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Abstract—To grasp what makes the deep learning models
arrive at a particular prediction, gradient-based explanatory
methods have been widely used in Natural Language Processing
(NLP) recently. While the saliency maps of images can be
computed directly in the pixel-level input space, the continuous
gradient vector for words has to be reduced to a single value to
indicate the word-level importance, and existing methods such as
Sensitivity Analysis (SA) and Gradient × Input (GI) are either
tricky or short of a deep investigation. In this paper, we review the
family of gradient-based explanatory methods and discuss their
practical implications. Specially, we propose the signed version of
GI, namely SignedGI, while some previous work may have mis-
understandings on its signedness. We also show the weakness of
SA-based methods. We conduct extensive experiments to evaluate
these explanatory methods both qualitatively and quantitatively.

Index Terms—Gradient-based Explanatory Methods; Sensitiv-
ity Analysis; Gradient × Input; Text Classification

I. INTRODUCTION

In the era of Artificial Intelligence (AI), deep learning
models have been widely deployed in a variety of applications
in Natural Language Processing (NLP), but are often criticized
for the inability to explain their decisions. To afford trans-
parency on the nested non-linear structure of the black box and
shed light on interpretable AI models, a plethora of explana-
tory methods have been developed in literature [1] nowadays.
Among existing work, gradient-based methods [2][3][4] have
been gaining the spotlight recently because they can be easily
used in any off-the-shelf neural networks.

It is straightforward to compute the pixel-level gradient in
images [5][6], indicating how much the pixel contributes to the
final prediction. However, things are different in NLP. Words
are usually embedded in a continuous space, and a scalar value
rather than a vector of gradients has to be derived for the
word-level importance score. Consequently, many variations
of gradient-based explanatory methods have been proposed in
NLP to compute the scalar value, such as the sum of gradients
in raw values [7], the L1 norm [3], the L2 norm [8][9][10],
or the dot product between the vector of gradients and the
word embedding itself [2][11][4]. For brevity, we refer to the
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first three variations as SA-based (Sensitivity Analysis [6])
methods, and the last one as GI (Gradient × Input [4]).

Even though we have a sophisticated theory for gradient-
based explanatory methods in images, our current understand-
ing on them in NLP is still rudimentary. On the one hand, the
SA-based methods are very tricky. The gradient measures the
local effect of a particular dimension in the word vector and
it does not hold water to sum up the effects along the vector
as the word-level importance score, since the true changes
in the embedding space are discrete rather than continuous
when a word is removed or replaced. On the other hand, the
correctness of GI has not been strictly proved yet, especially
its signedness (A word-level importance score is signed if it
can distinguish between positive and negative impacts).

In this paper, we shed light on the aforementioned gradient-
based explanatory methods. We propose the signed version of
GI, namely SignedGI, based on the chain rule and the back-
propagation algorithm [12]. The SignedGI score is the opposite
of the dot product, whereas some previous work [2][4] neglect
the signedness. Besides, we show the weakness of SA-based
method. We conduct extensive experiments to evaluate these
explanatory methods both qualitatively and quantitatively.

II. RELATED WORKS

There has been a remarkable series of work for explainable
artificial intelligence in NLP [1]. In [13], Leave-One-Out
(LOO) estimates the word importance by observing the change
of the log-likelihood when a particular word is removed. It
has been widely used as a black-box explanatory method
in NLP [7][4]. In the white-box settings, gradient-based ex-
planatory methods have attracted great interest. As described
previously, we mainly consider SA-based methods [3] and
GI [2] in this paper. They aim to compute the gradient w.r.t.
the word to indicate the word-level importance score. There
is another popular gradient-based explanatory method named
Integrated Gradients [14], which integrates over all gradients
on a linear interpolation between the original input and the
baseline input masked with zeros. However, the Lp norm in
SA-based methods or the dot product in GI are still a prereq-
uisite for the use of integrated gradients in NLP [15][16], so
we exclude it from the scope of our work.



