = 𝐸 ≺ 𝑅 → 𝑙𝑒𝑡	𝑥 = 𝐸	𝑖𝑛	𝑅
𝑎[𝑥: = 𝑦] → 𝑎[𝑥: = 𝑦]

𝑟𝑒𝑡𝑢𝑟𝑛		𝑥 → 𝑥	
𝑥 = 𝜂 𝐶, 𝑥I, 𝑥J ≺ 𝑅 → 𝑙𝑒𝑡	𝑥 = 𝑖𝑓	𝐶	𝑡ℎ𝑒𝑛	𝑥I	𝑒𝑙𝑠𝑒	𝑥J	𝑖𝑛	𝑅

Figure 3. Non-loop Rules.

2) Loop Rules
The transformation of loops is essential to introduce

parallelism, so it is very important to translate the loop structure.
Fold operation is introduced to solve this problem. In functional
programming, fold is a standard operator that encapsulates a
pattern of function for processing recursive calls. Moreover, the
fold operator is equipped with a proof principle called
universality, which provides a mathematical principle for
solving rule proofs. Fold has been introduced to ensure the
correctness and availability of loop transformations.

 𝑓𝑜𝑟 𝑖 = 𝜑 𝑖O, 𝑖OO , 𝑖 < 𝑙, 𝐸 𝑥J = 𝜑 𝑥JO , 𝑥JOO . . . →
 				𝑙𝑒𝑡	𝑓 = 𝜆	𝑥J, 𝑥Q, … , 𝑥S. 𝐸	𝑖𝑛
 				𝑙𝑒𝑡		𝑥S = 𝑓𝑜𝑙𝑑U VWX ,VY

X ,…,VZX 𝑓 	𝑖𝑛	𝑟𝑎𝑛𝑔𝑒(𝑖, 𝑙)
Figure 4. Loop Rules

The more complex rule translates loops to applications of the
fold operator. In Fig.4, a loop is specified in terms of its φ

variables, which include the index variable i and other variables
	𝑥J, 𝑥Q ,updated in the loop body. These variables characterize
all possible effects of the loop visible to subsequent code. For
each φ variable 𝑥S , we use	𝑥S′ to refer to the value coming from
outside the loop, and 𝑥S′′ for the new value produced by the loop.
The loop gets translated to a fold over the domain of values for
the index variable, from 𝑖 to l. The function 𝑓 takes as arguments
the current 𝑥S values, runs the body of the loop E once for those
values, and returns the new 𝑥Svalues. The initial value for the
fold is a tuple of the 𝑥S′ values coming from outside the loop.

To obtain the fold operation over different types of input
variables, the function E must first be obtained. The code is then
transformed using the definition of the fold operation.

The definition of the functor of the following expression is
used to construct the function E. Functor	E associated with each
constructor		C]: (t],J, . . . , t],_`) → T(𝛼J, . . . , 𝛼c) is a (p+1)-adic function
(Where p is the number of universally quantified type variables
in the left-hand side of T’s type equation):

E]U 𝑓J, … , 𝑓U = 𝜆(𝑥],J, . . . , 𝑥],_`). (𝑘[𝑡],J]𝑥],J, . . . , 𝑘[𝑡],_`]𝑥],_`)
where the bound variable 𝑥]e has type, 𝑡]e and

𝑘 𝑡],f 	 represents a function that can be obtained by the
following rules：

𝐾 𝑇 𝛼J, … , 𝛼c = 𝑓U
𝑘 𝑡J, 𝑡Q = 𝜆	𝑥J, 𝑥Q. (𝑘[𝑡J]𝑥J, 𝑘[𝑡Q]𝑥Q)

𝑢 → 𝑣 = 𝜆	ℎ. 𝑘 𝑢 ∘ 𝑘 𝑣 ∘ ℎ
Now, it is possible to describe the fold operator for any loop

with expression and functions. The fold function over
T	(αJ. . . αk) is defined by the following equations.

