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Abstract— Requirements engineering starts by requirements 

elicitation which consists in gathering software requirements from 

stakeholders. Then, the elicited requirements are usually manually 

recorded in a requirements specification document. In recent 

years, modern software projects are becoming more complex than 

projects of the past due to the increase in the number of 

requirements and stakeholders involved in a project. Thus, 

manually managing requirements becomes a tedious, time 

consuming and error-prone task. One historical strategy to 

manage this kind of complexity is “divide to conquer”, meaning to 

categorize them into groups in order to breakdown the system into 

a set of smallest sub-systems at early stages. In this paper, we 

propose an approach to automatically cluster functional 

requirements based on their semantic similarity which is the usual 

strategy used by system architects to define sub-systems candidate 

to simplification of the original problem. First, we use word2vec, 

as a predictive word embedding model to compute the word-level 

similarity. Second, we derive the requirement-level similarity 

using a scoring function for text similarity. Third, we adopt 

hierarchical clustering to group the requirements. Experimental 

results performed on four open-access software projects show that 

our approach succeeded to improve the results of clusters 

identification compared with existing studies. 
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embedding; natural language processing. 

I.  INTRODUCTION 

Requirements elicitation is the first step in developing a 
software product. In this step, engineers discover and collect 
requirements from customers and then, they manually record 
them in a requirements specification document. The gathered 
requirements describe different aspects of the target software in 
natural language and they are mainly classified into functional 
and non-functional requirements [1]. Functional requirements 
describe the functional behavior and the features of the software 
system while non-functional requirements define the system 
attributes such as performance, security, reliability as well as the 
system operational conditions such as power consumption and 
environmental conditions. 

Requirements elicitation has a significant impact on 
information systems quality and success, as the errors introduced 
at the beginning stages of development are the hardest and most 
expensive to correct [2].  

 

Hence, it is crucial that the requirements set has to be well 
understood and well managed by engineers [3].  

System design constraints evolves more and more requiring 
to embed more stakeholders in the projects to handle various 
new concerns - such as security, safety, cost, and sustainability 
– earlier in the process, at specification time. Consequently, 
modern software projects are becoming many times larger and 
hence more complex than in the past. Especially, the exponential 
growth of the number of requirements raises difficulties in 
managing manually the requirements and having a clear crystal 
view of the expectation and scope of the system to be designed 
[4]. One of the most used and efficient design paradigms to deal 
with complexity is the well-known “divide-to-conquer” strategy 
i.e., building smallest pieces to reduce the complexity. Herein 
lies the importance of an automatic solution to categorize 
software requirements into a set of groups in order to breakdown 
the target software system into a set of smallest sub-systems at 
early stages of the development process. 

In this paper, we propose a clustering solution to 
automatically group functional requirements based on their 
semantic similarity. We use and analyze the semantic 
information of the requirements to compute the requirements 
similarity at two levels: at the word level, but also at the 
statement level of the requirements (i.e., local versus global 
semantics of the requirements). In that context, we make the 
following contributions: 1) we use a neural word embedding 
model, word2vec, as a predictive model to compute the word-
level similarity; 2) then, we derive the requirement-level 
similarity using a scoring function for text similarity 
computation; 3) finally, we adopt hierarchical clustering 
combined with a pre-defined criteria to group the requirements 
in specific clusters. To evaluate our proposal, we have 
successfully applied it to four open-access software projects. 

The remainder of the paper is structured as follow: section 2 
discusses the related works; section 3 describes the proposed 
approach; section 4 provides the experimental evaluation 
settings; section 5 provides the results analysis; section 6 raises 
the limitations and the threats to validity and finally, section 7 
concludes the paper. 
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II. RELATED WORKS 

In recent years, the usage of clustering techniques in the 
early phases of software engineering has gained a lot of 
attention.  

In [5], the authors developed a tool based on hierarchical 
clustering of requirements in order to propose a packaging 
solution for software engineers. They defined a similarity 
measure that aims to cluster classes with high number 
communication in the same package. The optimal number of 
clusters is manually selected by software engineers based on the 
hierarchical tree generated by the clustering algorithm.  

