
Which Factors Affect Q-Learning-based Automated Android Testing?
– A Study Focusing on Algorithm, Learning Target, and Reward Function –

Yuki Moriguchi Shingo Takada

Keio University, Japan
{yukim, michigan}@doi.ics.keio.ac.jp

Abstract

With the spread of smartphones, the importance of auto-
mated testing of mobile applications has increased. How-
ever, many current approaches are inadequate, as they
are not able to test functions that are available only on
hard-to-reach GUI, which is a screen that can be reached
only through a specific sequence of input events. To solve
this problem, there has been an increase in testing re-
search based on reinforcement learning, specifically Q-
learning. Each research uses different learning targets and
reward function. Testing research has also been done us-
ing Deep Q-Network, which extends reinforcement learning
in a “deep” way. Although each work has conducted their
own evaluation, it is not clear how the combination of learn-
ing algorithm, learning target, and reward function affects
the result. To bridge this gap, we have conducted an em-
pirical study comparing eight possible combinations. Our
study found that the combination of Deep Q-Network as the
learning algorithm, component as the learning target, and
GUI change ratio as the reward function had the highest
test quality in terms of code coverage.
Keywords: Software testing, Q-learning, Android applica-
tion

1. Introduction

The proliferation of smartphones has led to an increase in
mobile applications. As with conventional software, testing
is an essential part of the development process of mobile
applications. Thus, research on automated testing is being
actively conducted. Unfortunately its performance is still
not adequate. A major reason for this is that GUI screens
which can be reached only through a specific sequence of
input events are not easily reached. As a result, functions
on those screens are often not tested.

In the past several years, reinforcement learning (specifi-
cally Q-learning), as well as a “deep” version of Q-learning
(Deep Q-Network), has been applied to testing in order
to overcome this issue [6] [4] [1] [5] [8] [9]. Reinforce-
ment learning is a type of machine learning, where an agent
adapts to the environment through trial and error. Unlike

DOI reference number: 10.18293/SEKE2021-046

Table 1. Summary of Testing Approaches Us­
ing Reinforcement Learning

Paper Learning
Algorithm

Learning
Target

Reward
Function

[1], [4] Q Learning Event Optimistic
Initial
Value
Method

[6], [5], [8] Q Learning Event GUI Change
Ratio

[9] Deep Q Net-
work

Component GUI Change
Ratio

supervised learning, there is no teacher who explicitly in-
dicates the correct output for the state input. Instead, the
agent learns using reward.

Although each work has their own unique points, the ba-
sics are the same. The Q-learning agent interacts with the
Android application to gradually build up a model and then
creates test cases based on the model. The agent searches
for the best input solution that allows it to test as many fea-
tures as possible. Q-learning based testing has been able to
achieve higher code coverage than random testing.

Still, there are some differences that need to be noted.
First, we have already stated above that there is Q-learning
as well as a “deep” version of Q-learning. Second, what
the agent learns (i.e., learning target) differs; most work
targeted events, while one targeted components. Finally,
the function used to calculate the reward differs; some were
based on the GUI change ratio, while others were based on
“Optimistic Initial Value Method.” Table 1 summarizes the
differences. Thus, we see at least three factors that need
to be considered when applying reinforcement learning to
testing, specifically learning algorithm, learning target, and
reward function.

Although each work has conducted their own evaluation,
it is not clear how the three factors affect testing. In order to
bridge this gap, we have conducted an empirical study that
compares the eight combinations that can be made from the
three factors. Table 2 shows the eight combinations that we
target in our study.

In the rest of this paper, we first describe the three fac-

Table 2. Eight Combinations based on the Three Factors of Learning Algorithms, Learning Targets
and Reward Functions

ID Related Work Learning Algorithm Learning Target Reward Function
1 [1], [4] Q Learning Event Optimistic Initial Value Method
2 [6], [5], [8] Q Learning Event GUI Change Ratio
3 Q Learning Component Optimistic Initial Value Method
4 Q Learning Component GUI Change Ratio
5 DQN Event Optimistic Initial Value Method
6 DQN Event GUI Change Ratio
7 DQN Component Optimistic Initial Value Method
8 [9] DQN Component GUI Change Ratio

tors that we focus on: learning algorithm, learning target,
and reward function. Section 3 describes the design of our
empirical study. Section 4 discusses the results of our study.
Section 5 discusses threats to validity. Section 6 makes con-
cluding remarks.

