
From word embeddings to text similarities for

improved semantic clustering of functional

requirements

Takwa Kochbati, Sébastien Gérard, Shuai Li, Chokri Mraidha

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

{takwa.kochbati, sebastien.gerard, shuai.li, chokri.mraidha}@cea.fr

Abstract— Requirements engineering starts by requirements

elicitation which consists in gathering software requirements from

stakeholders. Then, the elicited requirements are usually manually

recorded in a requirements specification document. In recent

years, modern software projects are becoming more complex than

projects of the past due to the increase in the number of

requirements and stakeholders involved in a project. Thus,

manually managing requirements becomes a tedious, time

consuming and error-prone task. One historical strategy to

manage this kind of complexity is “divide to conquer”, meaning to

categorize them into groups in order to breakdown the system into

a set of smallest sub-systems at early stages. In this paper, we

propose an approach to automatically cluster functional

requirements based on their semantic similarity which is the usual

strategy used by system architects to define sub-systems candidate

to simplification of the original problem. First, we use word2vec,

as a predictive word embedding model to compute the word-level

similarity. Second, we derive the requirement-level similarity

using a scoring function for text similarity. Third, we adopt

hierarchical clustering to group the requirements. Experimental

results performed on four open-access software projects show that

our approach succeeded to improve the results of clusters

identification compared with existing studies.

Keywords-component; software requirement; clustering; word

embedding; natural language processing.

I. INTRODUCTION

Requirements elicitation is the first step in developing a
software product. In this step, engineers discover and collect
requirements from customers and then, they manually record
them in a requirements specification document. The gathered
requirements describe different aspects of the target software in
natural language and they are mainly classified into functional
and non-functional requirements [1]. Functional requirements
describe the functional behavior and the features of the software
system while non-functional requirements define the system
attributes such as performance, security, reliability as well as the
system operational conditions such as power consumption and
environmental conditions.

Requirements elicitation has a significant impact on
information systems quality and success, as the errors introduced
at the beginning stages of development are the hardest and most
expensive to correct [2].

Hence, it is crucial that the requirements set has to be well
understood and well managed by engineers [3].

System design constraints evolves more and more requiring
to embed more stakeholders in the projects to handle various
new concerns - such as security, safety, cost, and sustainability
– earlier in the process, at specification time. Consequently,
modern software projects are becoming many times larger and
hence more complex than in the past. Especially, the exponential
growth of the number of requirements raises difficulties in
managing manually the requirements and having a clear crystal
view of the expectation and scope of the system to be designed
[4]. One of the most used and efficient design paradigms to deal
with complexity is the well-known “divide-to-conquer” strategy
i.e., building smallest pieces to reduce the complexity. Herein
lies the importance of an automatic solution to categorize
software requirements into a set of groups in order to breakdown
the target software system into a set of smallest sub-systems at
early stages of the development process.

In this paper, we propose a clustering solution to
automatically group functional requirements based on their
semantic similarity. We use and analyze the semantic
information of the requirements to compute the requirements
similarity at two levels: at the word level, but also at the
statement level of the requirements (i.e., local versus global
semantics of the requirements). In that context, we make the
following contributions: 1) we use a neural word embedding
model, word2vec, as a predictive model to compute the word-
level similarity; 2) then, we derive the requirement-level
similarity using a scoring function for text similarity
computation; 3) finally, we adopt hierarchical clustering
combined with a pre-defined criteria to group the requirements
in specific clusters. To evaluate our proposal, we have
successfully applied it to four open-access software projects.

The remainder of the paper is structured as follow: section 2
discusses the related works; section 3 describes the proposed
approach; section 4 provides the experimental evaluation
settings; section 5 provides the results analysis; section 6 raises
the limitations and the threats to validity and finally, section 7
concludes the paper.

 DOI reference number: 10.18293/SEKE2021-056

II. RELATED WORKS

In recent years, the usage of clustering techniques in the
early phases of software engineering has gained a lot of
attention.

