
A Practical User Feedback Classifier for Software Quality Characteristics

Rubens dos Santos1, Karina Villela2, Diego Toralles Avila1, and Lucineia Heloisa Thom1

1Federal University of Rio Grande Do Sul – Institute of Informatics, Porto Alegre, Brazil,
risantos@inf.ufrgs.br, dtavila@inf.ufrgs.br, lucineia@inf.ufrgs.br

2Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany,
karina.villela@iese.fraunhofer.de

Abstract

It is common practice for users to provide feedback on
apps through social media or app store reviews. This feed-
back is a rich source of requirements for these apps. How-
ever, manually analyzing vast amounts of user feedback is
unfeasible, so automated user feedback classifiers are useful
tools. This research work presents a user feedback classifier
based on Machine Learning (ML) for the classification of re-
views according to software quality characteristics complaint
with the ISO25010 standard. We developed this approach by
testing several ML algorithms, features, and class balancing
techniques for classifying user feedback on a data set of 1500
reviews. The maximum F1 and F2 scores obtained were 60%
and 73%, with recall as high as 94%. This approach does not
replace human specialists, but reduces the effort required for
requirements elicitation.

1. Introduction

Traditional Requirements Engineering (RE) techniques
such as interviews and focus groups are often used to elicit
the requirements of software applications. However, these
techniques are not suitable for software applications whose
intended users are a large, heterogeneous, geographically dis-
tributed group (the so-called crowd) [4]. On the other hand,
the crowd’s opinion is accessible to software engineers in
user feedback found in app stores and social media, and the
RE community has acknowledged this as a relevant source
of software requirements (CrowdRE) [4]. As manually ana-
lyzing vast amounts of user feedback is time-consuming and
requires a lot of human effort [7], the RE community has
worked on tools to automatically process user feedback and
facilitate the extraction of requirements [2, 6, 8, 9, 11, 15]. A
particular cluster of tools consists of classifiers, i.e., tools that
classify feedback into predetermined categories.

In a previous study, we performed a systematic literature
review (SLR) on classifiers [13], finding a lack of studies ad-
dressing categories related to software quality. Out of 43
reviewed studies, only nine report the use of usability as a
classification category. The same was found to be the case
for other software quality characteristics (e.g., five studies
mention performance, nine portability, and six protection).
Among all studies analyzed, only three [5, 11, 15] use classi-
fication categories based on the ISO25010 standard [1]. One
investigated all characteristics but automatically classified
only usability and selected sub-characteristics [5], another re-
ports issues in mapping spontaneous and unstructured user
feedback onto the systematic structure of ISO20510 [15].
Based on this finding, we decided to work on the definition
and implementation of a user feedback classifier based on
Machine Learning (ML) for software quality using categories
derived from ISO25010. The categories of the envisioned
classifier should cover the software quality characteristics of
ISO25010, but be tailored to fit the nature of user feedback.
The goal is to support the elicitation of software quality re-
quirements from a crowd by filtering non-relevant feedback
and identifying feedback that might provide requirements
concerning software quality characteristics.

To achieve this goal, we extracted and labeled 1500 re-
views from popular apps available in the Apple App Store
and Google Play. This data set was used to train and evalu-
ate a selection of ML algorithms, features, and class balanc-
ing techniques. The very high recall (94%) of the classifier
with the best evaluation results demonstrates that this classi-
fier can successfully select feedback relevant for quality re-
quirements.

This work is organized as follows: Section 2 presents a
summary of our SLR and highlights related work. Section
3 presents our classification approach, including the defini-
tion of categories, the creation and labeling of the data set of
app reviews, the training algorithm, and the evaluation of the
results. Section 4 concludes this work.