2. Factors in Q-learning based testing
This section describes the three factors that we focus on;

learning algorithm, learning target, and reward function.

2.1. Learning algorithm

Q Learning. Q-learning is a learning algorithm for rein-
forcement learning that has been used in the work of Mari-
ani et al. [6], Korogulu et al. [5], Adamo et al. [1], Esparcia
et al. [4], and Vuong et al. [8]. There are two methods of re-
inforcement learning: one based on value functions and the
other based on strategy search. Q-learning is an algorithm
based on value functions. The value function estimates how
good it is for an agent to perform an action in a given state.
The criterion for the estimation is the expected future re-
ward, called the cumulative reward. Since the future reward
depends on which action the agent will take, the number of
values is defined according to a specific strategy. We define
the value function Qπ (s, a) as follows:

Qπ (s, a) = E [R | s, a, π] (1)

The value function returns the cumulative reward that can
be achieved by performing a sequence of actions that starts
from s with action a, and then following the policy π from
the succeeding state.

The optimal Q function Q∗ returns the maximum cumu-
lative reward that can be obtained from a given pair of state
and action.

Q∗ (st, at) = max
π

T−1∑
t>0

(
γtrt | s = st, a = at, π

)
(2)

If the optimal Q value Q∗ (st+1, at+1) for the next step
is known, then the optimal strategy is to take the action that

maximizes r+γQ∗ (st+1, at+1). r is the immediate reward
for the current step. Q∗ satisfies the Bellman equation.

Q∗ (st, at) = r (st, at) + γmax
at+1

Q (st+1, at+1) (3)

γ is the discount rate, which is a value between 0 and 1.
The discount rate determines whether to give more weight
to immediate or cumulative rewards; closer to 0 means more
immediate rewards and closer to 1 means more cumulative
rewards.

The optimal strategy π* is to take the action with the
largest Q value Q*. The Q-learning algorithm iteratively
calculates the value of the Q function based on equation (3).
First, the Q-function is initialized with a default value. Each
time the agent performs an action to go from state st to state
st+1 and receives a reward rt, the Q function is updated as
follows:

Q (st, at)← Q (st, at)+α(rt+γmax
a

Q (st+1, a)−Q (st, a))

(4)
α is the learning rate, which is a value between 0 and 1. It
determines how much the Q-value is to be updated.

On the surface, choosing the action with the largest Q
value seems to be favorable, but there is a need to balance
the trade-off between exploration and exploitation [7]. ϵ-
greedy approach is often used in reinforcement learning.
Simply, a random action is selected with probability ϵ, or
the action with the highest Q-value is selected with proba-
bility 1− ϵ.

Deep Q-Network. This is the learning algorithm used
in the work of Vuong et al. [9]. The strength of neural net-
works lies in their ability to learn from low-dimensional fea-
ture representations and their ability to approximate com-
plex functions. Using the approximation properties of neu-
ral networks, it is possible to approximate the optimal strat-
egy π* and the optimal value function Q∗. The extension
of reinforcement learning with neural networks is deep re-
inforcement learning. One of the best known methods for
deep reinforcement learning is Deep Q-Network (DQN).

The optimal value function Q can be obtained by a neural
network by using the weights θ.

Q (st, at, θ) ≈ Q∗ (st, at) (5)

Training is done by adjusting the weights θi at iteration i so
that the mean square error of equation (3) becomes small.
The right term in equation (3) is replaced by the following:

r (st, at) + γmax
at+1

Q
(
st+1, at+1, θ

−
i

)
(6)

2.2. Learning target

Event. Mariani et al. [6], Adamo et al. [1], Esparcia
et al. [4] and Vuong et al. [8] targeted events for learning.
GUI testing tools usually interact with the application under
test by sending events to GUI components. For example, a
click (event) is sent to a button (component) that transitions
to the next page.

