
Model-Agnostic Local Explanations with Genetic
Algorithms for Text Classification

Qingfeng Du
School of Software Engineering

Tongji University
Shanghai, China

du cloud@tongji.edu.cn

Jincheng Xu
School of Software Engineering

Tongji University
Shanghai, China

xujincheng@tongji.edu.cn

Abstract—The interpretability of black-box text classification
models has been receiving widespread attention in recent years
accompanying the growing popularity of artificial intelligence.
To garner user trust on the model’s decision-making process, it
is imperative to provide faithful instance-wise justifications and
rationalize the prediction in a human-readable way. In this paper,
we address this challenge by introducing Locally Universal Rules
(LURs) as model-agnostic local explanations. LURs are a subset
of input words sufficient for the model to arrive at a particular
prediction, even if the rest of words are perturbed slightly. We
show the identification of the optimal LUR is NP-complete.
Consequently, we propose a population-based algorithm LUR-
Locator to perform the constrained optimization efficiently. We
conduct extensive experiments to evaluate our algorithm on a
cross product of well-established text classification datasets and
models. The empirical results demonstrate that LURLocator can
efficiently generate high-quality local explanations, as compared
to existing explanatory methods.

Index Terms-Model-Agnostic Explanations; Local Explana-
tions; Genetic Algorithms; Text Classification

I. INTRODUCTION

In the era of Artificial Intelligence (AI), machine learning or
deep learning models have been widely deployed in a variety
of real-world applications. However, due to the increasingly
complex architectures, most models act as a black box without
any clear explanations. The lack of interpretability can pose
potential threats to the lives of individuals in today’s AI
systems [1]. To establish widespread public trust on model’s
behaviors, it is necessary to develop explanatory methods to
provide insights into these opaque model.

One of the simplest ways to understand the decision-
making process is to select a subset of input features as local
explanations [2], such as a list of words for texts, a group
of super-pixels for images or a set of if-else rules for tabular
data, where the slight perturbations on the rest of features can
hardly change the current prediction. These local explanations
are presented in a feature-selective way [3], where a subset
of input features responsible for the model’s prediction are
selected. Compared to feature-additive local explanations [3]
which compute the numerical weights for each input feature

This work was supported by National Key R&D Program of China (Grant
No. 2020YFB2103300)

DOI reference number: 10.18293/SEKE2021-040

as their separate contributions to the model’s decision and
provide too much redundant information, the feature-selective
local explanations are very concise and straightforward. They
are easy to understand even by non-expert users. For example,
users may want to understand why their comments on social
medias are judged as offensive sentences by the AI system,
and by feature-selective local explanations they can quickly
locate the key words and modify them.

In this paper, we introduce Locally Universal Rules (LUR)
as model-agnostic local explanations from the perspective of
feature-selection for text classification tasks, where “locally”
means these explanations can only approximate the model in
the neighborhood of a particular data point rather than keep
faithful globally [4][5], and “universal” means the model pre-
diction will keep the same in the perturbed distribution as long
as these local explanations hold. Subsequently we propose
a population-based optimization algorithm, LURLocator, to
reduce the search space greatly when identifying the optimal
LUR. We shed light on Natural Language Processing (NLP) as
the driving domain here to present LURs and LURLocator in
details, but our work can be easily extended to other domains,
such as image data or tabular data.

II. RELATED WORK

Interpretable AI systems have been gaining the spotlights
due to its significant value in human trust nowadays [4].
Some work perform a deep investigation on the important
building blocks of model architectures such as attention [6],
or on a specific family of models, such as RNN [7] and
CNN [8]. Usually, model-specific explanations are more ap-
plicable for AI experts to learn the intrinsic mechanisms and
debug the model [2]. The second group offer transparency
on any deep learning models. They are either implemented
with full access to internal parameters [9][10], or in a black-
box scenario [11]. The third group zoom in on model-agnostic
explanations [4][12], and they can be used to interpret either
machine learning models or deep learning models.