In [6], the authors present an approach based on concepts 
clustering to visualize requirements at different levels of 
granularity. They employed word2vec as a predictive model to 
compute similarity between concepts.  

The authors in [7] propose an initial clustering of 
responsibilities from requirements, in order to detect 
architecture components. The approach is validated using four 
different clustering algorithms and several validity metrics. The 
similarity function is computed according to the verb phrase 
each responsibility contains, and the direct object it is related 
to. 

In [8], the authors present an approach to cluster and 
sequence user stories in order to assist software engineers in the 
implementation phase. They employed clustering algorithm and 
the silhouette score to identify the best clustering solution.  

In [9], the authors propose an approach that clusters similar 
requirements in order to reuse them in software product lines 
(SPLs). They compared the performance of two clustering 
algorithms based on a distance measure in order to identify 
similar requirements.  

In [10], the authors demonstrate the use of the HAC 
algorithm to group functional requirements based on their 
similarity. Their work aims to breakdown the project into a set 
of sub-projects at early stages. They use traditional vector space 
models (VSMs) to vectorize text requirements and use the 
cosine similarity to measure the semantic similarity between 
requirements.  

All these techniques inspire our work. However, some of 
these approaches suffer from a lack of automation as for 
example when defining the optimal number of clusters [5], 
others rely on the similarity between words or concepts in each 
requirement [6], [7]. Moreover, many works rely on traditional 
distributional semantic models (DSMs), for instance Vector 
Space Model (VSM) [8], [10] and Latent Semantic Analysis 
(LSA) [9] to calculate the similarity. The main limitation of 
these techniques is that they are considered as “count” models 
as they rely on counting the co-occurrences among words by 
operating on co-occurrence matrices. Thus, sentences with 
similar context but different term vocabulary will not be 
considered as similar. Consequently, traditional DSMs usually 
achieve worse results than neural word embedding models, 
which can be seen as predictive models [11].  

The main novelty of our proposal is that we benefit from 
using the neural word embedding model word2vec as predictive 
model, to compute word level similarity and then, derive the 

requirement level similarity using a scoring formula for text 
similarity. 

III. THE PROPOSED APPROACH 

In this section, we explain how our approach processes in 
order to generate automatically the clusters from natural 
language requirements as illustrated in the process shown in 
Figure 1.  

 

Figure 1. Overview of the approach 

 

In what follows, we detail the particular techniques used in 
each step.  

A. Preprocessing 

Preprocessing is the first step of the approach in which, the 
input functional requirements expressed in natural language are 
normalized through four steps: (i) tokenization, i.e., the 
decomposition of a sentence into a set of individual words; (ii) 
stop-words removal, i.e., the elimination of common English 
words; (iii) punctuation removal; (iv) stemming, i.e., the 
transformation of each word to its root (e.g: "adding" becomes 
"add"). 

B. Semantic similarity computation module 

The preprocessed requirements are then introduced into the 
semantic similarity computation module. Traditional 
approaches to compute the similarity between two text 
segments consist in using lexical matching method, and 
producing a similarity score based on the number of lexical 
units that occur in both input segments. However, these lexical 
similarity methods cannot always identify the semantic 
similarity of texts as they aim to determine whether the words 



in two texts have similar spellings [12]. For example, the “US” 
would be closer to the “UK” this way, than it would be to the 
“States”. 

Going beyond these traditional methods, we compute and 
analyze the semantic information at two levels: locally, for each 
word contained in a requirement description, but also globally 
at the statement level. 

1) Word-level similarity computation  

In order to compute the word-level similarity, one must 
rewrite the preprocessed requirements from natural language to 
a machine-readable and analyzable format. Thus, words should 
be transformed into numerical vectors that work with machine 
learning algorithms. To this end, we use the word2vec model, a 
two-layer neural network that is used to produce word 
embeddings (i.e., vectors). 