Component. Vuong et al. [9] targeted components for
learning. The goal of reinforcement learning algorithms is
to search for hard-to-reach application features in a way that
reveals them. They tried to achieve this goal by considering
the semantics of components and by making components as
the learning target.

2.3. Reward function

Optimistic Initial Value Method. The optimistic ini-
tial value method is a reward function used in the work of
Adamo et al. [1] and Esparcia et al. [4]. It is commonly
used because it is simple to implement and effective for
simple problems. However, so far no theoretical guaran-
tees have been given, and in practice, it is not efficient be-
cause many iterations are required before the correct value
propagates and overrides the optimistic value. As shown
in equation (7), we make the function such that the reward
for unexplored actions is maximized, so that all actions are
explored exhaustively.

R (st, at) =
1

f (st, at)
(7)

st is the state at step t, and at is the action at step t.
R (st, at) is the reward for taking action at in state st.
f (st, at) is the number of times action at is taken in state
st.

GUI Change Ratio. GUI Change Ratio is a reward
function used in the work of Mariani et al. [6] and Vuong
et al. [8] [9]. As shown in equation (8), by considering
the percentage of GUI changes, the reward is determined so
that new features can be explored.

R (st, at, st+1) =
| st+1\st |
| st+1 |

(8)

st is the state at step t, and at is the action at step t.
R (st, at, st+1) is the reward for the transition to state st+1

as a result of taking action at in state st. The right term
in Equation (8) is a ratio that indicates how much the num-
ber of GUIs is changed when the agent transitions from one
state st to the next st+1.

3. Experiment Design
3.1. Overview

We conducted a comparative study of the eight combi-
nations that are shown in Table 2, and aim to answer the
following four research questions:

• RQ1: Which reinforcement learning algorithm is bet-
ter: Q-learning or Deep Q-Network?

• RQ2: Which learning target is better: events or com-
ponents?

• RQ3: Which reward function is better: optimistic ini-
tial value method or GUI change ratio?

• RQ4: Which combination will give the highest test
quality?

The implementation of the eight combinations were done
by extending existing implementations. For combinations
which are based on Q-learning, we extended ClassicQ,
which was originally implemented in [8]. For combinations
which are based on Deep Q-Network, we extended QDroid
which was originally implemented in [9].

We investigated the code coverage for twelve Android
applications to evaluate test quality. Although not perfect,
code coverage is often used to check the quality of test. We
used Androtest [2], an automated test tool evaluation frame-
work, for obtaining code coverage. We measured class cov-
erage, method coverage, block coverage, and line coverage.
Two-hour tests were conducted five times for each of the
twelve applications under test, and the average code cover-
age was calculated.

3.2. Parameter Settings

Two important parameters in Q-learning is discount rate
γ and learning rate α. We took into account the parame-
ter values used in previous work, and also conducted some
trial-and-error executions of our tool. Based on this, we
chose the values for these parameters to be γ = 0.9 and
α = 1.0.

Another important parameter is ϵ. As with [8], the ini-
tial value of ϵ is set to 1 (i.e., always randomly choose an
action), and continually decreased it until ϵ = 0.5.

3.3. Target Applications

The applications to be tested as benchmarks are the
datasets used in Vuong et al. [9]. These applications are the
ones included in Androtest. The dataset consists of twelve
Android applications, as shown in Table 3.

Table 3. Twelve Target Applications
App Name LOC URL
AnyMemo 8428 https://f-droid.org/en/packages/org.liberty.android.fantastischmemo/

My Expenses 2935 https://f-droid.org/en/packages/org.totschnig.myexpenses/
Who has my stuffs 729 https://f-droid.org/en/packages/de.freewarepoint.whohasmystuff/

Tippy Tipper 1083 https://github.com/mandlar/tippytipper
Munch Life 254 https://github.com/averyada/MunchLife

Mini Note Viewer 3673 https://f-droid.org/en/packages/jp.gr.java conf.hatalab.mnv/
Mileage 4628 https://f-droid.org/en/packages/com.evancharlton.mileage/

