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Abstract—Quality assurance of rapidly evolving systems is
increasingly important for their deployment to real-life applica-
tions. Despite the challenges posed by the increasing complexity
of these systems, various techniques have been developed to check
their correctness, such as theorem proving, which is a powerful
formal verification method that can provide a complete guar-
antee. However, the proving process in the interactive theorem
provers like Coq highly relies on human interactions, making the
proving process difficult and time-consuming. To automate the
proving process in Coq, we present a framework for predicting
tactics in Coq by using Long Short Term Memory (LSTM).
We take into account the effect of the dataset proof style on
machine learning and create a new dataset following a specific
proof style. We use the generated data to train an LSTM-based
neural network that could give tactic predictions based on the
proof context. This neural network reaches an accuracy of 58%
if we only use the first predicted tactic and reaches an accuracy
of 87% if we select the first three tactic suggestions, achieving a
15.2% and 12.8% improvement rate, respectively, compared to
the methods in previous work.

I. INTRODUCTION

In the last few decades, our reliance on software systems
has rapidly grown. Quality assurance of such systems is
thus necessary and crucial for their deployment to real-life
applications. Despite the challenges posed by the increasing
complexity of these systems, many techniques have been
developed to check their functional correctness, e.g., testing
and verification. Compared with testing techniques, formal
verification could provide a complete guarantee of the critical
properties of software systems. Theorem proving is one of
the most popular formal verification methods, where systems
are modeled in an appropriate mathematical logic, and critical
properties are represented as propositions to be proved and
verified in theorem provers. Up to present, theorem proving
has been successfully applied to various domains such as
computer science [1], artificial intelligence [2], economy [3],
biomedical [4] and self-adaptive systems [5].

Theorem provers are mainly categorized into two types:
Automated Theorem Provers (ATPs) such as Alt-Ergo [6], and
SPASS[7], and Interactive Theorem Provers (ITPs) such as
Coq [8], Isabella [9], and PVS [10]. Though the reasoning pro-
cess is automated in ATPs, they usually suffer from complexity
and expressive power problems. In contrast, the expressive
power of ITPs are usually stronger, which makes them more
suitable for the formalization of “most non-trivial theorems in
mathematics or computer system correctness” [11]. However,
they require human interaction with computer in the process of
proof construction, which is the reason that they are also called
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proof assistants. Coq is one of the interactive theorem provers.
It allows users to declare propositions and prove them. When
users are proving propositions, they are actually constructing
proof terms with the help of commands called tactics. This
process of constructing proofs highly relies on human interac-
tions, which can make the proving process difficult and time-
consuming. It is quite often that some intuitively obvious facts
require tedious proofs in Coq. In general, proving process in
most ITPs is labor-intensive due to the lack of automation.

Many efforts have been made to improve the degree of
automation of interactive theorem provers. For example, the
Coq team provided Ltac [12] to support custom tactics and
a set of automatic tactics like auto and congruence that
realize partial automation in certain domains. Recently ma-
chine learning techniques have been investigated to automate
the proving process. [13] presented ML4PG that gathers
data from a general proof interface ProofGeneral, and used
clustering algorithms to learn and predict dependencies of
goals. [14] tried several machine learning techniques to learn
proof dependencies from formalization done with Coq system.
TacticToe was developed in [15] for HOL4 theorem prover,
which implements a modified A∗-algorithm to automate the
tactic selection in proof search. [16] presented a reinforcement
learning environment for theorem proving and a deep learning
driven automated theorem prover for higher-order logic. [17]
leveraged Recurrent Neural Network (RNN) to predict Coq
tactics for property verification in the domain of coordination
language. [18] used k-nearest neighbor algorithm to learn from
previous proof scripts for tactic proof search in Coq. [16], [17],
and [18] all work on tactic level learning, through which the
predicted tactics can be directly applied to proceed the proof
and custom tactics can also be supported. However, the focus
of most existing works has been more on the modeling design
than on the dataset construction, where the datasets are mostly
directly extracted from raw proof scripts such as standard Coq
libraries. We need to put more efforts on the construction of
dataset to obtain higher quality data so that, combined with
an effective learning model, we can achieve better automating
performance.