𝑓𝑜𝑙𝑑U(𝑓) = 𝑓𝑜𝑙𝑑U(𝐸]U(𝑓J, . . . , 𝑓S), . . .)
where	𝑓 = (𝑓J, . . . , 𝑓S). Each 𝑓] in 𝑓	is a function.
The functional intermediate form is semantically equivalent

to the original imperative code but unfortunately exposes no
parallelism, since the loop operation is still sequential.

III. GENERATING EXCUTABLE MAPREDUCE CODE

A. Parallelize transformation rules
In the previous chapter, a functional IR with fold operations

that is semantically equivalent to sequential code is generated.
However, the current IR is still sequential and does not show any
parallelism. Therefore, the parallelization transformation rule
shown in Fi.6 is proposed to reveal the parallelism.

(extract map from fold)
𝑓𝑜𝑙𝑑l VW

m,…,VZm 𝜆	𝑇 𝑥I, … , 𝑥S . 𝐸U

𝑓𝑜𝑙𝑑l VW
m,…,VZm 𝜆	𝑇S 𝑥I, … , 𝑥S . 𝑓S

UZ ∘ 𝑚𝑎𝑝	𝜆	𝑇n 𝑥I, … 𝑥S . 𝑓n
Uo

(extract groupByKey)
𝑓𝑜𝑙𝑑pm𝜆	𝑟	𝑣. 𝑟[𝐸: = 𝐵]

(𝑚𝑎𝑝	𝜆	𝑘	𝑙. 𝑓𝑜𝑙𝑑pm q 	𝜆	𝑔	𝑣. 𝐶 𝑙) ∘ (𝑔𝑟𝑜𝑢𝑝𝐵𝑦𝐾𝑒𝑦	𝜆	𝑣. 𝐸)

Figure 5. Rules Revealing parallelism.

The transformation that reveals parallelism is the “extract
map from fold” rule in Fig.5. It transforms a fold by extracting
independent computations from the function f and transform it
into a (parallelizable) map operation. An independent function
must make no reference to an accumulator parameter. For
example, foldl(λ	r	k	v. r, f	k	v) is transformed to	foldl(λ	r	k	vz. r + vz) ∘
(map	λ	k	v. f	k	v), as (f	k	v) is independent. After the transformation,
the purely functional map can be easily parallelized.

The “extract map from fold” rule, shown in Fig.5, matches
on any fold taking any type variables and functions. The fold

operation E is split into the composition of functions 𝑓S ∘
𝑓n.	such that 𝑓n is independent of other “iterations” of the fold's
execution. If the fold is seen as a loop, 𝑓n does not have any loop
carried dependencies. 𝑓n is pulled out into a map.

While the “extract map from fold” rule exposes significant
parallelism, it cannot handle the situation when distinct loop
iterations can update the same array location. MapReduce
applications like word count mentioned earlier often work
around such issues by using a shuffle operation to group inputs
by some key and then process each group in parallel.

The transformation used for grouping by word is an
application of the “extract groupByKey” rule shown in Fig. 5.
The groupByKey operation clusters the elements of a collection
of type M[A] according to the result of the function A to K. It
returns a map from keys K to lists M [A] of elements in the
original collection that map to a specific key. The rule matches
any fold with a body which is an update of a collection at an
index E.

The output code first groups the elements of the collection
by the index expression (groupBy	λ	v. E), and then it folds each
of the groups using the update expression B from original body
of the loop. groupByKey's output is a Map from each distinct
value of E to the corresponding subset of the input collection.
The map operation's parameters are k, which bounds to the keys
of the grouped collection), and l which contains subset of the
input collection. The fold starts from the k value of r�, and folds	l
using the operation C , which is original expression B with
accesses to index E of the old reducer replaced with g, the new
parameter corresponding only to the k-index of r.