The input of word2vec is a text corpus. Given enough text 
data and contexts, word2vec can achieve highly accurate 
semantics of the words appearing in the corpus and establish a 
word’s association with other words in the semantic space. 
Moreover, word embedding models have shown to outperform 
traditional DSMs which are considered as “count” models as 
they count co-occurrences among words by operating on co-
occurrence matrices [11].  

Since a word embedding model is supposed to be of high 
quality when trained with large corpus, we use the pretrained 
word2vec model on 100 million words of Google News dataset 
(https://code.google.com/archive/p/word2vec/). However, even 
if the used corpus is large (e.g., Google News), some domain-
specific words founded in the requirement statement may be 
unknown in the corpus. In this case, as suggested in [13], we 
assign a random vector to the missing word. Then, we compute 
the semantic similarity between each pair of the obtained word 
vectors belonging to two different requirement statements using 
the cosine similarity measure. The cosine similarity principle 
consists in computing the cosine of the angle between two 
words vectors. Thus, the cosine similarity of two similar words 
vectors is close to 1, and close to 0 otherwise. 

2)    Requirement-level similarity computation  

After obtaining the word-level similarity, we extend it at the 

global statement-level. Some approaches capture the meaning 

of longer pieces of text by taking the means of the individual 

term vectors [14], [15]. However, means or sums are rather poor 

ways of describing the distribution of word embeddings across 

a semantic space. It would be desirable to capture more 
properties of the two texts, especially with respect to the 

semantics of words that do or do not match. 

We overcome the above-mentioned limitations by deriving 

the statement-level similarity from the word-level similarity 

based on two characteristics: the distribution of words in each 

requirement statement; and the specificity of each word in the 

requirements document. To do that, we got inspiration from the 

work of Mihalcea et al. [12], to derive the statement-level 

semantic similarity from the word-level semantic similarity. We 

used hence the Mihalcea’s scoring function for text similarity 

computation to compute the similarity of each pair of 

requirement statement (see Equation 2). 

First, we identify for each word w1 in the text requirement 

R1, the word w2 in the text requirement R2 that have the highest 

semantic similarity maxSim(w1,R2) (Equation 1), based on the 
word-to-word semantic similarity wordSim(w1,w2) using 

word2vec. Next, the same process is applied to determine the 

most similar word in R1 starting with words in R2. 

 

 
𝑚𝑎𝑥𝑆𝑖𝑚(𝑤1 , 𝑅2) = max

w2∈𝑅2
𝑤𝑜𝑟𝑑𝑆𝑖𝑚(𝑤1 , 𝑤2) 

 

(1) 

 

 

The word similarities are then weighted with the 

corresponding word specificity using the Inverse Document 

Frequency (idf) weighting technique to capture the specificity 

of a word. In a nutshell, this technique aims to measure how 
much a word contributes to the relevance of two texts. The 

weighted word similarities are then summed up  and normalized 

with the length of each text segment. The resulting similarity 

scores are combined using a simple average and thus, the 

semantic similarity of two requirements R1 and R2 is computed 

as follows: 

 

𝑠𝑖𝑚(𝑅1, 𝑅2) =
1

2
× 

 

(
∑ 𝑚𝑎𝑥𝑆𝑖𝑚(𝑤, 𝑅2) × 𝑖𝑑𝑓(𝑤)𝑤∈𝑅1

∑ 𝑖𝑑𝑓(𝑤)𝑤∈𝑅1

+ 

 
∑ 𝑚𝑎𝑥𝑆𝑖𝑚(𝑤,𝑅1) × 𝑖𝑑𝑓(𝑤)𝑤∈𝑅2

∑ 𝑖𝑑𝑓(𝑤)𝑤∈𝑅2

) 

 

 

 

 

(2) 

 

Ultimately, by applying the equation (2), we obtain the final 

similarity matrix of each pair of requirements. 