In [5], the authors developed a tool based on hierarchical
clustering of requirements in order to propose a packaging
solution for software engineers. They defined a similarity
measure that aims to cluster classes with high number
communication in the same package. The optimal number of
clusters is manually selected by software engineers based on the
hierarchical tree generated by the clustering algorithm.

In [6], the authors present an approach based on concepts
clustering to visualize requirements at different levels of
granularity. They employed word2vec as a predictive model to
compute similarity between concepts.

The authors in [7] propose an initial clustering of
responsibilities from requirements, in order to detect
architecture components. The approach is validated using four
different clustering algorithms and several validity metrics. The
similarity function is computed according to the verb phrase
each responsibility contains, and the direct object it is related
to.

In [8], the authors present an approach to cluster and
sequence user stories in order to assist software engineers in the
implementation phase. They employed clustering algorithm and
the silhouette score to identify the best clustering solution.

In [9], the authors propose an approach that clusters similar
requirements in order to reuse them in software product lines
(SPLs). They compared the performance of two clustering
algorithms based on a distance measure in order to identify
similar requirements.

In [10], the authors demonstrate the use of the HAC
algorithm to group functional requirements based on their
similarity. Their work aims to breakdown the project into a set
of sub-projects at early stages. They use traditional vector space
models (VSMs) to vectorize text requirements and use the
cosine similarity to measure the semantic similarity between
requirements.

All these techniques inspire our work. However, some of
these approaches suffer from a lack of automation as for
example when defining the optimal number of clusters [5],
others rely on the similarity between words or concepts in each
requirement [6], [7]. Moreover, many works rely on traditional
distributional semantic models (DSMs), for instance Vector
Space Model (VSM) [8], [10] and Latent Semantic Analysis
(LSA) [9] to calculate the similarity. The main limitation of
these techniques is that they are considered as “count” models
as they rely on counting the co-occurrences among words by
operating on co-occurrence matrices. Thus, sentences with
similar context but different term vocabulary will not be
considered as similar. Consequently, traditional DSMs usually
achieve worse results than neural word embedding models,
which can be seen as predictive models [11].

The main novelty of our proposal is that we benefit from
using the neural word embedding model word2vec as predictive
model, to compute word level similarity and then, derive the

requirement level similarity using a scoring formula for text
similarity.

III. THE PROPOSED APPROACH

In this section, we explain how our approach processes in
order to generate automatically the clusters from natural
language requirements as illustrated in the process shown in
Figure 1.

Figure 1. Overview of the approach

In what follows, we detail the particular techniques used in
each step.

A. Preprocessing

Preprocessing is the first step of the approach in which, the
input functional requirements expressed in natural language are
normalized through four steps: (i) tokenization, i.e., the
decomposition of a sentence into a set of individual words; (ii)
stop-words removal, i.e., the elimination of common English
words; (iii) punctuation removal; (iv) stemming, i.e., the
transformation of each word to its root (e.g: "adding" becomes
"add").

B. Semantic similarity computation module

The preprocessed requirements are then introduced into the
semantic similarity computation module. Traditional
approaches to compute the similarity between two text
segments consist in using lexical matching method, and
producing a similarity score based on the number of lexical
units that occur in both input segments. However, these lexical
similarity methods cannot always identify the semantic
similarity of texts as they aim to determine whether the words

in two texts have similar spellings [12]. For example, the “US”
would be closer to the “UK” this way, than it would be to the
“States”.

Going beyond these traditional methods, we compute and
analyze the semantic information at two levels: locally, for each
word contained in a requirement description, but also globally
at the statement level.

1) Word-level similarity computation

In order to compute the word-level similarity, one must
rewrite the preprocessed requirements from natural language to
a machine-readable and analyzable format. Thus, words should
be transformed into numerical vectors that work with machine
learning algorithms. To this end, we use the word2vec model, a
two-layer neural network that is used to produce word
embeddings (i.e., vectors).