The weakness of SA-based methods (in the L2 norm) has
already been noticed in the experiments of some previous
work [8][15]. They attribute this observation to the fact that
the L2 norm can only measure the word importance with the
inability to distinguish between positive and negative impacts.
We will address the deeper cause in the section below, that
the overall impact on the loss is uncertain when we mask the
word identified by SA-based methods with all-zero paddings.
Furthermore, we will display a interesting counterexample
model to show the weakness of SA-based methods in the
experiments, where the words of the same frequency can have
the same gradient vector in the embedding space, albeit with
different contributions to the final prediction.

III. METHODS

Let x = (w1, w2, · · · , wm) be the document consisting of
m words, where w = (e1, e2, · · · , en) is the continuous word
representation in the n-dimensional embedding space. Let ly :
x→ R1 be the loss function w.r.t. the legitimate label y.

A. Sensitivity Analysis

Sensitivity analysis has been a popular method for inter-
preting non-linear neural networks in images [5][6], where
the sensitivity of a particular pixel p for the color channel c
can be computed as follows:

sp,c =

(
∂

∂p, c
ly(x)

)
c∈(r,g,b)

(1)

Recently this method has been extended to the domain of
NLP, and the sensitivity of a particular dimension e in the
embedding space can be represented as follows [3]:

se =
∂

∂e
ly(x) (2)

where the score se tells us how much the change in one
specific dimension e would exert an influence on the results.

However, words are embedded in the continuous space with
more than one dimension. With se for each dimension, the Lq

norm operation is usually performed to transform the vector
into the word-level importance score:

sw = ‖(se1 , se2 , · · · , sen)‖Lq
(3)

where the norm usually takes the value of q = 1 [3][17] or
q = 2 [8][9][4][10]. We denote the two variations as |SA|1 and
|SA|2. As far as we know, there is no current work in NLP use
q =∞. However, q =∞ is a common practice in images [5],
and we decide to consider |SA|∞ in our experiments. Apart
from the norm, some work directly use the raw value of the
gradient [7]. We denote it as |SA|raw.

B. Gradient × Input

Gradient × Input (GI) computes the dot product of the
word embedding and the gradient of the output w.r.t the
embedding itself. It is firstly proposed in [2], where the formal
representation of GI is presented with the first-order Taylor
expansion of the loss function. However, it only extracts the
salient scores without distinguishing between the positive and

negative impacts. In this section, we provide the theoretical
augments to the deduction of GI from a new perspective, and
specially analyze its signedness for SignedGI.

Suppose E ∈ Rv∗n is the embedding layer, where v is the
vocabulary size. Let Ix ∈ Rm∗v be the matrix embedding the
input document x, where each row Iwi = (0, · · · , 1, · · · , 0) is
a v-dimensional one-hot vector for the input word wi. Now,
we are interested in the gradient of the value “1” in the one-hot
vector, which indicates how much the existence of the word
wi locally affect the network output.

We show how to compute the word-level gradient in Ix
now. For brevity, we assume that Ix is a document consisting
of only one word (or m = 1), and the one-hot representation is
Ix = (t1, · · · , tv) ∈ R1∗v where ti = 0 or 1. Assume WLOG
that t1 = 1 in Ix, then t2 to tv are all zeros. In other words, we
assume that the only one word in Ix corresponds to the first
word in the vocabulary. Then, the output of the embedding
layer OE in a neural network can be computed as follows,
where OE = (e1, · · · , en) ∈ R1∗n is the embedding for the
only one word in Ix:

OE = Ix × E (4)

Let ly : x → R1 be the loss function w.r.t. the legitimate
label y. We compute the word-level gradient in Ix using the
chain rule and the back-propagation algorithm [12]:

∂ly
∂Ix

=
∂ly
∂OE

∂OE

∂Ix

= (
∂ly
∂e1

, · · · , ∂ly
∂en

)(
∂OE

∂t1
, . . .
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)

= (
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∂e1
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)
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= (
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∂ly
∂ei
∗ ei, · · · , 0, 0) ∈ R1∗n (5)

The word-level gradient of t1 in Ix is exactly the dot
product between the word embedding and the gradient w.r.t.
the embedding itself. The proof here can be easily extended
to the case where Ix consists of more than one word.