Multi SMS sender 828 https://f-droid.org/packages/com.hectorone.multismssender/
Hot Death 3902 https://f-droid.org/en/packages/com.smorgasbork.hotdeath/

Random Music Player 400 https://f-droid.org/en/packages/com.simplemobiletools.musicplayer/
Dalvik Explorer 1375 https://f-droid.org/en/packages/org.jessies.dalvikexplorer/

Weight Chart 1116 https://f-droid.org/forums/topic/weight-chart/

4. Experiment Results and Discussion

Table 4 shows the average values of class coverage,
method coverage, block coverage, and line coverage for
each of the eight combinations. Table 5 shows the average
method coverage values for each of the combination and
each of the application.

For both Tables 4 and 5, the result in the row with the best
coverage value is in bold font. So, for example, in Table 4,
ID8 had the best class coverage at 62.58%, while ID2 had
the best method coverage for the application AnyMemo at
38.8%. For the results of each application, we only show
method coverage and not the other three coverages due to
space issues, but the tendency was the same.

We now discuss each research question. For each re-
search question, we first discuss based on Table 4 which
gives the overall results, and then discuss based on Table 5
at the application level.

4.1. RQ1: Which reinforcement learning algorithm is
better: Q-learning or Deep Q-Network?

Since we had learning target and reward function as fac-
tors, in order to compare Q-learning and Deep Q-Network,
we compared each of the pair (ID1, ID5), (ID2, ID6), (ID3,
ID7), and (ID4, ID8). When we look at the results of each
of these pairs in Table 4, in all cases the combinations using
Deep Q-Network had the better results. We also conducted
statistical analysis, but we did not obtain a significant dif-
ference in each of the pair.

When we look at the results for each application in Table
5, we can see that this depends on each application. ID8 was
better than (or the same as) ID4 for all applications. But for
the three other pairs, about half had Q-learning better, and
about half had Deep Q-Network better.

� �
RQ1 Answer: Overall, Deep Q-Network was found to
be better than Q-learning, but the difference was not
statistically significant. When looking at each applica-
tion, there was not a clear cut tendency for one over
the other except for ID8, which was better than (or the
same as) ID4 for all applications.� �

4.2. RQ2: Which learning target is better: events or
components?

Similar to RQ1, we compared each of the pair (ID1,
ID3), (ID2, ID4), (ID5, ID7), and (ID6, ID8). In most
cases in Table 4, the combination using components had
a better result. Only the class coverage and line coverage
for the pair (ID5, ID7) had events with the better results.
We also conducted statistical analysis, and we found that
for the pair (ID6, ID8), ID8 (component) was significantly
different (better) than ID6 (event). The difference in other
pairs were not statistically significant.

When comparing for each application (Table 5), again
there was not a clear cut tendency towards either event or
component, except for ID8. ID8 was better than (or the
same as) ID6 in eleven out of twelve applications.� �

RQ2 Answer: Component was found to be better than
event in most cases, but there was one pair where the
difference was found to be statistically significant; ID8
(component) was found to be better than ID6 (event).
This was also seen at the application level.� �

4.3. RQ3: Which reward function is better: optimistic
initial value method or GUI change ratio?

We compared each of the pairs (ID1, ID2), (ID3, ID4),
(ID5, ID6), and (ID7, ID8). Looking at the overall results in
Table 4, for the pairs using Q-learning, i.e., (ID1, ID2) and

Table 4. Overall Results: Average
ID 1 2 3 4 5 6 7 8

Class 54.10 53.24 57.38 57.05 58.42 60.03 57.89 62.58
Method 44.80 44.37 47.02 46.41 47.83 48.45 47.88 52.98
Block 40.82 39.90 43.08 41.75 43.25 43.75 43.84 47.95
Line 39.98 39.25 42.33 41.40 43.18 43.48 42.98 47.75

Table 5. Results of each Application: Method Coverage
App Name ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8
AnyMemo 36.0 38.8 26.8 26.0 28.2 28.2 31.4 31.8