The input of word2vec is a text corpus. Given enough text
data and contexts, word2vec can achieve highly accurate
semantics of the words appearing in the corpus and establish a
word’s association with other words in the semantic space.
Moreover, word embedding models have shown to outperform
traditional DSMs which are considered as “count” models as
they count co-occurrences among words by operating on co-
occurrence matrices [11].

Since a word embedding model is supposed to be of high
quality when trained with large corpus, we use the pretrained
word2vec model on 100 million words of Google News dataset
(https://code.google.com/archive/p/word2vec/). However, even
if the used corpus is large (e.g., Google News), some domain-
specific words founded in the requirement statement may be
unknown in the corpus. In this case, as suggested in [13], we
assign a random vector to the missing word. Then, we compute
the semantic similarity between each pair of the obtained word
vectors belonging to two different requirement statements using
the cosine similarity measure. The cosine similarity principle
consists in computing the cosine of the angle between two
words vectors. Thus, the cosine similarity of two similar words
vectors is close to 1, and close to 0 otherwise.

2) Requirement-level similarity computation

After obtaining the word-level similarity, we extend it at the

global statement-level. Some approaches capture the meaning

of longer pieces of text by taking the means of the individual

term vectors [14], [15]. However, means or sums are rather poor

ways of describing the distribution of word embeddings across

a semantic space. It would be desirable to capture more
properties of the two texts, especially with respect to the

semantics of words that do or do not match.

We overcome the above-mentioned limitations by deriving

the statement-level similarity from the word-level similarity

based on two characteristics: the distribution of words in each

requirement statement; and the specificity of each word in the

requirements document. To do that, we got inspiration from the

work of Mihalcea et al. [12], to derive the statement-level

semantic similarity from the word-level semantic similarity. We

used hence the Mihalcea’s scoring function for text similarity

computation to compute the similarity of each pair of

requirement statement (see Equation 2).

First, we identify for each word w1 in the text requirement

R1, the word w2 in the text requirement R2 that have the highest

semantic similarity maxSim(w1,R2) (Equation 1), based on the
word-to-word semantic similarity wordSim(w1,w2) using

word2vec. Next, the same process is applied to determine the

most similar word in R1 starting with words in R2.

𝑚𝑎𝑥𝑆𝑖𝑚(𝑤1 , 𝑅2) = max

w2∈𝑅2
𝑤𝑜𝑟𝑑𝑆𝑖𝑚(𝑤1 , 𝑤2)

(1)

The word similarities are then weighted with the

corresponding word specificity using the Inverse Document

Frequency (idf) weighting technique to capture the specificity

of a word. In a nutshell, this technique aims to measure how
much a word contributes to the relevance of two texts. The

weighted word similarities are then summed up and normalized

with the length of each text segment. The resulting similarity

scores are combined using a simple average and thus, the

semantic similarity of two requirements R1 and R2 is computed

as follows:

𝑠𝑖𝑚(𝑅1, 𝑅2) =
1

2
×

(
∑ 𝑚𝑎𝑥𝑆𝑖𝑚(𝑤, 𝑅2) × 𝑖𝑑𝑓(𝑤)𝑤∈𝑅1

∑ 𝑖𝑑𝑓(𝑤)𝑤∈𝑅1

+

∑ 𝑚𝑎𝑥𝑆𝑖𝑚(𝑤,𝑅1) × 𝑖𝑑𝑓(𝑤)𝑤∈𝑅2

∑ 𝑖𝑑𝑓(𝑤)𝑤∈𝑅2

)

(2)

Ultimately, by applying the equation (2), we obtain the final

similarity matrix of each pair of requirements.

C. Clustering:

Textual requirements clustering refers to the process of
taking a set of requirements and grouping them based on a
similarity measure so that, requirements in the same cluster are
similar and requirements in different clusters are different. In
this context, we adopt the clustering of functional requirements
based on their semantic similarity.

