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Abstract—With the fast progress of deep neural networks and
the quick search efficiency of hashing, deep cross-modal hashing
(CMH) methods have attracted more and more attention. Gen-
erally speaking, the existing CMH methods simultaneously learn
hash functions and hash codes in an end-to-end architecture.
However, they primarily focus on the hash codes generation
stage neglected the losing of rich semantic information in the
hash representations learning stage. Besides, the single-label
supervision information is leveraged, while most instances are
labeled by multiple categories. Thus, we propose a novel Deep
Semantic Preserving and Attention-based Hashing (DSPAH) for
cross-modal retrieval. In the DSPAH, we first use a cross-
level attention block to emphasize significant parts of hash
representations and oversee unnecessary ones. Moreover, a Fine-
Grained Similarity Criterion (FGSC) is proposed to explore the
multiple semantic of image or text instances, helping to learn
robust and optimal hash codes. Extensive experiment results on
two large-scale public datasets have shown the competition of
our proposed DSPAH.

Index Terms—Deep cross-modal hashing, Fine-grained simi-
larity criterion, Cross-level attention

I. INTRODUCTION

Due to the rapid development of search engines and social
networks, exponential growth can be seen in multimedia data
such as images, text, audio, and video. Thus how to efficiently
and effectively retrieve information across these modalities has
become a hot spot called multi-modal retrieval. To be specific,
one may want to obtain all semantically related instances from
the datasets given a text description. However, due to the
discrepancies in distribution and inconsistent representations
among different modalities, this has raised a significant chal-
lenge to unify the gap effectively and efficiently.

Especially, cross-modal retrieval is the most pervasive
method of multi-modal retrieval, which aims to map original
data (images or text) into similarity preserving embedding
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in a common latent space [1]. In this way, instances that
share similar semantic information may have shorter distances,
dissimilar otherwise. The cross-modal retrieval methods can
be grossly split into two classes. Traditionally, real-value
latent representations is adopted such as [2]–[5]. However,
the real-value methods may cause high computational costs
and heavy storage burdens. Thus, another popular method
called cross-modal hashing (CMH) is proposed to save storage
and accelerate the retrieval speed, which leverages Manifold
Learning to generate compact hash codes from original high-
dimension data.

As the Superior performance of deep learning, Deep Neural
Networks (DNN) has shown robust capability in various ap-
plications such as [6]–[10]. To take advantages of DNN, many
cross-modal hashing methods are proposed including deep
cross-modal hashing (DCMH) [11], self-supervised adversarial
hashing (SSAH) [12], self-constraint and attention-based hash-
ing network (SCAHN) [13], triplet-based deep hashing (TDH)
[14] and multi-label semantics preserving hashing (MLSPH)
[15]. However, there are still some issues that need to be solved
in the deep CMH community. Firstly, the existing deep CMH
methods use a ’hard’ metric policy to measure the similarity
between instances, judged by if two instances share at least
one label. However, the simple approximation has neglected
the fact that most instances in large-scale cross-modal datasets
have multiple labels. Secondly, the hash representations gener-
ation and hash codes projection is the equally important part
of cross-modal hashing methods. Furthermore, most of the
existing deep CMH methods concentrate more on the hash
codes generation stage. However, hash representations with
less semantic information and spatial relevance may fail to
generate optimal hash codes.

A superior Deep Similarity Preserving and Attention-based
Hashing (DSPAH) is proposed to solve these problems men-
tioned above. The framework of DSPAH is illustrated in Fig. 1



which corporately learns hash representations and binary codes
in an end-to-end architecture. The DSPAH consists of two
main components in the hash representations generation stage.
CNN model is leveraged to learn rich semantic information
from image-modality and text-modality. Moreover, the CNN
model is followed by a cross-level attention level where multi-
level hash representations are concatenated together as the in-
put. Thus the context relationship and informative information
can be obtained by the final hash representations. Moreover,
to take advantage of multi-label information, a novel Fine-
Grained Similarity Criterion (FGSC) is proposed to build
a similarity matrix, which can better explore the semantic
relationship among multiple labels.

The core contributions of DSPAH are listed as follows:
• Firstly, a cross-level attention block is proposed to explore

intensive semantic information. In this module, hash rep-
resentations generated from multi-level are concatenated
based on the CBAM attention mechanism and further
integrated by the adaptive attention matrix, exploring
the context correlation and global dependence from both
channel and spatial view.

• Secondly, a multi-label preserving calculate criterion
called FGSC is proposed to effectively obtain the multi-
label information constraint, further generating robust
hash codes.

• Finally, the DSPAH is applied on two large-scale cross-
modal datasets, and the experimental results illustrate the
superiority of our proposed DSPAH compared with other
state-of-the-art methods.