B. Object Code Generation
When the program is translated, IR with MapReduce

programming logic is generated. The mapping of the
intermediate code to the target platform only involves the
transformation of syntax in different programming languages
and does not involve the conversion of semantics. Therefore, the
corresponding mapping rules are constructed according to the
syntax structure of the target platform and API calls. We list a
subset of such mapping rules for the Spark RDD API [16].

map(Input,λm:T→list(Pair)) = Input.flatToPair([[λm]]);
map(Input,λm:T→list(U)) = Input.flatMap([[λm]]);

map(Input,λm:T→U) = Input.map([[λm]]);
reduce(Input:list(U),λr) = Input.reduce([[λr]]);

reduce(Input:list(Pair),λr) = Input.reduceByKey([[λr]]);

An expression in the IR language is used as input, and the
output is an equivalent expression in Spark. Since Spark
provides multiple variations for the operators defined in our IR,
such as a map, we can select the appropriate variation by looking
at the type information of the λm function used by the map. For
example, if λm returns a list of Pairs, we translate to
JavaRDD.flatMapToPair.

IV. REFACTORING TOOL AND EXPERIMENTAL EVALUATION

A. Refactoring Tool
Although there are many loops in legacy code, not all of

them can be refactored in parallel based on the MapReduce
model. Another work by our research group has proposed a way
to identify parallelizable loops and annotate them with specific

parallel tags [17]. Based on the refactoring method proposed in
this paper, a tool named JMRT supporting refactoring is
designed. The tool obtains the code in the program according to
the parallel mark, and then uses the components designed by the
above method to refactor the code. The working process of the
tool is shown in Fig.6.

Figure 6. Working process of JMRT.

As seen in the picture, the components of JMRT comprise:
receiving processor receives the sequential program that needs
to be process; obtaining processor obtains the GSA
representation of the source code; transforming processor
translates the GSA representation to lambda representation;
replacing processor replaces the loop with rules to generate
executable parallel programs; and generating processor
generates the executable MapReduce program on spark. In one
example, any steps may be carried out in the order or the steps
may be carried out in another order.

B. Experimental Verification and Result Analysis
1) Refactoring Experiment

In this section, a benchmark is used to test the feasibility of
JMRT. Phoenix [18] is a standard MapReduce benchmark suite
that provides both MapReduce and corresponding sequential
implementations. It contains the main calculations from the
application domain, such as enterprise computing (Word Count,
Reverse Index, String Match), scientific computing (Matrix
Multiply), artificial intelligence (KMeans, PCA, Linear
Regression), and image processing (Histogram). Table 2 shows
the number of loops and loop nests in the original programs, and
whether the translation is successful or not.

TABLE 2. Program information and results.
Program Loop nests Loops Translation

Word Count 1 1 √
Histogram 1 1 √

String Match 1 1 √
Linear Regression 1 1 √

Matrix Product 3 2 √
PCA 2 5 √

KMeans 2 6 √

A concrete example is used to demonstrates how JMRT
translates sequential code into MapReduce programs. Fig. 7
shows the sequential Java code, our starting point. The program
iterates through a list of documents inputs, accumulating the
word counts into the map.

1 static Map<String, Integer> wordCount(List<String> inputs) {
2 Map<String, Integer> map = new HashMap< > ();
3 for (int i=0; i<inputs.size (); i++) {
4 String [] inputSplit = inputs.get(i). split (" ");
5 for (int j=0; j<inputSplit.length; j++) {
6 String word = inputSplit[j];
7 System.out.printLn("value"+word);
8 Integer value = map.get(word);
9 System.out.printLn("key"+map.get(word));
10 if (value == null)

11 value = 0;
12 map.put (word, value+1);
13 System.out.printLn(map.values ());}
14 }
15 return map;
16 }

Figure 7. Java sequential code.
The section “construction of GSA form” explains how

translate the inner loop part of input program into a GSA form.
Fig. 8 gives the obtained GSA form using the algorithm.