Local explanations are closely related to model-agnostic
explanatory methods. However, when the term of local ex-
planations is mentioned in literature, it usually reflects diverse
motivations when dealing with user-specific requirements, and
consequently researchers establish different but sometimes

t1

t2

X3

X2

X1

Fig. 1. A toy prediction function for classification. The two axes are separate
input dimensions, the black curve is the decision boundary, and the blue or
red circles are documents belonging to two different classes.

overlapping definitions. In [13], local explanations are referred
to as rationales which are short and coherent, yet sufficient
pieces of text for predictions in NLP, and an encoder-generator
framework is proposed to automatically generate rationales to
regularize the model during training. In [4], LIME is presented
to learn an interpretable model by locally approximating a
particular data point. In [14], local explanations are con-
sidered as prediction interpretability (as opposed to model
interpretability), and a variety of local explanatory methods
are evaluated with human judgements. Anchors are formally
introduced in [12] as local and sufficient conditions so that the
slight perturbations on the rest of the features have negligible
effects on the prediction. sufficient input subsets are presented
in [2] as a minimal input pattern to make sure that the model
can produce the same prediction even though all other feature
values are lost. Among all the previous work, the definition
of LURs is most similar to that of anchors [12]. We will
demonstrate the comparison between them in experiments.

III. PROBLEM SETUP AND ANALYSIS

Firstly we present the definition of perturbation distribution:

Definition 1 (Perturbation Distribution). Let X =
(t1, t2, · · · , tn) be an input document consisting of n words,
and A = X ∗ I be a set of words where I = {0, 1}n indicates
the presence or absence of each word. The perturbation dis-
tribution DX(·|A) is a conditional distribution of documents.
Suppose we have a document X ′ = (t′1, t

′
2, · · · , t′n) sampled

from DX(·|A). For each t ∈ X ∧ t ∈ A, we have ti = t′i
where i is the position of t in X . For each t ∈ X ∧ t 6∈ A, we
have L(ti, t′i) < ε where L is the distance of words and ε is
a numerical threshold.

Refer to Figure 1 for an example. In the neighborhood of
X3, the vertical dashed line is the perturbation distribution
DX(·|A = {t1}) and the hollow circles are possible docu-
ments X ′ sampled from DX(·|A = {t1}).

In perturbation-based local explanations, L(ti, t′i) should be
treated as the distance of words in a semantically meaningful
space even when the words are embedded in another represen-
tation space in the model, since the perturbation distribution

DX(·|A) should be interpretable to human eyes [4][12]. In
reality, when drawing samples from DX(·|A), we have a set of
candidate synonyms in the vicinity of t. It is worth mentioning
that a candidate word at the edge of the chosen area is likely
to have a large semantic distance from t, and consequently the
sampling noise will be introduced. To improve the robustness
of DX(·|A) against the sampling noise, we use the softmax
function parameterized by temperature T to compute the
normalized probability of words sampling:

p(t′i|ti) =
exp(L(ti, t

′
i)/T)∑

exp(L(tj , t′j)/T)
(1)

Based on DX(·|A), the LUR can be defined as follows:

Definition 2 (LUR). Let F : X → R1 be a function
representing a text classification model. Suppose D′A =
{X ′|X ′ ∼ DX(·|A)} is a dataset approximating the true
distribution of DX(·|A). The locally universal rule (LUR),
denoted by A, is such a set of words satisfying Acc(A) =
ED′

A
[F (X) = F (X ′)] ≥ τ , where Acc(A) denotes the perfor-

mance achieved by A and τ ∈ [0, 1] is a specified threshold
serving as the lower bound on the expected performance.

We show the existence of the LUR as follows:

Proposition 1. For a document X , a text classification model
F and a threshold τ , at least one LUR exists.

Proof: Assume to the contrary that no LUR exists for some
X , F and τ . Assign X to A, and we have Acc(A) =
ED′

A
[F (X) = F (X ′)] = E{X}[F (X) = F (X ′)] = 1 ≥ τ .

Therefore A is a valid LUR, and the original assumption must
be false. So Proposition 1 is true.

Refer to Figure 1 for better understandings. Suppose τ =
0.9. For X1, since Acc(A = {t2}) ≈ 0.5 < τ , {t2} is not a
valid LUR. There only exists one LUR A = {t1}. Similarly,
A = {t1} or {t2} for X2, and A = {t1, t2} for X3.

Subsequently, we define the optimal LUR as follows:

Definition 3 (The Optimal LUR). Suppose S : A → R1

be a function representing the number of words in A. For an
optimal LUR A, it should satisfy the following conditions: (1)
Acc(A) ≥ τ (2) @A∗, Acc(A∗) ≥ τ ∧ S(A∗) < S(A).

The LUR with a shorter length is preferred as the optimal
LUR for two reasons: (1) Local explanations should be concise
for users to understand [2]. (2) A shorter local explanation is
expected to cover more instances in realistic settings [12].

Now we present the identification of the optimal LUR as a
constrained optimization problem formally:

Definition 4 (The Identification Problem). For an input doc-
ument X , the identification of the optimal LUR is to find such
a minimal set of words A, so that A = argminA⊆X S(A),
subject to Acc(A) ≥ τ .