The rest of this paper is organized as follows. The detailed
description of DSPAH for cross-modal retrieval is presented
in section 2. The experimental results and evaluations are
illustrated in section 3. Finally, we conclude this paper in
section 4.

II. PROPOSED METHOD

A. Problem Defination

We use GT denotes the transpose of G and ‖·‖F denotes the
Frobenius norm. The sign(·) is an element-wise sign function
defined as follows:

sign(x) =

{
1 x ≥ 0
−1 x < 0

(1)

The proposed DSPAH can be expanded to all kinds of
modality (e.g. image, text, audio and video) and we mainly
concentrate on image-modality and text-modality in this paper.
Thus we use oi = (vi, ti, li) to denote the ith training
instance, vi ∈ Rdv , ti ∈ Rdt and li ∈ Rdl are image,
text and label feature vector with dimension dv , dt and dl.
Moreover, the fine-grained similarity matrix is defined as S =
{Svt, Svv, Stt}, where Svv =

{
Svvij | i, j = 1, 2, . . . , N

}
∈

RN×N and Stt =
{
Sttij | i, j = 1, 2, . . . , N

}
∈ RN×N de-

notes the intra-modality similarity matrix of image and text,
Svt =

{
Svtij | i, j = 1, 2, . . . , N

}
∈ RN×N denotes the inter-

modality similarity matrix between image and text.

The most important task of our proposed DSPAH is
learning two discriminative hash functions h(v)(v) and
h(t)(t) for image-modality and text-modality using the
training-set O and similarity matrix S. In the hash rep-
resentations generation stage, hash representations learned
from image-modality and text-modality are represented
by F = {fvi | i = 1, 2, · · · , N} ∈ RN×c and G =
{gti | i = 1, 2, · · · , N} ∈ RN×c. In hash codes projection
stage, B = {Bi | i = 1, 2, · · · , N} ∈ RN×c denotes the final
hash codes from F and G by simply using a sign function
B = sign(F +G).

B. Network Architecture of DSPAH

The overview architecture of DSPAH is illustrated in Fig.
1, which consists of the multi-level hash representations gen-
eration and attention-based interaction module.

Speaking of multiple-level hash representations generation,
both the image-network and text-network use Resnet as the
bone network because of its remarkable performance on com-
puter vision applications. Especially, the original text data is
represented as Bag-of-Words (BoW) vectors and fused into
multi-scale BoW representations. To be specific, a multi-scale
pooling policy is conducted on the BoW vectors to explore
global features, and these vectors are resized into the same
length. Furthermore, to facilitate the Resnet [16], these vectors
are stacked together to make up a matrix. Therefore, the
rich semantics context in text-modality is further explored.
For both image-modality and text-modality, we propose cross-
level attention to capture the context relationship and global
dependency. To be specific, the hash representations from
intermediate layers are generated by global average pooling
(GAP) and convolution layer with a kernel size of 1 × 1.
The novel CBAM [17] is leveraged to capture the context
relationship and global dependency in intermediate layers.
Finally, all of these hash representations are weighted together
as the final hash representations by multiplying the adaptive
attention matrix. Therefore, the final hash representations can
fully obtain the semantic information.

C. Hash Function Learning

In large-scale cross-modal datasets, multi-labels for a single
instance(e.g., image and text) are pretty common. However,
most previous cross-modal retrieval methods measure the
similarity by only one shared label, neglecting the fine-grained
similarity among instances. Thus, we propose a new similarity
measurement policy called Fine-Grained Similarity Criterion
(FGSC) to explore the semantic relationship among instances
better. The FGSC of inter-modality can be defined as follows:

Svtij =
lvi ∩ ltj√
lvi × ltj

(2)

where lvi denotes the label vector of ith image instance and
ltj denotes the label vector of jth text instance. lvi ∩ ltj denotes

the number of shared labels of vectors ith and text.
√
lvi × ltj



Fig. 1. The overview architecture of our proposed DSPAH consists of two parts: (1) multi-level hash representations generation: the networks are divided
into several blocks which are weighted by CBAM attention, and then the multi-level hash representations are multiplied by an adaptive attention matrix.
Finally, these multiple layers are concatenated together as the final hash representations. (2) multi-label similarity preserving: this is based on the Fine-Grained
Similarity Criterion (FGSC), which better explores the correlation and relationship of inter-and intra-modality instances.

is the geometric mean of these two label vectors. Similarly,
the FGSCs of intra-modality instances are defined as follows:

Svvij =
lvi ∩ lvj√
lvi × lvj

(3)

Sttij =
lti ∩ ltj√
lti × ltj

(4)

where Svvij denotes the similarity across image-modality and
Sttij denotes the similarity across text-modality. Besides, S =
{Svt, Svv, Stt} ∈ (0, 1). Thus, the hamming-based loss func-
tion is no longer suitable for the continuous similarity value. In
this paper, the Mean Square Error (MSE) based loss function
is adopted to fit the FGSC. Following the common protocol
proposed in DCMH, the inner product < ∗, ∗ >, ∗ ∈ (f, g)
are leveraged to measure the semantic similarity of hash
representations. Therefore, the MSE loss can be defined as
follows:

Linter =

n∑
i=1,j=1

∥∥∥∥ 〈fi, gj〉+ c

2
− svtij · c

∥∥∥∥2 (5)

Lintra-image =

n∑
i=1,j=1

∥∥∥∥ 〈fi, fj〉+ c

2
− svvij · c

∥∥∥∥2 (6)

Lintra-text =

n∑
i=1,j=1

∥∥∥∥ 〈gi, gj〉+ c

2
− sttij · c

∥∥∥∥2 (7)

where fi and gj are used to denote the hash representations of
the ith image instance and jth text instance. c is the length of
hash codes. Since the inner product 〈∗, ∗〉 ∈ [−c, c], the value
range of 〈∗,∗〉+c2 will be the same as s∗∗ij · c.

The purpose of FGSC-based MSE loss is to generate modal-
specific and discriminative hash representations G and F .
However, there is a gap between the hash codes and hash
representations. Moreover, during the learning procedure of
FGSCC-based MSE loss, the similarity between B(v) =
sign(F ) and B(t) = sign(g) has been ignored. Since the aim
of CMH methods is to learn high-quality hash functions and
hash codes, we also need to keep the semantic similarity of
B(v) and B(t). Another constraint B(v) = B(t) = B is added
to keep the modal invariance. Accordingly, the quantization
loss is defined as follows:

Lq =
1

c

(
‖B − F‖2F + ‖B −G‖2F

)
(8)

III. OPTIMIZATION

By assembling the above loss functions, the final overall
loss function is given as follows:

min
B,θx,θy

L =Linter + Lintra−image + Lintra−text + Lq
(9)

where θx, θy denote the network parameters of the image-
modality and text-modality. An alternating optimization strat-
egy is employed to optimize equation 9. Some parameters will
be optimized while others are fixed. The whole optimization
algorithm for DSPAH is outlined in Algorithm 1.

IV. EXPERIMENT AND DISCUSSION

This section evaluates the proposed DSPAH on two large-
scale public datasets, MIRFlickr-25K [18], and NUS-WIDE
[19] compared with other state-of-the-art methods.

A. Datasets

MIRFLICKR-25K [18] is a standard benchmark which
contains 25,000 image-text pairs collected from Flickr website



Algorithm 1: Optimization algorithm of DSPAH.

Input: Training set {vi, ti, li}Ni=1, intra-modality and
inter-modality similarity matrix Svv, Stt, svt;

Output: Optimized parameters θx and θy of neural
networks and binary codes B;

1 Initialization: Initialize the parameters of neural
networks, the batch size is set to nv = nt = 128,
initialize hash representations of each modality: F and
G, set iteration number iter and other
hyper-parameters.

2 for t=1 to iter do
3 Update the parameter θx of image-network by BP

algorithm:

∂L
∂fik

=
∑
j∈N

(
fTi fj + c− 2 · svvij · c

)
· fjk

+
∑
j∈N

(
fTi gj + c− 2 · svtij · c

)
· fjk

+
2

c
(F −B)

Update the parameter θy of text-network by BP
algorithm:

∂L
∂gik

=
∑
j∈N

(
gTi gj + c− 2 · sttij · c

)
· gjk

+
∑
j∈N

(
fTi gj + c− 2 · svtij · c

)
· gjk

+
2

c
(G−B)

4 end
5 Update binary codes B

B = sign(β(F +G))

Until a fixed number of iterations or convergence;

of different group. Each image is related to several textual
descriptions. 20,015 instances of image-text pair with at least
one of twenty-four labels are selected, which is similar to
DCMH [11]. The text-modality instances are transferred into
1,386-dimensional BoW vectors.

NUS-WIDE [19] The NUS-WIDE includes 268,468 image-
text pairs which all belong to 81 categories. A 1,000-
dimensional BoW vector is generated for each text-modality
instance. In this paper, 190,421 image-text pairs with 21
most common labels have remained, and all instances without
supervised information are removed.

We use 10,000 and 10,500 image-text pairs in MIRFLICKR-
25K and NUS-WIDE for training. Besides, we stochastically
choose 2,000 and 2,100 instances for the query items, and the
remained are treated as the retrieval items.

B. Implementation Details

The DSPAH is conducted on a server with two Nvidia Xp
GPU, and the code is written by Pytorch [20] framework.
The Resnet-34 with four blocks is utilized to learn rich hash
representations. For the image network, the parameters are
initialized by the pre-trained model on ImageNet [21]. In terms
of the text network, the Normal distribution with N

(
µ, σ2

)
with µ = 0 and σ = 0.1 is leveraged to initialize the
parameters. Moreover, pooling sizes of 1, 5, 10, 15, 30 and
50 of BoW vectors are implemented to construct the multi-
scale text matrix. We use the SGD as the optimization, and
the learning rate is set from 10−1.5 to 10−6.5 on 300 epochs
with a mini-batch size of 128.