DOI reference number: 10.18293/SEKE2021-055

risantos@inf.ufrgs.br
dtavila@inf.ufrgs.br
lucineia@inf.ufrgs.br
karina.villela@iese.fraunhofer.de


2. Background

The SLR we reported in [13] provides a comprehensive
summary of user feedback classifiers in CrowdRE, includ-
ing: 1) what algorithms and features were used in each ap-
proach, 2) which kinds of user feedback were classified (e.g.,
Apple App Store or Google Play reviews), 3) information on
the data sets used to test the classifiers, and 4) the efficacy
of the results (e.g., F-measure, precision, and recall). While
some approaches use dictionary-based approaches, regular
expressions, or parsing, the vast majority of the reviewed
work uses supervised ML. Popular ML algorithms include
Naive Bayes (NB), Support Vector Machine (SVM), Logistic
Regression (LR), Random Forest (RF), and Decision Trees
(DT). These algorithms have been often used alongside Bag-
of-Words (BOW), Stop Words, and Term Frequency–Inverse
Document Frequency (TF-IDF) as ML features. When we
looked at the efficacy of the results, we concluded that any
of the aforementioned ML algorithms could provide good-
quality results as well as poorer results. The strong variance
in the setup of the studies and their efficacy suggests that it
is still unclear what the most suitable ML approach for user
feedback classification in a given circumstance is, and that
choosing combinations of ML algorithms and ML features
for the targeted circumstance still has a key role in research
on such classifiers. In the following, we will focus on related
work that addresses software quality.

Groen et al. [5] report on two CrowdRE studies related to
software quality: 1) an exploratory study on the presence of
ISO25010’s software quality characteristics in user feedback,
where five people manually labeled online reviews, and 2) the
identification and test of language patterns regarding usabil-
ity. Similar to us, they argue that research on CrowdRE has
focused on functional aspects and neglected quality aspects,
but unlike the vast majority of the work on CrowdRE and
from our work, they suggest using language patterns to iden-
tify quality-related statements. In any case, our work based
on ML is not restricted to usability.

Lu and Liang [11] propose an ML feature called AUR-
BoW for user feedback classification that is also based on
ISO25010 quality characteristics. The authors also tailored
them to better fit user feedback. The new ML feature is
compared to three other features (BOW, TF-IDF and Chi
Squared) in combination with three ML algorithms (NB, J48,
and Bagging). Instead of proposing new classification tech-
niques in our work, we investigated a broader set of ML al-
gorithms, features, and class balancing techniques.

Wang et al. [15] also proposed a user feedback classifier
based on ISO25010’s software quality characteristics. In their
work, they tested four ML algorithms combined with TF-
IDF. We tested five ML algorithms combined with three ML
features and three class balancing techniques. Furthermore,
Wang et al. [15] used raw ISO25010 software quality charac-

teristics and reported problems in doing so, while we propose
tailoring them in order to better address the nature of user
feedback and the goals and capabilities of end users.

3. A Classifier for Software Quality

The methodology for defining and implementing our clas-
sifier consists of the following steps: First, we defined the
classification categories to be used in the classifier (step 1).
In parallel, we defined the criteria for the selection of user
feedback to compose our data set (step 2). Afterwards (step
3), we extracted user feedback according to the criteria de-
fined in step 2 and manually labeled the data set according to
the categories defined in step 1. Then we performed a statis-
tical analysis on the labeled data set in order to define which
classification techniques to use (step 4). The next step (step
5) was to carry out an efficacy evaluation to find out the best
combination of ML techniques for the data set we had cre-
ated. Finally, we analyzed the results of the evaluation (step
6).

3.1. Definition of Classification Categories

Wang et al. [15] reported problems in using the ISO25010
standard to classify user feedback, such as the rare explicit
reference to some ISO25010 characteristics in user feedback.
In particular, they mentioned: “During the pilot labeling...
we found that functional suitability, compatibility, maintain-
ability, and security were seldom observed in app reviews.”
There are several aspects to be considered to understand this
phenomenon: 1) Maintainability is certainly not a concern
of end users, who do not have access to the source code or
sketches of software projects; 2) security has often not been
one of the end users’ priorities, but their perception of its
relevance is changing, especially due to the introduction of
the General Data Protection Regulation in Europe; and espe-
cially 3) end users are not experts on RE or software quality
and provide feedback based on their observations using their
normal vocabulary. In this sense, they do not mention func-
tional suitability or security explicitly, but rather complain
about or request (security) features that, if improved or in-
cluded, would increase the quality of the app in their opinion.
They might not mention compatibility, but they may praise,
e.g., the fact that files created using an app can be loaded into
another one. The classification categories of a classifier for
software quality characteristics must take into account these
aspects.