Clustering methods can be classified either as hierarchical or
partitional [16]. Partitional clustering algorithms such as k-
means, require the number of clusters. Thus, they rely heavily
on the analyst’s knowledge, as they require the identification of
the number of clusters to be generated in advance. In order to
reduce the manual intervention, we employ the Hierarchical
Agglomerative Clustering algorithm (HAC) [17] as it does not
require us to pre-specify the number of clusters in advance.
Hence, we utilize the similarity values for each pair of
requirements as clustering criterion, taking the semantic
similarity matrix of the functional requirements as input for
HAC. The HAC algorithm works in a bottom-up manner, each
requirement statement is initially considered as a single-element

https://code.google.com/archive/p/word2vec/

cluster (leaf). At each step of the algorithm, the two clusters that
are the most similar are combined into a new bigger cluster
(node). This procedure is iterated until all requirements are
member of just one single big cluster, resulting in a hierarchical
clustering tree.

However, identifying the optimal number of clusters is not a
trivial task. It might be subjective as it can heavily rely on the
analyst’s knowledge. In order to automate this task, we
implement an operation that identifies automatically the best
number of clusters using the Dunn index [18]. The Dunn index
is an internal validity index used to evaluate the clustering result
when the number of clusters is unknown. Hence, in order to
achieve an optimal number of clusters, we calculate the Dunn
index each time, when varying the number of clusters. A higher
Dunn index indicates better clustering solution. Consequently, to
estimate optimal number of clusters that are generated by HAC,
we select the number of clusters for which we have a higher
Dunn index.

IV. EXPERIMENTAL EVALUATION SETTINGS

In order to assess our approach, we report in this section the
research questions that were investigated as well as the four case
studies we did.

A. Research questions:

As our study focuses on the automatic grouping of the
functional software requirements into a set of clusters, we
investigated the following research questions to evaluate the
approach:

 RQ1: To what extent is the proposed clustering solution
accurate?

Motivation. For this research questions, we aim at
determining the accuracy of the proposed clustering solution in
order to assess whether our approach succeeded to identify
semantic clusters that reflect the domain functionalities
embedded in a given functional requirements document.

Approach. To answer this research question, we evaluate
the proposed clustering solution using two validation criteria as
follows:

 The correctness of the identified semantic clusters:

This validation criterion aims at verifying whether the
identified semantic clusters are close to the semantic clusters
provided in the software requirements specification (SRSs)
documents. For this, we rely on two well-known measures in the
Information Retrieval (IR) field. These metrics are precision and
recall [19]. The identified clusters are compared with the
reference clusters provided in the SRSs documents, which serve
as a ground truth for our evaluation.

Let True Positive (TP) elements be the similar requirements
correctly assigned to the same cluster, False Positive (FP)
elements be dissimilar requirements assigned to the same cluster
and False Negative (FN) elements be similar requirements
incorrectly assigned to different clusters. The evaluation metrics
are defined as follows:

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

 The clustering gap (C_GAP):

For this validation criterion, we aim to verify whether the

identified number of clusters is close to the reference number

provided in the SRSs document. This is recognized as the

clustering gap (C_Gap). The C_Gap compares the identified

number of clusters with the reference number of clusters. Thus,

it is defined as follows:

C_Gap = |numberidentified_clusters – numberreference_clusters|

 RQ2: Is the proposed clustering solution practical in
realistic settings?

 Motivation. For this research question, we aim to establish

whether our approach is scalable. Particularly, the goal is to
check how well the clustering solution performs when

increasing the number of functional requirements.

 Approach. In order to solve this research question, we

assess the following validation criterion:

 The end-to-end execution time of the clustering solution:

It consists in measuring the impact of the number of software

requirements for each case study on the execution time. Hence,

this validation criterion aims to check whether the proposed

clustering solution runs within reasonable time for larger number

of functional requirements in realistic settings.