C. Clustering: 

Textual requirements clustering refers to the process of 
taking a set of requirements and grouping them based on a 
similarity measure so that, requirements in the same cluster are 
similar and requirements in different clusters are different. In 
this context, we adopt the clustering of functional requirements 
based on their semantic similarity. 

Clustering methods can be classified either as hierarchical or 
partitional [16]. Partitional clustering algorithms such as k-
means, require the number of clusters. Thus, they rely heavily 
on the analyst’s knowledge, as they require the identification of 
the number of clusters to be generated in advance. In order to 
reduce the manual intervention, we employ the Hierarchical 
Agglomerative Clustering algorithm (HAC) [17] as it does not 
require us to pre-specify the number of clusters in advance. 
Hence, we utilize the similarity values for each pair of 
requirements as clustering criterion, taking the semantic 
similarity matrix of the functional requirements as input for 
HAC. The HAC algorithm works in a bottom-up manner, each 
requirement statement is initially considered as a single-element 

https://code.google.com/archive/p/word2vec/


cluster (leaf). At each step of the algorithm, the two clusters that 
are the most similar are combined into a new bigger cluster 
(node). This procedure is iterated until all requirements are 
member of just one single big cluster, resulting in a hierarchical 
clustering tree.  

However, identifying the optimal number of clusters is not a 
trivial task. It might be subjective as it can heavily rely on the 
analyst’s knowledge. In order to automate this task, we 
implement an operation that identifies automatically the best 
number of clusters using the Dunn index [18]. The Dunn index 
is an internal validity index used to evaluate the clustering result 
when the number of clusters is unknown. Hence, in order to 
achieve an optimal number of clusters, we calculate the Dunn 
index each time, when varying the number of clusters. A higher 
Dunn index indicates better clustering solution. Consequently, to 
estimate optimal number of clusters that are generated by HAC, 
we select the number of clusters for which we have a higher 
Dunn index. 

IV. EXPERIMENTAL EVALUATION SETTINGS 

In order to assess our approach, we report in this section the 
research questions that were investigated as well as the four case 
studies we did.  

A. Research questions: 

As our study focuses on the automatic grouping of the 
functional software requirements into a set of clusters, we 
investigated the following research questions to evaluate the 
approach: 

 RQ1: To what extent is the proposed clustering solution 
accurate? 

Motivation. For this research questions, we aim at 
determining the accuracy of the proposed clustering solution in 
order to assess whether our approach succeeded to identify 
semantic clusters that reflect the domain functionalities 
embedded in a given functional requirements document. 

Approach. To answer this research question, we evaluate 
the proposed clustering solution using two validation criteria as 
follows:  

 The correctness of the identified semantic clusters: 

This validation criterion aims at verifying whether the 
identified semantic clusters are close to the semantic clusters 
provided in the software requirements specification (SRSs) 
documents. For this, we rely on two well-known measures in the 
Information Retrieval (IR) field. These metrics are precision and 
recall [19]. The identified clusters are compared with the 
reference clusters provided in the SRSs documents, which serve 
as a ground truth for our evaluation.  

Let True Positive (TP) elements be the similar requirements 
correctly assigned to the same cluster, False Positive (FP) 
elements be dissimilar requirements assigned to the same cluster 
and False Negative (FN) elements be similar requirements 
incorrectly assigned to different clusters. The evaluation metrics 
are defined as follows: 

Precision = TP / (TP + FP) 

Recall = TP / (TP + FN) 

 The clustering gap (C_GAP): 

For this validation criterion, we aim to verify whether the 

identified number of clusters is close to the reference number 

provided in the SRSs document. This is recognized as the 

clustering gap (C_Gap). The C_Gap compares the identified 

number of clusters with the reference number of clusters. Thus, 

it is defined as follows: 

C_Gap = |numberidentified_clusters – numberreference_clusters| 

 

 RQ2: Is the proposed clustering solution practical in 
realistic settings? 

      Motivation. For this research question, we aim to establish 

whether our approach is scalable. Particularly, the goal is to 
check how well the clustering solution performs when 

increasing the number of functional requirements. 