As a consequence, we tailored the set of the ISO25010
standard’s software quality characteristics (functional suit-
ability, performance efficiency, compatibility, usability, reli-
ability, security, maintainability, and portability) to fulfill the
purpose of automated classification of user feedback. Like
other researchers [11, 15], we took into consideration only



the set of software quality characteristics, since user feedback
often does not present enough information to allow its clas-
sification into sub-characteristics. Our tailoring consisted of:
1) excluding maintainability and 2) merging some character-
istics either to increase the total number of relevant reviews
per category, which contributes to the classifier’s efficacy, or
to deal with the difficulty of distinguishing between them dur-
ing user feedback analysis, regardless of the feedback analy-
sis being automated or carried out by humans. Thus, com-
patibility and portability were merged into a single category
called compatibility because both characteristics refer to the
relationship between the app that is the object of the review
and another element (software or hardware) in the app’s en-
vironment. Performance efficiency and reliability were also
merged into performance because end users observe the be-
havior of apps, but usually are not capable of indicating the
cause of a problem they observed [14]. For example, a frozen
screen could be caused by too many users using the platform
simultaneously (a performance efficiency problem) or by a
software fault that was not foreseen (a reliability problem).
Finally, we merged security into functional suitability, as se-
curity mechanisms perceived by end users are mostly imple-
mented as functions that process a certain security-relevant
input and provide a certain security-relevant output. The fea-
tures requested in the user feedback “Why can’t I use FaceID
or a password to secure the app?” are some examples.

A user review can be classified into more than one cat-
egory as it may contain several statements. A review that
cannot be classified into any of the four adopted categories
is classified as “others”. Thus, the categories of our clas-
sifier are: functional suitability, performance, compatibility,
usability, others.

3.2. User Feedback Selection

In this step, we determined the source of the user feed-
back, selected the specific apps about which to collect user
feedback, and extracted a set of reviews to be manually la-
beled (i.e., to compose the data set). A manually labeled user
feedback data set is needed to test our classifier and, as we
are adopting an ML approach, also to train it.

We collected reviews about six different apps available
both in the Apple App Store and Google Play (Table 1). Both
platforms are prominent sources of user feedback chosen by
other classifier studies [13]. We selected two popular apps
from three business-related categories: Business, Productiv-
ity, and Navigation. We determined the popularity of the
apps based on the Apple App Store ranking of the downloads
of each of the selected app categories and the estimate pro-
vided by a list of most downloaded Google Play apps from
Wikipedia [16]. We adopted this procedure to avoid sam-
pling bias, which is a prevalent problem in collecting reviews
[12]. We also deliberately avoided choosing direct competi-

Table 1: Selected apps and corresponding attributes.

App App Category Downloads
Microsoft OneNote Productivity 500M+
Google Drive Productivity 5B+
Indeed Job Search Business 100M+
Slack Business 10M+
Uber Navigation 500M+
Google Maps Navigation 5B+

tor apps, as this work did not aim at comparing similar apps.

3.3. Data Extraction and Manual Labeling

We collected all reviews provided in 2017-2018 about the
chosen apps together with all available metadata, which re-
sulted in a database with 163,662 reviews. We also extracted
the reviews’ star rating. Manually labeling all reviews in this
database would be unfeasible. Therefore, we used simple
SQL queries to randomly extract 250 reviews from each app,
50 for each star rating. The goal of selecting 50 reviews per
star rating was to increase the ratio of requirements relevant
reviews. For all apps chosen, most of the reviews had ei-
ther 1 or 5 stars, and most of those were short and useless
for requirements engineers. For example, a 5-star review that
only says “Awesome” or “Cool” is not relevant for our pur-
pose. However, training and testing data sets should include
all types of reviews, so we purposefully chose not to exclude
reviews with 1 or 5 stars completely, but decreased the pro-
portion of such reviews in our data set.