1 j0 = 0
2 do j1 = µ (j0, j2) ,inputSplit.length
3 word = inputSplit[j2]
4 value0 = map0[word]
5 value2 = γ (value0 == null, value0, value1)
6 count = value2 + 1
7 map1 = map0[word: = count]
8 j2 = j1 + 1
9 enddo
10 j3 = η (j0, j2)
11 map2 = η (map1, map0)

Figure 8.GSA form for the inner loop of the code.

Then the program is translated into the functional IR. Thus,
the code in Fig. 8 is converted to:

 foldm ({λ m word.
 let value = map[word] in

map [word: = (if value == null then 0 else value) + 1]
 }) inputSplit

JMRT generates a solution for parallelization. Rather than
directly avoiding non-linear variables in the code, the program
can examine them to reveal parallelism. Therefore, use the
parallelization rule to transform the above example into code
like the following:

 map (λ k l. foldm(λ g w.g+1)l)	∘(groupByKey λ word.word)
Finally,the tool generates the code as follows:

 . mapl ({(i, inputs) => inputs.Split (" ")})

 . mapl ({(key, value) => (key, 1)})

 . reducel ({(value0, value1) => value0 + value1})
Each document is divided into multiple words, and then they

are processed into (word, 1) pairs using the map function. The
reduce function groups "1" values by their key, and then reduces
the grouping by the add operation, thereby effectively counting
the number of words. In this way, it reaches a form similar to the
traditional MapReduce solution for the WordCount problem.
The documents are split into words, which are then shuffled and
the numbers of elements in each word package is counted.
Finally, the corresponding Spark code is shown as follws.
 val wordCount = inputs.split(inputs=>inputs. Split (" "))
 val pairs =wordCount.map (word=> (word, 1))

 val results = pairs.reduceByKey((value1,value2)=>value1+ value2)

2) Result Analysis
In terms of the experimental environment, the experiments

were run on a quad-core Intel i7 at 2.6GHz with 16GB of RAM.
One of the defining characteristics of translation results is
performance, especially execution speed. We create a
performance test experiment to test the performance of this
translation method.

Fig.9 compares the execution time of the sequential code
and refactored code on Spark. The Spark translations the tool
generated for this benchmark performed 10.9× faster on
average than the sequential versions. When the input data set is

small, the execution efficiency of sequential code is better than
the executable code under the reconstructed MapReduce
programming model. When the input data set is gradually
enlarged, the advantages of the reconstructed code are gradually
highlighted, and the corresponding execution efficiency is also
continuously improved. This is because it takes a certain
amount of time for each cluster to start and load data. When the
input data set is small and there are many nodes, the time
overhead brought by communication far exceeds the time
advantage brought by parallel computing. Therefore, the
execution efficiency of sequential code is better than that of the
reconfigured code. However, the size of the input data set when
the two types of code execution efficiency are demerged is not
measured in this article, because it depends on many factors
such as the network of the cloud platform.

Figure 9. Runtime comparison

V. RELATED WORK
Source-to-Source Compilers. MOLD [19] is a compiler that
relies on syntax-directed translation rules to translate Java
programs into executable code under the cloud computing
programming model.
Program Refactoring. M2M (Matlab-to-MapReduce) [20] is a
refactoring tool for scripting languages. This tool can be used
for basic numerical calculations. It can translate Matlab code to
MapReduce code in a short time, far exceeding programmer
Efficiency of hand coding. YSmart [21] is also a scripting
language refactoring tool that can provide a general framework
to transform complex SQL queries into optimized MapReduce
jobs and efficiently execute them in distributed cluster systems.
J2M [7] is a refactoring tool for programming languages. It
needs to design function templates related to MapReduce, fill
the template with code fragments extracted from the source
program, and complete the conversion. In [22], a refactoring
method is proposed, which divides the types of businesses that
can be processed by MapReduce, and defines corresponding
refactoring rules for different business types. This method
realizes the automatic generation of target code.