In this paper we present a framework for predicting tactics
in Coq using a Long Short Term Memory-based (LSTM-
based) neural network [19]. We re-prove a theorem library
following a specific proving style to create a new dataset, and
use this dataset to train an LSTM neural network to learn
and predict potential tactics with several hypotheses and a
proof-goal as input. The contributions of our work can be
summarized as follows:

1) We take a different approach to create training and test
data. The specific proving style we adopted to re-prove



theorems makes the learning task more consistent and
simple for LSTM-based networks.

2) We design an LSTM-based neural network to learn and
predict tactics in Coq. This new architecture could sta-
bilize hidden state dynamics and reduce overfitting, re-
sulting in better performance for automating the proving
process.

3) We perform experimental evaluation on the effectiveness
of our method, which reaches an accuracy of 58% if we
only use the first predicted tactic, and reaches an accuracy
of 87% if we use the top three tactic suggestions, achiev-
ing a 15.2% and 12.8% improvement rate, respectively,
compared to the baseline.

The rest of this paper is organized as follows: In Section II
we briefly introduce how tactics work in Coq. The construction
of our dataset and pre-processing steps are explained in
Section III. The design of our LSTM-based neural network
is elaborated in Section IV, and evaluation of our approach
is provided in Section V. Finally, Section VI concludes this
paper and discusses some future research directions.

II. BACKGROUND

A. Tactics in Coq

As an interactive theorem prover, Coq allows users to
declare and prove propositions and then to extract certified
programs from the certified proofs. After declaring a propo-
sition in Coq, users enter the proof mode. In this mode, the
proposition to be proved is called a goal, and users can apply
commands called tactics to decompose the goal into simpler
subgoals or to solve it directly. The decomposition process
ends when there are no more subgoals. An interaction in Coq
is a context-tactic pair as shown in Figure 1, where the context
contains hypotheses we currently have and a set of subgoals
we need to prove.

Fig. 1. An Interaction in Coq

Some tactics can be directly applied to the goal, others
require arguments. For example, the split tactic can be
directly applied to a conjunctive goal with no arguments, while

the apply tactic means applying a known theorem to the goal
and thus requires arguments, and the intros tactic can be
used either with or without arguments, only differing on the
names of the introduced hypotheses. In our framework, we
only consider predicting tactic names, with tactic arguments
excluded, since higher order logic is undecidable.

Different tactics may have the same effect on some goals.
For example, when there is only one hypothesis to be intro-
duced, the effects of the intro tactic and the intros tactic
are the same. Besides, in most cases there is more than one
way to construct the proof, that is to say, a proposition can be
proved by different sequences of tactics, different users may
have different proof styles of using tactics.

B. Assumptions

Several assumptions on proving process in Coq are made in
[17] based on the observations and expert experience, which
turns out to be effective in tactic prediction. We follow the
assumptions (1-3) made in [17] in our framework. Besides
that, we make an extra assumption (4). Basically, the first
two assumptions allow us to use only hypotheses and the
first subgoal to make predictions without considering all the
subgoals. The third and the forth assumptions serve as the basis
for data pre-processing and data augmentation respectively,
which we will describe in more details later on. All the
assumptions are summarized as follows:

1) Proofs of subgoals are independent of each other, which
means that tactics to prove a subgoal do not depend on
proofs of any other subgoals.

2) Rearranging the order of subgoals is not considered in
our proving process, so the tactic we use and suggest is
only applied to the first subgoal or current hypotheses.

3) When looking for a proper tactic to use, the structure of
a Coq term is more important than its content.

4) Tactics can be applied to either a subgoal or one or more
hypotheses.

III. DATASET AND DATA PRE-PROCESSING

A. Dataset Construction

Using a neural network to predict appropriate tactics for
proving process requires a dataset for training and testing. As
we mentioned in the previous section, proofs in Coq can be
written in different proof styles. There are good and bad proof
styles for neural network learning. Although it is difficult to
formally specify what a good proof style is, we provide several
heuristics to distinguish a good proof style from a bad one. A
good proof style for learning is supposed to be consistent,
otherwise it can cause confusion for the learning process.
For example, if we use different tactics in similar context,
in other words, we follow an inconsistent proof style, then the
minimization of loss function will be hindered, resulting in
poor prediction performance. Besides, we should also consider
the inherent learning difficulty of the proof style. A good proof
style should not use overly complicated tactic mechanism, nor
should it have tactics that are seldom used, so that it would be
more simplified and consistent for a machine learning model
to learn.