B. Case studies:

We assess the applicability of our approach using the
software requirements specification documents of four open-
access projects from different domains and with different sizes:
the E-Store software consists of online sales, distribution and
marketing of electronics [20]. The WASP system is a public,
real-world requirements specification of context-aware mobile
telecommunication services [21]. The UUIS system - Unified
University Inventory System - is used to integrate three
faculties’ databases providing a web interface that allows user to
access and manage the integrated inventory [20]. The MHC-PM
system is a Mental Health Care Patient Management System
[22].

The table below shows the characteristics of each case study
in terms of number of requirements as well as the number of
clusters in each SRSs document.

TABLE I. Characteristics of the Case Studies

Case study Number of requirements Number of clusters

E-Store system 62 20

WASP system 66 14

UUIS system 25 11

MHC-PM system 19 6

V. RESULTS ANALYSIS

In this section, we evaluate the results of applying our

proposal to the four aforementioned case studies through the

two previous described RQs.

A. Answering RQ1: To what extent is the number of identified

clusters correct?

 The correctness of the identified semantic clusters:
In Tables II, we present an example of the reference and the

identified cluster for the E-Store system. The requirement
statement shown in bold in the identified cluster is an irrelevant
functional requirement in that cluster.

In order to answer RQ1, we evaluate our clustering results
in terms of precision and recall. We also compare our results to
the work in [10]. In fact, the approach used in [10] closely
relates to our work as it proposes a method to semantically
cluster functional requirements. Thus, we use the work in [10]
as a baseline. Table III shows the evaluation results of our
approach as well as the baseline [10] in terms of precision and
recall. The best results are in bold.

TABLE II. Example of identified and reference cluster for the E-store system

Identified cluster Reference cluster

The system shall allow user to

create profile and set his

credential.

The system shall allow user to

create profile and set his

credential.

The system shall authenticate user

credentials to view the profile.

The system shall authenticate user

credentials to view the profile.

The system shall allow user to

update the profile information.

The system shall allow user to

update the profile information.

The system shall allow user to

register for newsletters and

surveys in the profile.

Precision values take a high-range (0.74 – 0.87) and recall

values take a reasonable range (0.63 – 0.75) across different

case studies. In most of these case studies, we achieved better

precision and recall values compared with the baseline [10].

For example, for the MHC-PM case study our approach

achieves better precision and recall values by 6 and 16

percentage points respectively. Thus, the evaluation shows

clustering results with relatively high quality with better

precision and recall values in most case studies compared with

the baseline [10].

TABLE III. Precision, Recall and C_Gap Values for each Case Study

 E-store WASP UUIS MHC-PM

 Precision 0.83 0.87 0.74 0.84

Our

approach

Recall 0.68 0.63 0.75 0.73

 C_Gap 0 2 1 1

 Precision 0.80 0.83 0.72 0.78

The

baseline

Recall 0.61 0.54 0.60 0.57

 C_Gap 1 4 2 0

At the light of these results, the answer to the first research

question (RQ1) is that our clustering solution succeeded to

achieve relatively accurate results that can be applicable.

 The clustering gap (C_GAP):
TABLE III shows, for each case study the clustering gap

between the identified and the reference clusters. By comparing

these results with TABLE I, we note that the identified number

of clusters is the same or very close to the reference number of

clusters. Moreover, by comparing with the baseline [10], our

method succeeded to identify a number of clusters that is closer

to the reference number of clusters for the three case studies: E-

store system, WASP system and UUIS system.

Therefore, the answer to this research question is that the

identified number of clusters is very similar to their

corresponding reference number of clusters. In summary, we

conclude that the number of the identified cluster is accurate
and achieves better results than the baseline [10] in most case

studies.

B. Answering RQ2: Is the proposed clustering solution

practical in realistic settings?