C. Evaluation and Baselines

To compare the DSPAH with other state-of-the-art methods,
we adopt the Mean Average Precision (MAP) and PR Curves
to measure the hamming ranking and hash lookup. The details
of MAP is defined as follows. Given a query instance q, the
Average Precision (AP) is defined as:

AP (q) =
1

nq

nrerrieval∑
i=1

pqiI(i) (10)

where nq is the number of semantic similar instances of
query instance q in database, nretrieval is the number of total
instances in database. pqi indicates the probability of instances
of top i instances in retrieval set being similar to the query q.
I(i) is an indicator function, where I(i) = 0 denotes the ith
instance is dissimilar to the query q, I(i) = 1 otherwise. For
the nquery instances, the Mean Average Precision (MAP) is
defined as follows:

MAP =
1

nquery

nquery∑
j=1

AP (qj) (11)

Several baseline methods are compared with DSPAH in-
cluding CMSSH [22], SCM [23], GSPH [24], DCMH [11],
CMHH [25], PRDH [26], CHN [27], SepH [28] and SSAH
[12]. The MAP results is illustrated in Table I and the PR
Curves is demonstrated in Fig. 2 and Fig. 3. From the results,
we can get the following observation.
• The DSPAH significantly outperforms other state-of-the-

art methods on 16, 32, 64 bits of hash codes in terms of
MAP and PR Curves, which clearly shows its superiority.
The advance of DSPAH is partly because the cross-level
attention dramatically improves the hash representations
of interest to concentrate on the vital part and ignore the
unconsidered ones.

• The SSAH and DSPAH surpass other deep architecture-
based CMH methods and show competitive results, which
indicates the importance of preserving multiple semantic
labels. The FGSC we proposed in this paper may have the
ability to unify the inter-and intra-modality heterogeneity.

• Deep CMH methods such as DCMH, CMHH, SSAH,
CHN, and PRDH distinctly attain better performance than
other shadow-based CMH methods, including CMSSH,



MIRFLICKR-25K NUS-WIDE
Method Image query Text Text query Image Image query Text Text query Image

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
CMSSH [22] 0.5600 0.5709 0.5836 0.5726 0.5776 0.5753 0.3092 0.3099 0.3396 0.3167 0.3171 0.3179

SCM [23] 0.6354 0.5618 0.5634 0.6340 0.6458 0.6541 0.3121 0.3111 0.3121 0.4261 0.4372 0.4478
SePH [28] 0.6740 0.6813 0.6830 0.7139 0.7258 0.7294 0.4797 0.4859 0.4906 0.6072 0.6280 0.6291

DCMH [11] 0.7316 0.7343 0.7446 0.7607 0.7737 0.7805 0.5445 0.5597 0.5803 0.5793 0.5922 0.6014
CHN [27] 0.7504 0.7495 0.7461 0.7776 0.7775 0.7798 0.5754 0.5966 0.6015 0.5816 0.5967 0.5992

PRDH [26] 0.6952 0.7072 0.7108 0.7626 0.7718 0.7755 0.5919 0.6059 0.6116 0.6155 0.6286 0.6349
SSAH [12] 0.7745 0.7882 0.7990 0.7860 0.7974 0.7910 0.6163 0.6278 0.6140 0.6204 0.6251 0.6215
CMHH [25] 0.7334 0.7281 0.7444 0.7320 0.7183 0.7279 0.5530 0.5698 0.5924 0.5739 0.5786 0.5889

DSPAH 0.7978 0.8097 0.8179 0.7802 0.7946 0.8115 0.6498 0.6787 0.6834 0.6396 0.6529 0.6792
TABLE I

MEAN AVERAGE PRECISION (MAP) COMPARISON RESULTS

Fig. 2. Performance on MIRFlickr-25K evaluated by PR Curves

GSPH, SCM, and SePH. This reveals the robust and
advanced character of deep neural networks, obtaining
richer semantic information than the hand-crafted fea-
tures. Therefore, better results can be observed.

V. CONCLUSION

In this paper, cross-level attention and a Fine-Grained
Similarity Criterion (FGSC) are proposed, with the vision of
learning context-relevant hash representations and generating
optimal hash codes. Besides, the attention mechanism can bet-
ter enhance the ability to focus on the image’s and text’s ’right’
area. Evaluations conducted on two datasets demonstrate the
significant performance of DSPAH compared with other CMH
methods. In the future, we are going to use different metrics
to investigate the similarity of embeddings.
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