The standard Coq libraries constitute a large dataset for
machine learning, many approaches are developed based on
this dataset. However, according to the heuristics these theo-
rem libraries’ proof styles are not suitable for neural network
learning for the following reasons:

1) Inconsistency: Since these libraries are developed by
different authors, they usually have different proof styles.
For example, SSReflectis a collection of libraries for the
SSReflect [20] proof language and its proof style is quite
different from the others.

2) Complexity: Advanced tactics are intensively used for
conciseness and robustness, such as using tactical to
combine several tactics as a compound tactic, which
makes it more difficult to learn.

3) Infrequently used tactics: Some libraries define custom
tactics to reduce repetition, but these tactics will neither
be used in other libraries nor in practical proving process.

Therefore, we cannot utilize the standard Coq libraries as our
dataset, instead we need to create a new dataset with a specific
proof style that is not only consistent but also easy to learn.

Following the above heuristics, we manually create a theo-
rem library about the properties of Reo [21] connectors in the
domain of coordination language as our dataset. This domain-
specific theorem library is constructed based on the rough
proof scripts provided in [17]. The proof style we use when
building the theorem library is quite like that of a novice, so
we call this proof style the novice proof style, the benefits of
which are summarized as follows:

1) Consistency. All proofs are written in a consistent style,
we prioritize different tactics, so that for similar context
we always use the same tactic to proceed the proof.

2) Simplicity. We only use one tactic at a time, and we
avoid using unnecessary repeated tactics, for example, we
use a single intros to introduce all the hypotheses and
variables instead of a series of intros (Note that intro
and intros are two different tactics with similar names
and functions).

3) Restricted tactics. We restrict ourselves to a set of fre-
quently used tactics to write proofs, including 23 tactics
in total, as illustrated in Figure 2.

Fig. 2. Supported Tactics in Our Framework

When building our theorem library, we add a few new lem-
mas to complete the original proof. In the end, the constructed
dataset contains 31 theorems and lemmas, all of which are
fully proved, with a total of 830 lines of codes, while the
original one contains 1 fully proved theorem and 9 partially
proved theorems, with a total of 383 lines of codes.

B. Data Pre-Processing

We follow the pre-processing method in [17], which con-
tains three steps as follows:

1) Use a Python script to write the Coq proof scripts line by
line to SerAPI [22], which performs machine-to-machine
interaction with Coq through S-expressions and extracts
context-tactic pairs.

2) Refactor extracted Coq terms by adding corresponding
term types as structural information based on the assump-
tion (3).

3) Perform word encoding on hypotheses and the goal to get
fixed-length vectors, since Coq programming language
does not have finite dictionary nor semantics similarity.
We fix a maximal length of words, and for each word we
map its character to its ASCII code and fill the rest part
with zero.

4) Apply one-hot encoding on tactic names to get one-hot
vectors as sample labels.

However, we use different parameters for word encoding to
eliminate redundant zeros. The purpose of this adjustment is
to reduce input dimensions (dimensions of input are reduced
from 5120 to 1360) and computational complexity. Since we
use a restricted set of tactics, the dimension of the output is
also reduced.

In the end, we obtain 526 samples from the constructed
theorem library. These samples constitute a database in our
learning framework, each of which is composed of a variable
length sequence as input and a one-hot vector as output. The
sequence consists of the first subgoal and several hypotheses
if there is any, and the subgoal is always the last item in the
sequence. The dataset in [17] contains 173 samples, but there
are 12 samples labeled by the ‘admit’ tactic, which cannot
be used in a full proof, thus reducing the actual samples from
173 to 161.