The extracted 1500 reviews were then put into a spread-
sheet for the labeling process according to the categories pro-
posed in Section 3.1. Some studies in this field split reviews
into sentences before manual labeling; we did not do this be-
cause this process breaks up the context of the text.

The first author of this paper performed the labeling pro-
cess alone. Therefore, we decided to perform a posterior val-
idation of the data set labeling. In this validation, another
author re-labeled a random sample of 150 reviews (10% of
the data set). We analyzed inter-labeler reliability using Co-
hen’s kappa coefficient [10]. This coefficient was 0.59 for
functional suitability, 0.65 for performance, 0.83 for compat-
ibility, 0.84 for usability, and 0.75 for others. According to
Landis and Koch [10], the interpretation of these values is as
follows: moderate agreement for functional suitability, sub-
stantial agreement for performance and the category “others”,
and almost perfect agreement for compatibility and usabil-
ity. These results suggest that our data set is consistent even
though inter-labeler agreement varies among categories.

3.4. Statistical Analysis

After labeling the data set, we performed a statistical anal-
ysis to understand its characteristics and facilitate the next



425

249

123

157

640Other

Usability

Compatibility

Performance

Functional

0 200 400 600
Number of Reviews

C
at

eg
or

y

Figure 1: Distribution of the data set into categories

steps. Figure 1 shows the distribution of the reviews among
the classification categories. One should keep in mind that a
review may contain several statements and therefore be clas-
sified into several categories. According to Fernandez et al.
[3], balanced data sets are preferred for training ML algo-
rithms, i.e., in binary classifications such as ours, half of the
reviews should be classified within a category and half out-
side of it. As seen in Figure 1, our data set is imbalanced,
but an imbalanced training data set can be treated with class
balancing techniques [3].

Figure 2 shows for each app the average star rating of the
reviews classified into each category. This kind of analysis,
performed here on the manually labeled data set but to be
supported by our classifier later, allows identifying an app’s
strengths and weaknesses. Users are, e.g., satisfied with the
performance of Google Drive and the usability of Indeed Job
Search. Categories with a low average star rating indicate op-
portunities for improvement, which can then be investigated
in-depth. This kind of information is very valuable to sup-
port the evolution of the analyzed apps or the development of
competing apps. As 1500 random reviews may not be enough
to perform such an analysis, Figure 2 is only illustrative.

Furthermore, we analyzed the words most correlated to
each category using the Chi Squared technique. The results
are shown in the word clouds in Figure 3 and provide addi-
tional validation of the manual labeling. As expected, Fig-
ure 3a shows that the words “feature”, “ability”, “able”, and
“option” are very correlated to functional suitability. The
word “password” is also among the correlated words, which
makes sense as we merged functional suitability with secu-
rity. Moreover, the other correlated words refer to specific
app features, for example “search”, “notifications”, “upload”,
and “email”. Figure 3b shows words correlated to usability
such as “hard”, “friendly”, “intuitive”, “confusing”, “easy”,
and “interface”, whereas Figure 3c shows that the words “bat-
tery”, “network”, “crashing”, “slow”, “sync”, and “time” are
closely correlated to performance. Finally, Figure 3d shows
that when users want to talk about portability or compatibil-

ity, they usually mention devices, platforms or other apps that
they want to use or are using together with the app that is the
object of the review.