We show this problem is computationally intractable:

Proposition 2. The identification of the optimal LUR is an
NP-complete problem.

Proof: We prove that a simpler version of the original problem
can be reduced to the NP-complete subset sum problem [15].
The simpler problem is A = argmaxA⊂X Acc(A). Let the
set of non-negative values be {v1, v2, · · · , vn}, and the target
be K. Let the embedding of ti ∈ X be E(ti) = (vi, 0, · · · , 0)
and the embedding of its synonym t′i ∈ X ′ be E(t′i) =
(0, 0, · · · , 0). The classifier is defined as follows:

F (X) = g(

n∑
i=0

∑
j

E(ti)j)

g(a) =

{
0 a 6= K
1 a = K

(2)

where g(x) is a step function. To solve the problem, we have
to find a set of words as A, so that the sum of all the values in
the embedding space equals to K exactly. Now the simplified
problem suffices the subset sum problem. Hence, we have that
the original identification problem is NP-complete.

IV. THE PROPOSED ALGORITHM

The possible search space of different combinations of
words grows exponentially with the document length if we
aim to identify the optimal LUR, and it is impossible to
deal with the heavy computational burden in practice. Instead
of an exhaustive search, we develop a heuristic algorithm,
LURLocator, following the principle of genetic algorithms,
to search for a near-optimal solution efficiently. The key
operators include initialization, fitness, selection, crossover
and mutation. The pseudo-code of LURLocator is shown in
Algorithm 1, and the framework is illustrated in Figure 2.

The first step of our algorithm is to initialize an empty set
D′ (line 1), which is the set of instances sampled from the
perturbation distribution and will be iteratively expanded later.
All the LURs will be evaluated on D′ to estimate the accuracy.

Line 2-3 implements the initialization operator, returning an
array of chromosomes as the initial population P0. We select
one word ti%n (% is the modular operation) as the LUR Ai

in each chromosome P0
i . The chromosome is encoded as a

binary vector of length n, where the words in Ai take the
value of 1 and others take 0.

The evolution continuous for kgen generations in an iterative
process to search for the near-optimal LUR (line 4).

In the fitness operator (line 5-8), we measure the quality
of the population Pi−1 in accuracy. Suppose D′ has also
been encoded with binary vectors, where the words in X
take the value of 1 and others take 0. Firstly we count the
number of X ′ ∈ D′Aj

in D′, and at least B1 instances are
expected to estimate the accuracy of Aj (line 8). If there
are not enough instances, we sample B1 instances from the
perturbation distribution DX(·|Aj) immediately to expand D′

(line 6-7). The prediction results through F will be recorded,
so that we do not have to perform repetitive predictions for
the same instance in the subsequent iterations.

Algorithm 1 The LURLocator Algorithm
Input: Input document X = (t1, t2, · · · , tn); The function

F as the text classification model; The function S as the
number of words in a LUR; Batch sizes B1, B2; The
expected performance τ ; Number of generations kgen;
Size of the population kpop; Number of parents kpar;
Number of mutations kmut

Output: The near-optimal LUR A.
1: D′ = ∅
2: for i = 1, 2, · · · , kpop do
3: P0

i ← Encode Ai = {ti%n} ⊆ X as a binary vector
4: for i = 1, 2, · · · , kgen do
5: for all Aj ∈ Pi−1 do
6: if D′Aj

.size < B1 then
7: D′Aj

← Sample B1 instances from DX(·|Aj)

8: Acci(Aj)← ED′
Aj
[F (X) = F (X ′)]

9: Fiti ← {Pi−1
j |Acci(Aj) ≥ τ}

10: if Fiti.size ≥ kpar then
11: Fiti ← Sort Fiti so that ∀j1 ≤ j2, S(Aj1) ≤

S(Aj2)
12: Parenti ← Fiti1, F it

i
2, · · · , F itikpar

13: else
14: Pi−1 ← Sort Pi−1 so that ∀j1 ≤ j2, Acci(Aj1) ≥

Acci(Aj2)
15: Parenti ← Pi−1

1 ,Pi−1
2 , · · · ,Pi−1

kpar

16: for j = 1, 2, · · · , (kpop − kpar) do
17: Childij ← Randomly select two individuals from

Parenti and recombine them
18: Childij ← Randomly flip kmut genes in Childij
19: Pi ← Parenti + Childi

20: for all A ∈ Parentkgen do
21: D′A ← Sample B2 instances from DX(·|A) to D′

22: Acc(A)← ED′
A
[F (X) = F (X ′)]