My Expenses 29.0 35.2 35.0 39.8 45.6 50.4 30.6 64.4
Who has my stuffs 81.4 69.8 75.2 76.2 76.4 76.4 79.8 80.2

Tippy Tipper 52.8 54.8 54.4 53.8 54.2 54.0 50.4 54.6
Munch Life 51.2 48.0 48.0 48.0 48.0 48.0 48.0 48.0

Mini Note Viewer 42.2 39.6 32.6 37.4 38.0 38.0 41.0 48.2
Mileage 34.4 35.3 27.2 26.4 26.8 27.6 33.6 35.5

Multi SMS sender 37.4 37.2 38.0 36.8 37.0 37.0 35.0 37.2
Hot Death 16.4 17.0 59.2 60.6 59.8 61.2 59.0 64.2

Random Music Player 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0
Dalvik Explorer 80.6 73.8 76.6 64.2 65.4 65.4 77.5 78.6

Weight Chart 22.2 29.0 37.2 33.8 40.6 41.2 34.2 39.0

(ID3, ID4), optimistic initial value method had better re-
sults, but it was not statistically significant. But for the pairs
using Deep Q-Network, i.e., (ID5, ID6) and (ID7, ID8), it
was the opposite, i.e., GUI change ratio had better results.
However, in these cases also, the difference was not statis-
tically significant.

When we look more closely at the application level in Ta-
ble 5, we can see that for the pairs using Deep Q-Network,
change ratio had the same or better results in all but one
case, where in Tippy Tipper ID5 was better than ID6 by just
0.2%, which should be considered as negligible. For the
pairs using Q-learning, there was little difference between
the two reward functions.� �

RQ3 Answer: There was no statistically significant
difference. But there was a tendency for optimistic
initial value method to be better for Q-learning, and
change ratio to be better for Deep Q-Network.� �

4.4. RQ4: Which combination will give the highest test
quality?

From Table 4, we can see that ID8 (Deep Q-Network,
component, GUI change ratio) was found to have the best
results for all types of coverage. We also checked the statis-
tical difference between ID8 and each of the other combi-
nations. Except for the pair (ID1, ID8), the difference was
statistically significant for all other combinations.

This can also be seen in Table 5. ID1 had three apps

with the best results, while ID8 had four. ID8 was better
than ID1, in terms of number of apps with the best results,
although not by much.

We also note that ID2 had two apps and ID3 and ID6 had
one app each with the best result. However, for these four
apps, we can see that the difference with the other combi-
nations were not that large. When compared with ID8, the
difference in these four apps ranged from 0.2% (Tippy Tip-
per) to 7.0% (AnyMemo).� �

RQ4 Answer: The combination of Deep Q-Network,
component and GUI change ratio was found to be the
best combination.� �

4.5. Further Discussion

In Table 5, when comparing the results for ID1 and ID8,
we can also see that the results for ID8 was more stable.
The lowest and second lowest results for ID8 were 31.8%
(AnyMemo) and 35.5% (Mileage), while the two lowest re-
sults for ID1 was 16.4% (Hot Death) and 22.2% (Weight
Chart). Note though that although Mileage was the second
worst result for ID8, it was still the best result among all
eight combinations for Mileage.

Although we focused on the three factors of learning al-
gorithm, learning target and reward function, we must not
forget that other parts still need work, especially being able
to generate “meaningful” strings. For example, in Table 5,
the results of Random Music Player for all combinations

was 54%. We manually checked the results, and found that
it wasn’t just the method coverage value itself that was the
same; the methods that were covered were also the same.
This was because one of the functions in Random Mu-
sic Player requires the input of a URL. However, none of
the eight combinations were able to generate a meaningful
URL, and thus all functions (methods) that can be used after
entering a URL could not be tested.

5. Threats to Validity
Internal Validity. We limited each execution to two

hours. Since reinforcement learning is an approach that
learns while executing, there are two possible issues. First,
it may be possible that the coverage would continue to in-
crease if the execution time was longer. Second, the shape
of the coverage curve may differ between execution, i.e.,
some executions may cover more code quickly while oth-
ers may not be as quick. Third, there may be differences
between each execution. Although we cannot completely
negate these possibilities, we tried to minimize these as
much as possible by taking the average of five executions
for each combination and application.