      Approach. In order to solve this research question, we 

assess the following validation criterion: 

 The end-to-end execution time of the clustering solution: 

It consists in measuring the impact of the number of software 

requirements for each case study on the execution time. Hence, 

this validation criterion aims to check whether the proposed 

clustering solution runs within reasonable time for larger number 

of functional requirements in realistic settings. 

B. Case studies: 

We assess the applicability of our approach using the 
software requirements specification documents of four open-
access projects from different domains and with different sizes: 
the E-Store software consists of online sales, distribution and 
marketing of electronics [20]. The WASP system is a public, 
real-world requirements specification of context-aware mobile 
telecommunication services [21]. The UUIS system - Unified 
University Inventory System - is used to integrate three 
faculties’ databases providing a web interface that allows user to 
access and manage the integrated inventory [20]. The MHC-PM 
system is a Mental Health Care Patient Management System 
[22]. 

The table below shows the characteristics of each case study 
in terms of number of requirements as well as the number of 
clusters in each SRSs document. 

TABLE I. Characteristics of the Case Studies 

Case study Number of requirements Number of clusters 

E-Store system 62 20 

WASP system 66 14 

UUIS system 25 11 

MHC-PM system 19 6 

 

V. RESULTS ANALYSIS 

In this section, we evaluate the results of applying our 

proposal to the four aforementioned case studies through the 

two previous described RQs. 



A. Answering RQ1: To what extent is the number of identified 

clusters correct? 

 

 The correctness of the identified semantic clusters: 
In Tables II, we present an example of the reference and the 

identified cluster for the E-Store system. The requirement 
statement shown in bold in the identified cluster is an irrelevant 
functional requirement in that cluster. 

In order to answer RQ1, we evaluate our clustering results 
in terms of precision and recall. We also compare our results to 
the work in [10]. In fact, the approach used in [10] closely 
relates to our work as it proposes a method to semantically 
cluster functional requirements. Thus, we use the work in [10] 
as a baseline. Table III shows the evaluation results of our 
approach as well as the baseline [10] in terms of precision and 
recall. The best results are in bold. 

 
TABLE II. Example of identified and reference cluster for the E-store system 

Identified cluster Reference cluster 

The system shall allow user to 

create profile and set his 

credential. 

 

The system shall allow user to 

create profile and set his 

credential. 

 

The system shall authenticate user 

credentials to view the profile. 

The system shall authenticate user 

credentials to view the profile. 

The system shall allow user to 

update the profile information. 

The system shall allow user to 

update the profile information. 

The system shall allow user to 

register for newsletters and 

surveys in the profile. 

 

 

Precision values take a high-range (0.74 – 0.87) and recall 

values take a reasonable range (0.63 – 0.75) across different 

case studies. In most of these case studies, we achieved better 

precision and recall values compared with the baseline [10]. 

For example, for the MHC-PM case study our approach 

achieves better precision and recall values by 6 and 16 

percentage points respectively. Thus, the evaluation shows 

clustering results with relatively high quality with better 

precision and recall values in most case studies compared with 

the baseline [10]. 

 
TABLE III. Precision, Recall and C_Gap Values for each Case Study 

  E-store WASP UUIS MHC-PM 

 Precision 0.83 0.87 0.74 0.84 

Our 

approach 

Recall 0.68 0.63 0.75 0.73 

 C_Gap 0 2 1 1 

 Precision 0.80 0.83 0.72 0.78 

The 

baseline 

Recall 0.61 0.54 0.60 0.57 

 C_Gap 1 4 2 0 

 

At the light of these results, the answer to the first research 

question (RQ1) is that our clustering solution succeeded to 

achieve relatively accurate results that can be applicable. 

 

 The clustering gap (C_GAP): 
TABLE III shows, for each case study the clustering gap 

between the identified and the reference clusters. By comparing 

these results with TABLE I, we note that the identified number 

of clusters is the same or very close to the reference number of 

clusters. Moreover, by comparing with the baseline [10], our 

method succeeded to identify a number of clusters that is closer 

to the reference number of clusters for the three case studies: E-

store system, WASP system and UUIS system. 