Let the gradient of the word w be gw. The SignedGI scores
are defined as the opposite of gw, or more formally:

sw = −gw = −
∑n

i=1

∂ly
∂ei
∗ ei (6)

Now we explain the reasons. According to the algorithm of
gradient descent, the parameters should move in the direction
of steepest descent as defined by the negative of the gradient
to minimize the loss. Here, the parameter t1 can only take the
value of 1 or 0, indicating the existence or non-existence of
the word w respectively. Hence, in the case of gw > 0, the
change of t1 from 1 to 0 follows the gradient descent direction



and thus decreases the loss lx. In other words, the removal
of the word w has a positive impact on the performance, or,
the existence of the word w has a negative impact on the
performance when gw > 0. Similarly, the existence of the word
w has a positive impact on the performance when gw < 0. By
convention, the word-level importance score should be positive
if the word contributes to the current prediction, so we arrive
at the final representation for SignedGI as in Equation 6. Note
that the signedness of GI has been neglected in its original
publication [2], and been misunderstood in the subsequent
work [4].

We can also analyze the SA-based methods in a similar
way. Let us take |SA|2 as an example. The removal of a word
identified by |SA|2 can be interpreted as masking its word
embedding with all-zero paddings. In the original embedding
space, the word is represented as a n-dimensional vector,
and the values in various dimensions can be larger than 0 or
smaller than 0. The mask of 0 will make them either follow
or go against the gradient descent direction. As a result, the
overall impact on the loss becomes uncertain, which leads
to the weakness of SA-based methods. In summary, SA-based
methods compute the gradients in the embedding level and the
sum of them to indicate the word importance is inaccurate. In
contrast, SignedGI computes the gradient in the word level
directly, so it should be more faithful than SA-based methods.

IV. EXPERIMENTS

A. Preliminaries

Datasets We use two publicly available text classification
datasets: (1) AG’s News: A topic classification dataset con-
sisting of four categories, including World, Sports, Business,
and Sci/Tech. (2) Internet Movie Database (IMDB): A binary
sentiment analysis dataset on movie reviews.
Models We consider three popular text classification models,
including a linear classifier FastText [18], a convolutional
neural network TextCNN [19] and a bi-directional recurrent
neural network BiLSTM.
Baselines Apart from the gradient-based explanatory methods
as mentioned previously, we introduce two more baselines,
namely Random (RD) and Leave-One-Out (LOO) [13]. The
first baseline simply generates a random permutation of words
to simulate the decreasing order of word importance. It can
be considered as a very uninformative approach. The second
baseline estimates the importance scores by erasing each word
from the input and tracking the effect. The variations of LOO
can be found in [13][20]. In our implementation, we compute
the difference in loss:

sw = ly(x)− ly(x|w=0) (7)

where ly(x) is the original loss and ly(x|w=0) is the loss when
masking the word embedding of w with all-zero paddings.
LOO is very similar to the perturbation experiment itself
(which will be introduced later). Similar baselines have also
been set up in [7][4]. With the possible upper bound and
lower bound on the explanatory ability, we can show the
results of gradient-based methods in a more intuitive way.

The word “possible” means LOO may not produce the best
explanatory ability among existing methods, but it is faithful
enough. Taking it as an upper bound is helpful for us to see
the difference between the results of gradient-based methods
and faithful explanations. So it is with RD.
Metrics In order to evaluate the explanatory ability of different
methods, existing work usually perform the perturbation-based
experiment [7][4], which perturbs the original input in a
word level (e.g., the mask of zero paddings, or the deletion
operation), and subsequently measures the changes on the
performance (e.g., the changes on accuracies, probabilities, or
losses). The word importance increases monotonically with
the change. Based on this observation, an objective quality
measure, AOPC, is proposed in [6] to evaluate ordered collec-
tions of features quantitatively. While originally designed for
images, AOPC can be easily extended to NLP [7]:

AOPC=
1

K + 1

〈
K∑

k=0

fy(x
(0))−fy(x(k))

〉
avg

(8)

where x(k) is the perturbed input with the most important k
words masked with zero paddings, fy(x) is the probability of
the legitimate label y, K is the cut-off point w.r.t. the top-K
important words, and 〈·〉avg represents the average over all
the documents. The perturbation of the most important words
implies a steep decreases of fy(x), so the method with the
better explanatory ability has a larger AOPC.