VI. CONCLUSION
This article describes a method for translating sequential

Java code snippets into executable code under the MapReduce
framework. Code snippets are transformed by defining a
transformation rule in the method, which introduces the map
and groupByKey functions to introduce parallelism. Our

experiments show that JMRT can transform benchmarks in
real-world applications. The generated code executes faster
than the original code and is competitive with handwritten code.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (No.61962039) and Inner Mongolia
Natural Science Foundation of China (No.2019MS0632).

REFERENCES
[1] Ieffrey Dean and Sanjay Ghemawat. “MapRedcue: simplified data

processing on large clusters”, in OSDI,2008, pp.107-113.
[2] Smith C, Albarghouthi A. “MapReduce program synthesis”,Acm Sigplan

Notices,vol.51,no.6,pp. 326-340,2016.
[3] Apache Hadoop 2021. http://hadoop.apache.org, last accessed 2021/03/11.
[4] Apache Spark 2021. https://spark.apache.org, last accessed 2021/03/11.
[5] Yuan Yu, Michael Isard, Dennis Fetterly,et al. “Dryadlinq: A system

forgeneral-purpose distributed data-parallel computing using a high-
levellanguage”, in OSDI, 2009,pp.1-14.

[6] M. Ravishankar, J. Eisenlohr, etc. “Code generation for parallel execution
of a class of irregular loops on distributed memory systems”,in SC ’12,
2012,pp.1–11.

[7] B.Li,J.B.Zhang,N.Yu,etc. “J2M:a Java to MapReduce translator for cloud
computing”,SuperComputing,vol.72,no.5,pp. 1928–1945,2016.

[8] Peng Tu and David Padua. “Gated SSA-based demand-driven symbolic
analysis for parallelizing compliers”, in Proceedings of the 9th
International Conference on Supercomputing, 1995, pp.414-423.

[9] L.R, J.B. “SSA-based MATLAB-to-C compilation and optimization”，
in SIGPLAN，2016 pp. 55-62.

[10] S.J, P. H. “Constructing HPSSA over SSA” ，in SCOPES,2017，pp. 31-
40.

[11] Louridas P. “Static code analysis”, IEEE Software, vol. 23, no.4,pp. 58-
61,2006.

[12] Ferrante J, Ottenstein K J, Warren J D. “The program dependence graph
and its use in optimization”, ACM Transactions on Programming
Languages and Systems , vol.9,no.3,pp. 319-349,1987.

[13] Orailoglu, Alex, and Daniel D. Gajski. “Flow graph representation” ，
in Proceedings of the 23rd ACM/IEEE Design Automation Conference.
1986,pp.503-509.

[14] R. E. Tarjan.“Finding dominators in directed graphs”， SIAM J.
Computing, vol.3,no.1,pp.62-89,1974.

[15] Sebesta, Robert W. Concepts of programming languages. Pearson
Education, 2012.

[16] Maaz Bin Safeer Ahmd, Alvin Cheung. “Automatically leveraging
MapReduce framework for data-Intensive applications”, in SIGMOD,
2018,pp. 1205-1220.

[17] ZhiMei Zhao.Distributed Parallel Analysis of Legacy Code[D].Inner
Mongolia University, 2019.

[18] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
“Evaluating MapReduce for multi-core and multiprocessor systems”,in
HPCA ’07, 2007,pp. 13–24.

[19] Cosmin Radoi, Stephen J. Fink, Rodric Rabbah, and Manu Sridharan.
“Translating imperative code to MapReduce”in OOPSLA’14,2014，
pp.909–927.

[20] Zhang J, Xiang D, Li T, “M2M: a simple Matlab-to-MapReduce translator
for cloud computing”, Tsinghua Science and Technology, vol. 18, no. 1,
pp. 1-9, 2013.

[21] Lee R, Luo T, Huai Y, “Ysmart: yet another SQL-to-MapReduce
translator,” in ICDCS, 2011, pp. 25-36.

[22] J.F.Zhao and W.M.Wang, “Creative combination of legacy system and
MapReduce in cloud migration”, International Journal of Performability
Engineering, vol. 15, no. 2, pp. 579-590, 2019