Therefore, the answer to this research question is that the 

identified number of clusters is very similar to their 

corresponding reference number of clusters. In summary, we 

conclude that the number of the identified cluster is accurate 
and achieves better results than the baseline [10] in most case 

studies. 

B. Answering RQ2: Is the proposed clustering solution 

practical in realistic settings? 

In order to answer this research question, we measure the 

execution time of our approach for the four case studies on a 

laptop with a 2.10 Ghz Intel (R) Core (TM) i7-4600U CPU and 

a 8GB of memory. In Table IV, we measure the impact of the 

number of requirements on the end-to-end execution time in 

order to assess the applicability of our solution. 

 
TABLE IV . Execution Time by Number of Requirements 

 MHC-PM UUIS E-Store WASP 

Number of 

requirements 

19 25 62 66 

Execution 

time in 

seconds 

20 24 41 52 

 

Table IV shows that our approach runs in few seconds for 

the four case studies. Moreover, Figure 2 shows a linear growth 

trend for the impact of the number of requirements on the 

execution time. Given such linear relation and the fact that the 

end-to-end execution time takes few seconds, the answer to 

RQ2 is that our approach runs in reasonable time. 

 

 
 

Figure 2. Execution Time by Number of Requirements Graph 

In summary, we anticipate that our clustering solution should 

be practical for much requirements documents.  



VI. THREATS TO VALIDITY 

In this section, we discuss the limitations of our proposal in 
terms of internal threats, construct threats and conclusion 
threats. These threats are as follows: 

Internal validity. With regard to computing word similarity, 
some domain-specific words do not occur in the corpus used to 
train the word vector space, which might slightly affect the 
efficiency of word similarity computation. To mitigate this 
limitation, we map such words to a random vector. 

External validity. Our approach is capable of generating 
clusters from short text requirements. However, if a 
requirement describing a functionality is of too many sentences, 
our approach maybe cannot provide an accurate result. Hence, 
in this case, some manual semantic analyses may still be needed 
to overcome this limitation. 

Conclusion validity. We evaluate the applicability of our 
approach on four open-access projects. Although the evaluation 
results are promising, the results from just four domains may be 
not enough to support the conclusion. Thus, we need to evaluate 
the approach on larger number of case studies for a better 
evaluation. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we presented an approach to automatically 

group functional requirements into semantic clusters in order to 

breakdown automatically a system into sub-systems at early 
stages, providing to the system architect a first high-level 

architecture description of her/his system.  

The core of the approach is a clustering solution that is based 

on the semantic similarity of the natural language requirements. 

In order to improve the accuracy of the clustering solution, 

semantic information of both the words and requirements is 

analyzed and used for compute the similarity. Word-level 

similarity was firstly computed using word2vec as pre-trained 

predictive model then, it was extended to the requirements-level 

using the Mihalcea scoring formula for text similarity 

computation. Then, we employ the HAC algorithm to cluster 

functional requirements into semantic clusters. Moreover, we 
propose and automatic identification of the optimal number of 

clusters in order to reduce the manual intervention.  

To assess the applicability of our approach, we conduct four 

case studies from open-access projects from different domains 

and evaluate the results in terms of precision, recall and 

execution time. Evaluation results reveal that we succeeded to 

achieve relatively accurate semantic clusters fully automatically 

within a practical execution time that takes few seconds. 

Moreover, a comparison with a related work shows that our 

approach provides relatively better clustering results.  

As future work, we will focus on extending our clustering 
solution to categorize non-functional requirements according to 

their type. Indeed, most of the work focusing on automating non-

functional requirements categorization use supervised learning 

techniques requiring huge training datasets, which are not 

always available for all domains. So far, employing clustering to 

categorize non-functional requirements did not provide 

sufficient accuracy. Hence, we plan to integrate other techniques 

taking into account popular key words of each non-functional 

requirement type to enhance the categorization process. 
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