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Abstract

Software development projects typically use an issue
tracking system where the project members and users
can either report faults or request additional features.
Fach of these reports needs to be triaged to determine
such things as the priority of the report or which devel-
opers should be assigned to resolve the report. To assist
a triager with report assigning, an assignment recom-
mender has been suggested as a means of improving the
process. However, proposed assignment recommenders
typically present a list of developer names without an
explanation of the rationale. This work presents the
results of a small user study to validate our approach
to visually explaining bug report assignments.

1. Introduction

As the need for global and distributed software
projects grows, so does the need for finding people with
the required expertise for a given task. Recommenda-
tion systems have been proposed as a means for im-
proving the achievement of this goal [1-4]. The typical
recommendation system provides a textual list of rec-
ommendations with no explanation for why each rec-
ommendation was made. As described by Herlocker
et al. [5], most current recommendation systems are a
black box where transparency is not ensured.

Providing transparency by incorporating the reason-
ing and data behind a recommendation is an important
feature of an effective recommendation system [1, 6],
as recent work in “Explainable Artificial Intelligence”
shows [7,8]. Effective visualizations can help to provide
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this transparency for a recommender system that uses
multidimensional data and improve user acceptance
rates for recommendations. Making efficient visualiza-
tion of the recommendations can show how different di-
mensions were applied in making a recommendation to
improve transparency [6], as well as improving a user’s
acceptance rate of recommendations [1]. Trintarev et
al. [9] surveyed a group of movie-goers and found that
the explanations behind the recommendations are as
important to users as the recommendations.

Bug report! triage recommenders are an example of
such a recommender system in software engineering.
Bug report triage is the process where a project mem-
ber, typically a project manager, decides what to do
with a bug report. When projects receive many bug re-
ports every day, bug report triage becomes a significant
software maintenance issue [10-12]. Also, bug report
triage is a tedious task that often shifts development re-
sources away from improving a product to instead man-
aging the project. Within the area of bug report triage
recommenders, assignment recommenders are the most
commonly researched (e.g. [4,10,13]). Typically, pro-
posed assignment recommenders provide a textual list
of recommended developers’ names (e.g. [10, 14, 15]).
Despite years of research, assignment recommenders
have yet to be meaningfully integrated into products
such as Bugzilla, GitHub and Jira. Prior studies (e.g.
[16]) and informal discussions with developers indicate
that one of the barriers to the adoption of such a sys-
tem is the lack of explanation, leading developers to
question and perhaps not trust the recommendations.
It is these discussions that motivated this work.

This paper presents an evaluation of our initial
work towards providing transparency for bug report
triage assignment recommendations using visual expla-
nations. We explore the use of stacked horizontal bars,

1We use the term ”bug report” to refer to items in a project’s
issue tracking system.



a pie chart, and a data table. To assess the impact of
the use of these visualizations, we conducted a small
user study.

To the best of our knowledge, this area of bug re-
port assignment recommenders has not been explored
in the literature. We believe that part of the reason
for this is that these recommenders are created typi-
cally using machine learning algorithms that make it
hard to provide explanations. For example, the two
most commonly used algorithms are Support Vector
Machines (SVM) [17,18] and the Random Forest al-
gorithm [19, 20] where determining the rationale for
the recommendations is near impossible. Instead, we
focused on the use of Multinomial Na“1ve Bayes and
Topic Modelling, both of which use probabilistic mod-
els. The use of a probabilistic model makes for an
easier determination of recommendation rationale. In
contrast to Multinomial Na"1ve Bayes which has been
commonly used in the past, the use of Topic Modeling
in this area is relatively new.

2. Visualization of Assignment Recom-
mendations

To provide an assignment recommendation for a new
bug report, first, the report is turned into a vector of
features. Next, the features of the new bug report are
given to the trained classifier. In the case of Multino-
mial Naive Bayes, for each potential developer, the set
of features that are common between their instances
and the new bug report are collected. Then the sum
of the conditional probability of each of these features
is determined to represent the expertise score of that
developer for that bug report. Finally, developers are
ranked based on expertise scores. In most cases, bug
reports have a lot of relevant words in common. If all
of these words were displayed, the graphs would have
too much information and be hard to read and under-
stand. Therefore, we chose to display only the most
relevant terms based on the TF-IDF score. We empir-
ically found that providing more than five terms did
not significantly improve the accuracy.