3.5. Automated Classification and Evaluation

This work aimed to discover the best combination of ML
algorithms, features, and class balancing techniques for au-
tomatically classifying user feedback into software quality
characteristics. As it would not be feasible to test all pos-
sible combinations within the time and effort constraints, we
analyzed NB, LR, DT, RF, and SVM as ML algorithms and
BOW, TF-IDF, and Stop Words as ML features because they
yieled the most relevant evaluation results in our SLR [13]
and were available in the SciKit library1. Furthermore, we
searched the literature for methods to solve the class imbal-
ance problem, finding the following class balancing tech-
niques: undersampling, SMOTE, and Cost-Sensitive Learn-
ing (CSL) - Balanced, 1:2, 1:5 and 1:10 [3]. Such class bal-
ancing techniques were only applied in the training data set.

The automated classification consisted of exhaustively
testing all combinations of the selected techniques and gener-
ating their evaluation metrics. As Stop Words is a secondary
feature, it was used in all combinations.

Algorithm 1: Automated Classification and Evalua-
tion

initialize final confusion matrices;
for every combination of classification techniques do

initialize intermediate confusion matrices;
for 10 times do

shuffle the data set;
initialize partial confusion matrices;
for every fold from 10-fold cross-validation
do

train classifier with the other 9 folds;
generate predictions for test fold;
compute partial confusion matrix from
predictions;

end
add partial confusion matrices into a
intermediate confusion matrix;

end
add intermediate confusion matrices into a final
confusion matrix;

end
calculate evaluation metrics from final confusion

matrices;

We used 10-fold cross-validation in this study. The com-
plete pseudo-code is shown in Algorithm 1. The code was im-

1https://scikit-learn.org/stable/

https://scikit-learn.org/stable/


2.22.3

3.5
3.1

2.5
1.9

2.6

4.1

2.6 2.8

2.22.2

3.6

2.3

3.4

2.72.5

3.9

2.4 2.62.72.8

3.7

2.5 2.52.42.5

3.4

2.3

3

1

2

3

4

5

Functional Performance Compatibility Usability Other
Categories

A
ve

ra
ge

 S
ta

r 
R

at
in

g

App

Google Drive

Google Maps

Indeed

OneNote

Slack

Uber

Figure 2: Average star rating by category.

(a) Functional suitability (b) Usability (c) Performance (d) Compatibility

Figure 3: Word clouds of the reviews of each category.

plemented in Python 3.6.9 interpreter, with SciKit Learn im-
plementation of the algorithms, features, SMOTE, and CSL.
As part of this work, we implemented undersampling and
10-fold cross-validation. The code is open and available at
https://s.fhg.de/reviewsClassifier.

3.6. Analysis of Results

Tables 2 and 3 show the best results obtained from the ap-
plication of the ML techniques to our data set. Table 2 shows
the best F1 scores for each class balancing technique and each
category, whereas Table 3 shows the best F2 scores. The cor-
responding ML model is included in parenthesis following
the format: (algorithm/feature). The maximum scores per
category are highlighted in bold. It is interesting to observe
how much the class balancing techniques increased the clas-
sification efficacy. Table 2 shows relatively low maximum F1
for each category. Comparing our maximum F1 scores to the
maximum F1 scores obtained by classifiers used in similar
studies (65.4% in [11] and 62.8% in [15]), we found that our
F1 results were not satisfactory. Hence, it is not possible to
use the ML model highlighted in bold in Table 2 to replace
human specialists, which would not be possible anyway due
to the complexity of the requirements elicitation task. We
propose using F2 to select the best ML models because F2
emphasizes the ML model’s recall more than its precision.
Ensuring a low number of false negatives is more important
when supporting human specialists in deep investigation of

potential requirements. Our F2 scores are satisfactory, show-
ing great recall measures. For example, the best classifier for
functional suitability had an F2 score of 0.73 with 94% re-
call. With the support of our classifier, almost no relevant
reviews will be lost due to classification mistakes (false neg-
atives). Hence, we conclude that our classifier is capable of
helping specialists focus on reviews that can provide quality
requirements without causing loss of information.