In order to answer this research question, we measure the

execution time of our approach for the four case studies on a

laptop with a 2.10 Ghz Intel (R) Core (TM) i7-4600U CPU and

a 8GB of memory. In Table IV, we measure the impact of the

number of requirements on the end-to-end execution time in

order to assess the applicability of our solution.

TABLE IV . Execution Time by Number of Requirements

 MHC-PM UUIS E-Store WASP

Number of

requirements

19 25 62 66

Execution

time in

seconds

20 24 41 52

Table IV shows that our approach runs in few seconds for

the four case studies. Moreover, Figure 2 shows a linear growth

trend for the impact of the number of requirements on the

execution time. Given such linear relation and the fact that the

end-to-end execution time takes few seconds, the answer to

RQ2 is that our approach runs in reasonable time.

Figure 2. Execution Time by Number of Requirements Graph

In summary, we anticipate that our clustering solution should

be practical for much requirements documents.

VI. THREATS TO VALIDITY

In this section, we discuss the limitations of our proposal in
terms of internal threats, construct threats and conclusion
threats. These threats are as follows:

Internal validity. With regard to computing word similarity,
some domain-specific words do not occur in the corpus used to
train the word vector space, which might slightly affect the
efficiency of word similarity computation. To mitigate this
limitation, we map such words to a random vector.

External validity. Our approach is capable of generating
clusters from short text requirements. However, if a
requirement describing a functionality is of too many sentences,
our approach maybe cannot provide an accurate result. Hence,
in this case, some manual semantic analyses may still be needed
to overcome this limitation.

Conclusion validity. We evaluate the applicability of our
approach on four open-access projects. Although the evaluation
results are promising, the results from just four domains may be
not enough to support the conclusion. Thus, we need to evaluate
the approach on larger number of case studies for a better
evaluation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to automatically

group functional requirements into semantic clusters in order to

breakdown automatically a system into sub-systems at early
stages, providing to the system architect a first high-level

architecture description of her/his system.

The core of the approach is a clustering solution that is based

on the semantic similarity of the natural language requirements.

In order to improve the accuracy of the clustering solution,

semantic information of both the words and requirements is

analyzed and used for compute the similarity. Word-level

similarity was firstly computed using word2vec as pre-trained

predictive model then, it was extended to the requirements-level

using the Mihalcea scoring formula for text similarity

computation. Then, we employ the HAC algorithm to cluster

functional requirements into semantic clusters. Moreover, we
propose and automatic identification of the optimal number of

clusters in order to reduce the manual intervention.

To assess the applicability of our approach, we conduct four

case studies from open-access projects from different domains

and evaluate the results in terms of precision, recall and

execution time. Evaluation results reveal that we succeeded to

achieve relatively accurate semantic clusters fully automatically

within a practical execution time that takes few seconds.

Moreover, a comparison with a related work shows that our

approach provides relatively better clustering results.

As future work, we will focus on extending our clustering
solution to categorize non-functional requirements according to

their type. Indeed, most of the work focusing on automating non-

functional requirements categorization use supervised learning

techniques requiring huge training datasets, which are not

always available for all domains. So far, employing clustering to

categorize non-functional requirements did not provide

sufficient accuracy. Hence, we plan to integrate other techniques

taking into account popular key words of each non-functional

requirement type to enhance the categorization process.

REFERENCES

[1] R. Pressman, ”Software Engineering: A Practitioner’s Approach ,” 1982.

[2] B. Brügge and A. Dutoit, “ Object-Oriented Software Engineering Using

UML, Patterns, and Java ,” 2009.

[3] D. Zowghi and C. Coulin, “Requirements Elicitation: A Survey of

Techniques, Approaches, and Tools”, in Engineering and Managing

Software Requirements, Springer, Berlin, Heidelberg, 2005, p. 19-46.