IV. LEARNING TACTICS THROUGH LSTM

According to the assumptions, our problem can be regarded
as a sequence classification problem, for which the most
popular solution is RNNs. However, vanilla RNNs suffer
from issues of vanishing gradient. To reduce impacts of the
gradient vanish problem, LSTM (with cell memory and gate
control) [19] is proposed and widely adopted to deal with tasks
when long-term dependencies need to be captured. Therefore,
we choose to build an LSTM-based neural network in our
framework. The structure of our neural network is shown in
Figure 3, including an LSTM layer, a layer normalization layer,
a dropout layer and a fully-connected layer.
• LSTM Layer: The neural network has an LSTM layer

containing 512 self-connected hidden units. The activa-
tion function is tanh and the gate activation function is
Sigmoid function.

• Layer Normalization Layer: After the LSTM layer we add
a layer normalization layer where the output of LSTM
layer is normalized to zero mean and unit variance.

• Dropout Layer: Cells in this layer are randomly dis-
connected according to dropout rate (set as 0.5 in our
framework) when training.



Fig. 3. Network Architecture

30 40 50 60 70 80 90 100

Original Model on
Original Dataset

Our Model on
Original Dataset

Original Model on
Our Dataset

Our Model on
Our Dataset

50.31

50.93

56.2

57.97

68.32

68.94

78.48

80.46

77.64

79.5

86.97

87.58

n-corrnectness (%)

Cross Validation Results

n = 1

n = 2

n = 3

Fig. 4. Cross validation results of different models on original dataset and our dataset

• Fully-connected Layer: A fully-connected layer uses soft-
max as its activation function to normalize its output as
a probability distribution.

The loss function of our neural network is cross-entropy
function, which measures the difference between two proba-
bility distributions. For two probability distributions p and q,
their cross-entropy is defined as:

H(p,q) =−∑
x

p(x) · logq(x)

The layer normalization [23] can stabilize hidden state
dynamics for recurrent neural network and also help with
reducing training time. The normalization is not implemented
in unit-level but in layer-level, because the unit-level approach
is much more complicated and more computational expensive
but has roughly the same performance as layer-level approach.

In order to overcome the overfitting problem caused by the
limited data and high input dimensions, we add the dropout
layer. We also use label smoothing [24] technique, which
is another frequently used regularization method. With label
smoothing, the hard 0 and 1 classification targets in the ground
truth one-hot vector y will be replaced with targets of ε

k−1 and
1−ε respectively, where ε is the smoothing parameter and k is
the class number, thus prevents the pursuit of hard probabilities
without discouraging correct classification.

We also use data augmentation to generate more training
data to deal with the overfitting problem. In the pre-processing
step, the context in an interaction is transformed into a
sequence, where the last item is the goal to be proved and

the others are hypotheses. Users who are familiar with Coq
should be aware that the order of hypotheses is independent of
the tactic that can be used. This fact inspires us to perform data
augmentation by shuffling hypotheses. We perform shuffling
on the goal and hypotheses together, since tactics can be
applied to either a subgoal or any hypotheses according
to assumption (4), which means that there is no essential
difference between the goal and hypotheses for predicting
tactics. Each sample sequence in the training set is shuffled
440 times in a way that every synthetic sample is different
from other samples whenever possible. For those samples with
too few hypotheses to get enough distinct synthetic samples
(less than 5 hypotheses since 5! < 440≤ 6!), we use their full
permutations as the generated samples.

In the training process, the neural network is trained for 30
epochs with a batch size of 256, and we use the RMSprop
optimizer with learning rate set as 0.001, ρ set as 0.9, ε

set as 10−7 and clipnorm set as 0.8. The label smoothing is
0.1. Initial kernel weights of LSTM layer are set by Glorot
uniform initializer, initial recurrent weights of LSTM layer
are set orthogonally, and initial bias is set as zero vector.

V. EVALUATION

Our neural network is implemented in Keras [25], a high-
level neural networks API in Python. Multiple popular ma-
chine learning frameworks are supported by Keras, and we
use Tensorflow as its backend. We train the neural network on
our dataset and [17]’s dataset separately. Experiments are run



Fig. 5. The prediction for an validation sample and its true label

with an NVIDIA Tesla P100 GPU, 2 cores of Intel Xeon as
CPU and 13 GB memory.