When choosing the visualizations to explore, we fo-
cused on simplicity and familiarity to potential users.
Therefore, we chose the data-table format, stacked bar
chart and pie chart, as they are commonly used in a
variety of applications and are familiar to a wide range
of people. Also, we sought visualizations that would
allow for the display of information about relative con-
tributions. In our case, that means the individual prob-
abilities of terms or the dominant topic in a bug report
will have towards the ranking of developers. Finally,
these forms of visualization have been previously used

in similar contexts [1,21,22].

Figure 1 shows these three types of visual represen-
tation for an assignment recommendation using Multi-
nomial Naive Bayes. The pie chart presents the im-
portant features from each report based on their con-
ditional probability values. If a user clicks on the pie,
a new web page opens. This new page shows a pie for
each developer and each pie shows the overall condi-
tional probability values for the corresponding recom-
mended developer. The data table shows these same
values for each important feature for each developer.
The stacked bar chart however shows developers hori-
zontally where each feature is represented by a differ-
ent colour. The developer who has the highest sum
of conditional probability values for all of the selected
features is shown at the bottom.?

For the Topic Modelling classifier, the cluster with
the shortest distance to the new bug report is deter-
mined and the ranked list of developers for that cluster
forms the recommendation list. The pie chart shows
the recommended developer names and their solved
bug report rate for a specific topic. The data table
gives the list of developer names with the exact num-
ber of reports that the developer solved related to that
topic. The stacked bar chart also shows the developer
names horizontally with their score. The colour of the
bar is related to the selected topic.

3. Evaluation

Our empirical study® sought answers to three re-
search questions. First, do developers find visual ex-
planations of assignment recommendations easy to un-
derstand? Second, do developers trust visual explana-
tions of assignment recommendations? Lastly, which
of the three investigated visualizations is preferred?

The web application used in our study consisted of
two parts: a web browser plug-in and a web service. To
present a subject with visual explanations for the as-
signment recommendations, we created a web browser
plug-in for Google Chrome *.

To use the plug-in, first, a user opens a bug re-
port in the web browser from a Bugzilla server. We
configured the plug-in to only work with bug re-
ports from Mozilla projects (i.e. those with the URL
https://bugzilla.mozilla.org), as that was our
chosen dataset. Next, the user clicks on a button

2That the top recommendation is shown at the bottom is a
result of the graphics library used, not an intentional choice.

3An analytical evaluation of the underlying recommenders
was conducted before the study. See [23] for these details.

4https://chrome.google.com/webstore/detail /recommend-
expertise/clpcpddhohohhfenkiknfopaeikbngid



labelled “Recommend Experts” in the plug-in in the
browser. This makes a request to the web service
with the bug report’s id and opens a new browser win-
dow containing the response from the web service - an
HTML page showing the assignment recommendations
in a visual form. Figure 1 shows one of the four vi-
sualization web pages that are returned by the web
service.?

When given the bug report id, the web service
queries the issue tracking system for the title and de-
scription of the requested report. Stop words are re-
moved and stemming applied to the text before being
passed to a classifier. The results from the classifier
are then used to create the visualizations. As previ-
ously mentioned, only the top five (5) recommended
developers are shown to avoid information overload.

3.1. User Study

The user study consisted of a within-subject study
where all participants received treatment. Our user
study® consisted of three parts: a demographic survey,
presentation of the visualizations with an accompany-
ing survey, and a post-usage survey.

The demographic and post-usage survey was con-
ducted using Qualtrics, and the visualization survey
integrated into the web pages was generated by the
web service. Participants were asked to complete the
demographic survey first, then install the browser plug-
in and go through the list of bug reports, and then
complete the post-usage survey.