[4] F. Brooks, “No Silver Bullet Essence and Accidents of Software

Engineering”, Computer, vol. 20, no 4, p. 10-19, avr. 1987, doi:

10.1109/MC.1987.1663532.

[5] Y. Amannejad, M. Moshirpour, B. H. Far, and R. Alhajj, “From

requirements to software design: An automated solution for packaging
software classes”, in Proceedings of the 2014 IEEE 15th International

Conference on Information Reuse and Integration (IEEE IRI 2014), août

2014, p. 36‑43.

[6] G. Lucassen, F. Dalpiaz, J. M. E. M. van der Werf, et S. Brinkkemper,

« Visualizing User Story Requirements at Multiple Granularity Levels via

Semantic Relatedness », in Conceptual Modeling, nov. 2016, p. 463‑478.

[7] A. Casamayor, D. Godoy, et M. Campo, “Functional grouping of natural

language requirements for assistance in architectural software design”,

Knowl. Based Syst. 30, 2012, 78-86.

[8] R. Barbosa, D. Januario, A. E. Silva, R. Moraes, et P. Martins, “An
Approach to Clustering and Sequencing of Textual Requirements”, 2015

IEEE International Conference on Dependable Systems and Networks

Workshops : 39-44, 2015.

[9] H. Jalab and Z. M. Kasirun, “Towards Requirements Reuse: Identifying

Similar Requirements with Latent Semantic Analysis and Clustering

Algorithms”, 2014.

[10] H. E. Salman, M. Hammad, A.-D. Seriai, and A. Al-Sbou, “Semantic

Clustering of Functional Requirements Using Agglomerative

Hierarchical Clustering”, Inf. 9 (2018): 222., 2018.

[11] M. Baroni, G. Dinu, and G. Kruszewski, “ Don’t count, predict! A

systematic comparison of context-counting vs. context-predicting

semantic vectors”, ACL, 2014.

[12] R. Mihalcea, C. Corley, and C. Strapparava, “ Corpus-based and

Knowledge-based Measures of Text Semantic Similarity “, AAAI, 2006.

[13] Y. Kim, “Convolutional Neural Networks for Sentence Classification,”

EMNLP, 2014.

[14] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional Neural Network

Architectures for Matching Natural Language Sentences,” NIPS, 2014.

[15] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning With Neural

Tensor Networks for Knowledge Base Completion,” NIPS, 2013.

[16] M. Allahyari et al., “A Brief Survey of Text Mining: Classification,

Clustering and Extraction Techniques,” ArXiv abs/1707.02919, 2017.

[17] M. L. Zepeda-Mendoza and O. Resendis-Antonio, “Hierarchical

Agglomerative Clustering,” in Encyclopedia of Systems Biology,

Springer, New York, NY, 2013, pp. 886–887.

[18] J. C. Dunn, “Well-Separated Clusters and Optimal Fuzzy Partitions,”

1974.

[19] C. D. Manning, P. Raghavan, and H. Schütze, “Introduction to

information retrieval,” 2005.

[20] National Research Council of Italy. Natural Language Requirements
Dataset. Available online: http://fmt.isti.cnr.it/nlreqdataset/ (accessed

Feb. 22, 2021).

[21] T. Menzies, R. Krishna, Pryor “PROMISE Software Engineering
Repository.” http://promise.site.uottawa.ca/SERepository/ (accessed Feb.

22, 2021).

[22] Mental Health Care Patient Management System. Available online:
https://bscs143.files.wordpress.com/2015/11/requirement-mhc-pms.docx

(accessed Feb. 22, 2021).

	I. Introduction
	II. related works
	III. The proposed approach
	B. Semantic similarity computation module
	2) Requirement-level similarity computation

	C. Clustering:

	IV. Experimental evaluation settings
	A. Research questions:
	B. Case studies:

	V. results analysis
	A. Answering RQ1: To what extent is the number of identified clusters correct?

	VI. threats to validity
	VII. Conclusion and future work
	References