In fact, AOPC values measure the absolute word impor-
tance. We can also describe the word importance in a relative
way. We take LOO as a well-established benchmark because it
provides the possible upper bound on the explanatory ability,
and we report the Pearson correlation coefficient between the
results of LOO and gradient-based methods.

ρ =

∑m
i=1(ai − a)(bi − b)√∑m

i=1 (ai − a)
2
√∑m

i=1 (bi − b)
2

(9)

where a = (a1, a2, · · · , am) and b = (b1, b2, · · · , bm) are
the score vectors. a and b denote the average operation. If ρ is
close to 1, there is a strong positive linear association between
a and b, indicating that the estimated word importance in b is
as faithful as a and vice versa. On the contrary, if ρ is close
to −1, the relationship is strongly negative.
Others When computing the word importance with explana-
tory methods, existing work use either the predicted class [7]
or the legitimate class [4] as the target class. Since we already
have the ground-truth labels, we use the latter approach.

B. Quantitative Comparison of Explanatory Methods

We quantitatively compare the explanatory methods and
compute their AOPC values varying the cut-off point K from 0
to the maximum document length. Fig. 1 illustrates the results.

Generally speaking, all the SA-based methods suffer perfor-
mance decline definitely compared to SignedGI. The curves of
|SA|1, |SA|2 and |SA|∞ are almost overlapped and indicate
the similar explanatory abilities. This is mainly because the
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Fig. 1. Comparison of the considered explanatory methods in terms of AOPC values. The horizontal axis represents the cut-off point K, and the vertical axis
represents the AOPC value. For each K, a larger AOPC value indicates the better explanatory ability of the top-K important words.
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Fig. 2. Histogram of Pearson correlation coefficient ρ between LOO and gradient-based methods. The horizontal axis represents ρ and the vertical axis
represents the distribution. |SA|1 is selected to represent SA-based methods since the results of others are similar. The fraction of instances whose correlation
is statistically significant (p-value <= 0.05) has been reported in the top-left corner. Note that the p-value here largely depends on the document length, so
the correlation is prone to be weak.

highest gradient magnitude in a particular dimension that
decides the value of |SA|∞ usually contributes most to the
value of |SA|1 and |SA|2. These three methods outperform
the RD baseline by a moderate margin on AG-TextCNN and
AG-BiLTSM, but only tie RD in the other cases. It seems that
their performance are heavily affected by the model or the
dataset. |SA|raw performs worse than other SA-bsed methods.
Sometimes even the RD baseline can beat |SA|raw.

LOO and SignedGI always demonstrate the larger AOPC
values. In other words, they better identify the important
words. Even though we assume that LOO provides the up-
per bound on the explanatory ability in our perturbation-

based experiments, SignedGI outperforms LOO in TextCNN
interestingly. We attribute this observation to the weakness of
LOO, that it computes the contribution of words independently
without considering their mutual effects. Hence, it might result
in a sub-optimal explanation [7]. In most cases, the AOPC
values of SignedGI and LOO are generally comparable, except
for IMDB-BiLSTM where LOO surpasses SignedGI by a
large margin. A possible reason is that the long document
length of IMDB causes the vanishing gradient problem in
the recurrent structure, which exerts a negative impact on the
SignedGI performance. Note that a deep investigation into the
performance difference between LOO and SignedGI is not the
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(a) Visualization of gradient information. Each row represents the continuous word representation, where each cell is the gradient of a particular dimension in
the embedding space.
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(b) Visualization of instance-wise explanations. Each row displays the word-level importance scores for the instance, and the used explanatory
method is indicated on the left.