To recruit participants for our study we posted on
Reddit in channels like r/learnmachinelearning and
r/AskComputerScience. The criteria for participation
was to either be in a two-year computer science post-
graduate degree (i.e. in an M.Sc.-like program) or have
more than one year of software development experi-
ence. Interested participants were asked to contact the
primary researcher for a study id and further instruc-
tions. We were able to recruit fourteen participants.

As previously noted, this research direction is new in
the software engineering area. Participants could have
been recruited from the Bugzilla project (i.e. the data
set used for training the assignment recommender), but
we chose to conduct a small study first to assess the
viability of our approach before approaching specific
project developers. In other words, the purpose of
the user study was to gain a general understanding
of the effectiveness of visually representing bug report
assignment recommendations. By having participants

5Examples of the other visualizations can be found in [23].
6The study was reviewed by the University of Lethbridge
Ethics Committee and assigned protocol number #2019-070.

that were not associated with the particular project
for which the assignment recommender was created,
we sought to determine a base case for future investi-
gations in this area.

To assess the effectiveness of the visualizations, each
participant was given the same set of fifteen (15) links
to pre-selected bug reports for the Bugzilla software
product. The selected bug reports were randomly cho-
sen from those that had a status of Open (i.e. mnot
Resolved). This was done so that the reports reflected
the general level of difficulty of reports present in the
issue tracking system for the product (i.e. no consid-
eration was given for the complexity of the bug report
in their selection) and so that participants were not bi-
ased towards the recommendations by examining “the
correct answer “ of who should have been recommended
as the assignee.

After clicking on a link for a bug report, the partici-
pant was taken to the actual bug report in the Mozilla
project’s issue tracking system. The participant would
then click “Recommend Experts” in the plug-in and
the web service would provide the recommendations as
part of one of four randomly selected web pages. The
participant would also be asked one of two sets of ques-
tions depending on the presented visualizations.

The intent of two of the web pages was to present
participants with a single type of visualization (stacked
bar or pie chart) with data from each of the recom-
menders. In this way, we could determine if partici-
pants preferred the use of one visualization approach
over another. The intent of the other two web pages
was to determine if participants preferred a particular
type of classifier.

For the web pages that presented results from the
two different classifiers (Multinomial Naive Bayes and
Topic Modelling), participants were asked several ques-
tions: Did they think the visualizations increased their
understanding of the recommendation? Did they trust
the recommendations? Did they think the visualiza-
tions provided enough information? If not, what visu-
alization did they think was missing?

For the web pages where the results from the same
classifier were presented, but the visualization differed
(i.e. bar vs. pie vs. table), the participants were asked
similar questions as before. Did they trust the rec-
ommendations? Did they think the visualizations pro-
vided enough information? If not, what visualization
did they think was missing?

After participants finished using the browser plug-in
on the fifteen bug reports, or however many they chose
to do, they were asked to complete the post-usage sur-
vey. This survey asked their thoughts about our ap-
proach to providing visual explanations of bug report
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Figure 1. Visualization of recommendations using Multinomial Naive Bayes classifier.

assignment recommendations. Examples of questions
asked included: How important is the visual explana-
tion of the recommendations to you? How would you
improve the explanation of the recommendations? Did
you think that one visualization was enough? Which
combination of visualizations would you want for ex-
plaining an assignment recommendation?

4. Results

We found that most participants took an hour to
complete the study, although one participant took
much longer (2.5 hours) 7

The occupations reported by the participants were:
student (3), quality analyst (3), application developer
(5), project manager (1), and application architect (1).
The participants identified as 64% male and 36% fe-
male, and just over half (57%) of the participants had
a graduate degree (Masters or Ph.D.). Participants’ de-
velopment experience varied from less than three years
(1), four to nine years (7), and more than nine years
(6). Most of the participants (71%) reported having
logged a bug report, which indicates that most of them
had some form of first-hand knowledge of how bug re-
port assignment works. When asked about their level
of familiarity with machine learning, two (2) reported

"When asked, the participant responded that this was due to
interest in the approach and wanting to fully understand it.

themselves as beginners, and the rest considering them-
selves to have advanced knowledge.