Another threat to internal validity is the parameters of
reinforcement learning. The execution results will vary de-
pending on the parameters values, specifically discount rate
γ, learning rate α, and ϵ-Greedy value ϵ. To mitigate this
threat, we selected parameter values such as discount rate
and learning rate based on empirical analysis reported in
previous studies, as well as some trial-and-error execution
of the combinations.

External Validity. In this study, we targeted twelve An-
droid applications. In terms of sampling bias, it is possi-
ble that completely different results could be obtained if the
current test were conducted on different applications.

Construct Validity. We used code coverage to assess
how good an app was tested. Using code coverage for this
purpose has long been considered to be controversial [3].
Thus, code coverage may not be perfect for comparison.
But code coverage is used in many testing papers, and we
believe that it is adequate enough as one way to compare
testing approaches.

6 Conclusions and Future Work
We conducted an empirical comparative study of An-

droid application testing focusing on the three factors of
learning algorithms, learning targets, and reward functions.
We implemented eight combinations based on these three
factors and executed them on twelve applications, and mea-
sured code coverage. We compared and discussed the eight
combinations based on four research questions. We found
that the combination of Deep Q-Network, component and
GUI change ratio was the best combination (RQ4). For the
other research questions, there was little statistical signifi-

cance, although we did discuss some trends.
Future work includes investigating other Android appli-

cations to eliminate external validity. Also, executing for
more than two hours needs to be considered. Finally, as
was discussed in subsection 4.5, one major issue that needs
to be solved regardless of the three factors is being able to
generate “meaningful” strings when necessary.

References
[1] D. Adamo, M. K. Khan, S. Koppula, and R. Bryce. Reinforce-

ment Learning for Android GUI Testing. In Proceedings of
the 9th ACM SIGSOFT International Workshop on Automat-
ing TEST Case Design, Selection, and Evaluation, A-TEST
2018, pages 2–8, 2018.

[2] Androtest. http://bear.cc.gatech.edu/ shauvik/androtest/. Ac-
cessed: 2021-1-18.

[3] X. Cai and M. R. Lyu. The effect of code coverage on fault
detection under different testing profiles. In Proceedings of
the 1st International Workshop on Advances in Model-Based
Testing, A-MOST ’05, pages 1–7, 2005.

[4] A. I. Esparcia-Alcazar, F. Almenar, U. R. M. Martinez, and
T. E.J. Vos. Q-learning strategies for action selection in the
TESTAR automated testing tool. In Proceedings of META
2016 6th International Conference on Meta heuristics and Na-
ture Inspired Computing, pages 174–180, 2016.

[5] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tan-
riverdi, and Y. Donmez. Qbe: Qlearning-based exploration of
android applications. In 2018 IEEE 11th International Confer-
ence on Software Testing, Verification and Validation (ICST),
pages 105–115, 2018.

[6] L. Mariani, M. Pezze, O. Riganelli, and M. Santoro. Auto-
BlackTest: Automatic Black-Box Testing of Interactive Appli-
cations. In 2012 IEEE Fifth International Conference on Soft-
ware Testing, Verification and Validation, pages 81–90, 2012.

[7] Y. Shen and C. Zeng. An adaptive approach for the
exploration-exploitation dilemma in non-stationary environ-
ment. In 2008 International Conference on Computer Science
and Software Engineering, volume 1, pages 497–500, 2008.

[8] T. Vuong and S. Takada. A Reinforcement Learning Based
Approach to Automated Testing of Android Applications. In
Proceedings of the 9th ACM SIGSOFT International Work-
shop on Automating TEST Case Design, Selection, and Eval-
uation, A-TEST 2018, pages 31–37, 2018.

[9] T. Vuong and S. Takada. Semantic analysis for deep q-
network in android gui testing. In Proceedings of 32nd Inter-
national Conference on Software Engineering and Knowledge
Engineering, pages 123–128, 2019.