As there are often multiple tactics that can help with the
proof process, the evaluation should not be constrained by a
single correct answer provided by the proof scripts. Instead,
we use n-correctness rate [17] to evaluate the tactic prediction
performance. n-correctness rate measures the likelihood that
the top n tactics predicted by the network are actually useful
for theorem proving, which is defined as follows.

Definition 5.1 (n-correctness rate): The output of the net-
work is a probability distribution, if the probability of the
targeted tactic (provided by the dataset) is in top n, we say that
this prediction is n-correct, and the corresponding correctness
rate is called n-correctness rate.

We use cross validation to evaluate the tactic prediction
performance of our approach, with the performance of the
method in [17] as comparison baseline. We perform ablation
experiments to evaluate the effectiveness of the constructed
dataset and network design. Specifically, the original neural
network is trained on our new dataset to evaluate the useful-
ness of the dataset. The proposed neural network is trained
on the original dataset to evaluate the effectiveness of the
network design. On our dataset, we evaluate neural network
performance by repeating 10-fold cross validation 10 times.
In other words, 10-fold cross validation procedure is repeated
10 times and the mean result across all runs is regarded as our
final evaluation. While on the original dataset, we use leave-
one-out cross validation to evaluate the performance, given

that this dataset is smaller. Data augmentation is applied when
training our model, but each sample in the original training set
is shuffled 130 times, not 440 times. We use this evaluation
method due to the limited size of the datasets, where the
train-test split method may result in different distributions of
training and test sets. The experiment results are shown in
Figure 4.

Compared to baseline, our approach achieves a 15.2%,
17.8%, and 12.8% improvement rate on the 1-correctness,
2-correctness, and 3-correctness rate. With regard to the ef-
fectiveness of the proposed network design, on the original
dataset the 1-correctness, 2-correctness, and 3-correctness rate
of our neural network is 0.62%, 0.62%, and 1.86% higher
than the original neural network, respectively. On our dataset,
the improvements are 1.77%, 1.98%, and 0.61%, respectively.
Regarding the usefulness of the constructed dataset, the 1-
correctness, 2-correctness, and 3-correctness rate of the orig-
inal neural network on our dataset is improved by 11.7%,
17.4%, and 12.0%, respectively, compared to the original
dataset. As for our neural network, the improvement rates are
13.8%, 16.7%, 10.2%, respectively.

The design of our neural network, including the archi-
tecture and the use of regularization techniques, has led to
improved performance. But the constructed dataset serves as
a major factor contributing to the performance improvement,
which significantly reduces the machine learning difficulty. In
summary, our LSTM-based neural network outperforms the
original neural network on both datasets, and our dataset is



easier for LSTM-based neural network to learn, both of which
together make our approach perform better.

After taking a closer look at how our neural network
performs on the validation set, we find an interesting phe-
nomenon. On some samples, our neural network gives dif-
ferent predictions from the ground truth. However, these
suggested tactics actually can solve the goal, which is exactly
the situation we mentioned before. Figure 5 is an illustration
for such phenomenon, where both the tactic we use and the
prediction of our network can solve the goal. This interesting
phenomenon indicates that our n-correctness-based evaluation
of our model performance is very pessimistic, the actual
performance should be even better.

VI. CONCLUSION

In this paper, we present a framework for predicting tactics
to automate the process of proving properties of a specific
domain in Coq. In order to automate the proving process
in Coq, we create a new dataset by re-proving a theorem
library used in [17] in the novice proof style, and train an
LSTM-based neural network on this dataset to predict tactics
based on proof context. Experiment results show that our
approach to creating dataset makes the learning task easier for
LSTM-based networks and that the proposed neural network
outperforms the baseline, where the correctness of our network
is almost 90% if we select first three suggested tactics. Besides,
we find that our model is capable of giving suggestions
which differ from ground truth in our dataset but can actually
proceed the proof. This phenomenon indicates that the actual
performance of the network is even better.

In the future, we plan to try reinforcement learning on
this problem and try more loss function design for higher
correctness rate. Gathering more data is another future work
to improve network performance. Since manually building
proofs is inefficient, we can try generating simple proofs from
existing complex proofs.
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