4.1. Visualisation of Assignhment Recommendations

Table 1 shows the results for the questions where we
were trying to determine if there was a preference for
one visualization over another. We can see that there
was a slight preference for the stacked bar chart over
the pie chart. We can also see that more than 70%
of participants felt that these visualizations provided
enough information. There was no notable difference in
the preferred visualizations for developers with differ-
ent experience levels. This may be a result of the par-
ticipants not being intimately familiar with the project.
Note that no participants preferred the data table over
the other two, with one participant commenting “it is
not interesting.”

Regarding trust in the recommendations, we found
that trust in both the Topic Modelling classifier and the
Multinomial Naive Bayes classifier was high, at 94%
and 85%, respectively.

Participants felt that these visualizations provided
them with enough information to make an informed
decision (Multinomial Naive Bayes — 97%, Topic Mod-
elling — 100%). Table 2 shows that for both types
of classifiers, most of the participants preferred the
stacked bar chart over the other two data represen-
tations. As might be expected, participants preferred



Table 1. Visualization Preference.

| Question | Stacked Bar | Pie Chart |
Do you think these visualizations increase your understanding of 77.00% 76.09%
the recommendation?
How much do you trust these recommendations? (1 being not 3.46 3.41
trustworthy at all to 5 being you trust this fully.)
Do you think these visualizations provide you enough informa- 79.00% 77.78%
tion?

Table 2. Preference for specific visualizations.

Chart Type | Multinomial Topic
Naive Bayes | Modelling

Stacked Bar | 56.10% 76.19%

Data Table 29.26% 7.14%

Pie Chart 14.63% 14.7%

the data table over the pie chart, feeling that the data
table was more informative, especially for the Multino-
mial Naive Bayes classifier.

A few of the participants provided answers to the
question regarding if they felt that a visualization was
missing something. One participant suggested that in-
stead of showing percentage values, show the actual
values as was done in the bar chart. Another partic-
ipant commented that they found it to be too much
work to click on the pie chart every time they wanted to
see the detailed explanation for the word-based recom-
mendations. A few participants commented that they
preferred the word-based recommender to the topic-
based recommender.

When examining the responses regarding trust
across an individual user’s session, we observed that for
the first few times that they were presented with rec-
ommendations, their level of trust was low (e.g. ratings
of 2). However, as they used the plug-in more, their
level of trust increased (e.g. ratings of 5) quickly.

The results from our post-usage survey showed that
more than half of the participants wanted to see more
than one visual representation of the recommendations.
Also, the majority (75%) felt that it was “very im-
portant” or “extremely important” to represent recom-
mendations with explanations in a visual manner.®

5. Threats to Validity

Although in our study we trained our classifier us-
ing data from a single Mozilla project - Bugzilla, we

8See [23] for a more detailed discussion of the study results.

do not feel that this limits the generalizability of our
results. As our focus was on the representation of the
recommendations, not the accuracy of the recommen-
dations, our results are not dependent on the project
used. Similarly, the study participants were from a
wide range of occupational backgrounds, which further
supports the generalizability of the results. Finally,
generalizability related to using an open-source project
vs. a commercial project or few projects vs. many
projects were not deemed to be a concern.

That the participants in the user study were not
associated with the Mozilla projects may have resulted
in inaccurate feedback. As this was a pilot study, we
plan to address this threat in a future study where we
recruit project members of the dataset used for training
the recommender system. Such a study is expected
to provide more detailed comments regarding trust in
the recommendations and if the information provided
for explanation is sufficient for the task of bug report
assignment.

There is a possibility that our results may suf-
fer from social desirability bias (i.e. "please the re-
searcher” bias). Based on the trend where participants
initially reported that they had low trust in the recom-
mendations and then the trust level improved, we do
not feel that such bias had a significant impact overall.
However, we cannot discount this possibility.

6. Conclusion

This work investigated the use of visualization for
explaining bug report assignment recommenders. To
accomplish this, we created a web service that pro-
vides explanations of assignment recommendations for
two types of recommenders using three visualizations.
We found that developers did prefer visual explana-
tions, with 75% of participants stating that the visual
explanations increased their understanding of the as-
signment recommendations. We also found that devel-
opers gained trust in the recommendations over time
and that the developers preferred a stacked bar chart.
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