Fig. 3. Qualitative comparison of explanatory methods. The instance is selected from the test set of IMDB and the target class is “positive”. The red color
indicates a positive score, and the blue color indicates a negative score. The maximum value of IMDB-BiLSTM has been reduced from 5.0 to 1.0 for better
visualizations, otherwise the negative color bar will be overwhelmed.

scope of our paper, and the important thing is that SignedGI
can achieve a good explanatory ability

C. Correlation Between LOO and Gradient-based Methods

The full distributions of the Pearson correlation coefficient
ρ have been illustrated in Fig. 2. The general observation from
the figures is that SignedGI does tend to have a strong positive
association with LOO, and a statistically significant correlation
can be consistently established. The association on IMDB-
BiLSTM seems to be less strong, which is consistent with
the results in Fig. 1 that the difference between SignedGI and
LOO is a bit pronounced on on IMDB-BiLSTM. On the other
hand, the centrality of densities for |SA|1 lies in the range
of 0.2∼0.5 on the dataset of AG, which shows a very weak
positive association with LOO. On the dataset of IMDB, the

centrality hovers around 0.0, indicating almost no association.
The results here further support the fact than SignedGI shows
better explanatory ability compared to SA-based methods.

D. Qualitative Comparison of Explanatory Methods

In this section, we illustrate the gradient information in the
embedding space in Fig. 3 (a), and we visualize the instance-
wise explanations in Fig. 3 (b).

Now we take a look at the results of IMDB-FastText in
Fig. 3 (a). Interestingly, the gradients keep the same in each
dimension, except for the word “is”, whose gradient values
are exactly twice as much as other words. In fact, in the
architecture of FastText, the word embeddings are averaged
into an internal representation, followed by the output layer
directly. As a result, the gradient value of a specific dimension



in the embedding space is always proportional to the word
frequency in the input document. As we can see, FastText
is a pretty compelling counterexample to the effectiveness of
SA-based methods. The words of the same frequency will
always be assigned with the same SA-based scores, but they
are embedded in various continuous representations and go
through the same linear layer, meaning that their contributions
to the final prediction are different in reality.

In Fig. 3 (a), the results does not have a clear focus in the
heatmap of IMDB-TextCNN. In IMDB-BiLSTM, the words
“bad”, “home” and “video” stands out, but the target label is
“positive” and the model attaches almost zero emphasis on
the positive sentiment word “great”. Note that the explanatory
methods only reflect the model’s own “view” on the model
prediction rather than human reasoning, so it is possible that
“great” does not play an important role in the binary sentiment
analysis task. However, as we will show later, “great” does
have a strong positive impact in this model, and the heatmap
here indeed fails to capture the relevant information.

In Fig. 3 (b), let us focus on the results of LOO firstly.
It can be clearly seen that “great” has a large positive score
across all three models, meaning that “great” contributes a lot
to the target label. On the contrary, “bad” is always assigned
with a large negative score, indicating that it has a negative
impact to the current prediction. The results agree with human
observations, that “great” has a positive impact and “bad” has
a negative impact on the prediction of positive sentiments.
Not surprisingly, the results of SignedGI are very close to
LOO, except for the case on BiLSTM where SignedGI misses
the word “great”, which also agrees with previous results
that SignedGI works less well on BiLSTM. Nevertheless,
SignedGI still filters out the important words in the qualitative
experiments and provides the reasonable signed explanations.
On the other hand, the results of SA-based methods are less
focused. Sometimes they cannot select the important words
correctly, or cannot distinguish between negative and positive
impacts.

V. CONCLUSION

Gradient-based explanatory methods have been widely used
in NLP nowadays. In this paper, we review existing methods
and discuss their practical implications. We propose the signed
version of GI, namely SignedGI, and show the weakness of
SA-based methods. We conduct comprehensive experiments to
evaluate different methods, and the empirical results demon-
strate that SignedGI significantly outperforms SA-based meth-
ods in explanatory ability. We hope our work helps researchers
to obtain the more accurate instance-wise explanations via
gradient-based explanatory methods in NLP.
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[20] Á. Kádár, G. Chrupala, and A. Alishahi, “Representation of linguistic
form and function in recurrent neural networks,” Computational
Linguistics, vol. 43, no. 4, 2017.