4 Conclusion

In this work, we presented a user feedback classifier for
software quality characteristics based on the ISO25010 stan-
dard [1]. In order to implement it using ML techniques, we
manually classified 1500 reviews. The data set was highly
imbalanced, which represents a true challenge in the field of
ML classification. To address this problem, we adopted three
class balancing techniques in our investigation: undersam-
pling, SMOTE, and CSL.

We also performed statistical analyses on this data set,
showing, e.g., the words most closely correlated with each
category, which confirmed the quality of our manual labeling
of the reviews and gave an idea of the kind of analyses the
results of an automated user feedback classifier can support.

Our approach consisted of investigating the efficacy of dif-
ferent combinations of ML algorithms, features, and tech-
niques found in the literature. The final results of the

https://s.fhg.de/reviewsClassifier


Table 2: Best F1 score for each class balancing technique according to the classification categories.

Functional Suit. Performance Compatibility Usability
None 0.52 (SVM/TFIDF) 0.52 (SVM/BOW) 0.52 (SVM/BOW) 0.52 (SVM/BOW)
Undersampling 0.55 (SVM/BOW) 0.55 (SVM/BOW) 0.54 (SVM/BOW) 0.52 (SVM/BOW)
SMOTE 0.50 (SVM/BOW) 0.50 (SVM/TFIDF) 0.50 (SVM/TFIDF) 0.50 (SVM/TFIDF)
CSL (Balanced) 0.60 (LR/TFIDF) 0.54 (SVM/TFIDF) 0.59 (DT/TFIDF) 0.52 (LR/TFIDF)
CSL (1:2) 0.55 (LR/TFIDF) 0.53 (SVM/TFIDF) 0.53 (SVM/TFIDF) 0.52 (SVM/BOW)
CSL (1:5) 0.59 (LR/TFIDF) 0.57(LR/TFIDF) 0.56 (LR/TFIDF) 0.55 (LR/TFIDF)
CSL (1:10) 0.57 (LR/BOW) 0.56 (LR/BOW) 0.56 (LR/BOW) 0.55 (LR/BOW)

Table 3: Best F2 score for each class balancing technique according to the classification categories.

Functional Suit. Performance Compatibility Usability
None 0.50 (SVM/BOW) 0.49 (SVM/BOW) 0.49 (SVM/BOW) 0.48 (SVM/BOW)
Undersampling 0.53 (SVM/BOW) 0.55 (SVM/BOW) 0.55 (SVM/BOW) 0.54 (SVM/BOW)
SMOTE 0.54 (SVM/BOW) 0.53 (SVM/TFIDF) 0.53 (SVM/TFIDF) 0.52 (SVM/TFIDF)
CSL (Balanced) 0.65 (LR/TFIDF) 0.61 (LR/TFIDF) 0.61 (LR/TF-IDF) 0.59 (LR/TFIDF)
CSL (1:2) 0.54 (LR/TFIDF) 0.51 (SVM/TFIDF) 0.50 (SVM/BOW) 0.50 (SVM/BOW)
CSL (1:5) 0.72 (LR/TFIDF) 0.66 (LR/TFIDF) 0.63 (LR/TFIDF) 0.60 (LR/TFIDF)
CSL (1:10) 0.73 (LR/TFIDF) 0.70 (LR/TFIDF) 0.68 (LR/TFIDF) 0.65 (LR/TFIDF)

automated classification are almost equivalent to those of
other studies (e.g., F1 score of 60% for functional suitabil-
ity against 62.8% in [15] and 65.4% in [11]).

There is still room for improvement in our work. The data
set could be labeled manually by a second specialist and pos-
sible inconsistencies could be discussed, which could make
the manual classification even more reliable. Furthermore,
new training techniques have been proposed during the de-
velopment of this work, meaning that we could extend our
automated classification and evaluation to include them. Fi-
nally, this work showed that our classifier cannot replace hu-
man specialists, but it can significantly reduce the number of
reviews that need to be analyzed manually without causing
loss of information, which means that less effort is required
from specialists.

Acknowledgments

This study was part of a bachelor’s thesis and was partially
funded by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.
Diego Toralles Avila is a CAPES scholarship holder through
the Programa de Apoio à Pós-Graduação (PROAP).

References

[1] ISO/IEC 25010:2011. URL https://www.iso.org/
standard/35733.html. [Online; accessed 12. Feb. 2021].

[2] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang. Ar-miner: mining
informative reviews for developers from mobile app marketplace. In
Proc. of ICSE 2014, pages 767–778. ACM, 2014.

[3] A. Fernández, S. Garcı́a, M. Galar, R. C. Prati, B. Krawczyk, and
F. Herrera. Foundations on Imbalanced Classification, pages 19–46.
Springer International Publishing, 2018.

[4] E. C. Groen, J. Doerr, and S. Adam. Towards crowd-based require-
ments engineering a research preview. In Proc. of REFSQ 2015, pages
247–253. Springer International Publishing, 2015.

[5] E. C. Groen, S. Kopczynska, M. P. Hauer, T. D. Krafft, and J. Doerr.
Users - the hidden software product quality experts? In Proc. of RE
2017, pages 80–89. IEEE, 2017.

[6] E. Guzman, M. Ibrahim, and M. Glinz. A little bird told me: Mining
tweets for requirements and software evolution. In Proc. of RE 2017,
pages 11–20. IEEE, 2017.

[7] E. Guzman, M. Ibrahim, and M. Glinz. Prioritizing user feedback from
twitter: A survey report. In Proc. of CSI-SE 2017, pages 21–24. IEEE,
2017.

[8] S. Hedegaard and J. G. Simonsen. Extracting usability and user ex-
perience information from online user reviews. In Proc. of CHI 2013,
pages 2089–2098. ACM, 2013.

[9] P. C. Kaur, T. Ghorpade, and V. Mane. Topic extraction and senti-
ment classification by using latent dirichlet markov allocation and sen-
tiwordnet. In Proc. of AICTC 2016, pages 1–6. ACM, 2016.

[10] J. R. Landis and G. G. Koch. The measurement of observer agreement
for categorical data. Biometrics, 33(1):159–174, 1977.

[11] M. Lu and P. Liang. Automatic classification of non-functional require-
ments from augmented app user reviews. In Proc. of EASE 2017, pages
344–353. ACM, 2017.

[12] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang. The app sam-
pling problem for app store mining. In Proc. of MSR 2015, pages 123–
133. IEEE, 2015.

[13] R. Santos, E. Groen, and K. Villela. An overview of user feedback
classification approaches. In Proc. of REFSQ Workshops, 2019.

[14] D. Singh. Guidelines for the automatic analysis of user feedback from
twitter. Master’s thesis, Technical University of Kaiserslautern, 2019.

[15] C. Wang, F. Zhang, P. Liang, M. Daneva, and M. van Sinderen. Can
app changelogs improve requirements classification from app reviews?
an exploratory study. In Proc. of ESEM 2018, pages 1–4. ACM, 2018.

[16] Wikipedia contributors. List of most-downloaded Google
Play applications — Wikipedia, The Free Encyclopedia.
URL https://en.wikipedia.org/w/index.php?
title=List_of_most-downloaded_Google_Play_
applications&oldid=1007296458. [Online; accessed
18-February-2021].

https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://en.wikipedia.org/w/index.php?title=List_of_most-downloaded_Google_Play_applications&oldid=1007296458
https://en.wikipedia.org/w/index.php?title=List_of_most-downloaded_Google_Play_applications&oldid=1007296458
https://en.wikipedia.org/w/index.php?title=List_of_most-downloaded_Google_Play_applications&oldid=1007296458

	. Introduction
	. Background
	. A Classifier for Software Quality
	. Definition of Classification Categories
	. User Feedback Selection
	. Data Extraction and Manual Labeling
	. Statistical Analysis
	. Automated Classification and Evaluation
	. Analysis of Results

	Conclusion