23: A← argminA∈ParentkgenS(A), subject to Acc(A) ≥ τ
24: return A

When we attempt to select D′Aj
from D′, we have to com-

pare each instance in D′ with the encoded chromosome Pi−1
j

to see whether they match with each other. The comparison
of 0/1 bits runs in O(n ×D′.size) time. Given a large n or
D′.size, the process will be time-consuming. To decrease the
number of comparisons and accelerate the selection of D′Aj

,
we propose an alternative approach based on inverted index.
We transpose the matrix of D′, so that each row represents
a word in X and each column represents an instance in D′.
For each word in Aj , we select the corresponding rows in the
transposed matrix and multiply these 0/1 rows in an element-
wise manner. In the resulting vector of length D′.size, the
elements are equal to 1 only if all of its multiplicators are
equal to 1. Refer to the second subgraph of the second row
in Figure 2 for an example, where Aj = {t4, t5}. When we
compute the element-wise multiplication of t4 = (0, 1, ..., 0)

1.Initialization

0P ={1 0 0 0 0 A={t1}

0 1 0 0 0 A={t2}

…

0 0 0 0 1 A={t5}

2.Fitness

iAcc (Aj)

3.Selection

={ 0 1 0 0 0

0 0 0 0 1

…

iParent

5.Mutation 4.Crossover

={0 1 0 0 1

0 0 0 0 0

…

iChild
0 1 0 0 0

0 0 0 0 1={0 1 1 0 1

0 1 0 0 0

…

iChild
0 1 0 0 1

0 0 0 0 0

P i= Parenti + Childi

t1 t2 t3 t4 t5

0 0 1 0 0

0 0 0 1 1

…

1 1 0 0 0

t1: 0 0 … 1

t2: 0 0 … 1

t3: 1 0 … 0

t4: 0 1 … 0

t5: 0 1 … 0

Aj={the, food}={t4, t5}

D′ Aj
= {

t4,* t5 = (0 1 … 0)

Encode

Inverted

Index

D′ 2 , ⋯}

D′ 2

D′ 2
D′ 1

D′ 1

D′ =
“He didn’t like this bread”

“She didn’t enjoy the food”

…

“I don’t love that lunch”
{

Select D′ Aj From D′

X = “I don't like the food”
Perturbed

Distribution

Fig. 2. The framework of LURLocator

and t5 = (0, 1, ..., 0) in the transposed matrix and get the
result of (0, 1, ..., 0), only the second element (indicating D′2)
is equal to 1, meaning that D′2 matches Aj = {t4, t5} and
belongs to D′Aj

. In other words, the index of the element
equal to 1 in the resulting vector is the position of the instance
in D′ that belongs to D′Aj

. This alternative approach runs
in O(S(Aj) × D′.size) time and achieves a speed-up of
(n/S(Aj)−1)x compared to the original implementation. The
gains in efficiency is especially significant when S(Aj)� n.

We implement the selection operator in line 9-15. We filter
out the chromosomes whose LURs reach the performance
threshold of τ , denoted as Fiti (line 9). If the size of Fiti

is larger than kpar, it means that we already have enough
chromosomes as parents, from which we can select the ones
encoded with the kpar shortest LURs as Parenti for futural
breeding (line 10-12). Otherwise, we sort all the chromosomes
in Pi−1 according to Acci, and retrieve the ones achieving the
kpar best accuracies (line 13-15). This branch is to make sure
that if there are not enough qualified chromosomes achieving
the expected fitness, we can still preferentially select more fit
individuals with as high accuracy as possible.

In crossover (line 17), a set of children will be generated by
randomly choosing pairs of parents and performing crossover
operations where the cut point is at the center of each parent. In
this way, the new offspring has the genes from two different
parents whose characteristics can be partly inherited. In the
stage of mutation (line 18), kmut genes in the children in the
representation of binary vectors will be flipped (1 to 0 or 0 to

1). Both crossover and mutation operators ensure the diversity
of individuals in the subsequent new population, so that we
can explore more candidate solutions.

Both Parenti and Childi will be added together as the ith
generation of the population (line 19), for the purpose that both
the qualified solutions (Parenti) and the possible candidate
solutions (Childi) can be safely preserved.

After kgen generations, we select the optimal LUR from
Parentkgen with the shortest length and the expected accuracy
(line 20-24). To avoid over-fitting on D′, we re-sample B2

instances as D′Ai
to evaluate each possible LUR. If no LUR

satisfies the expected τ , we return A = X as the near-optimal
LUR according to Proposition 1. If more than one LUR meets
the criteria, we return the LUR with the highest accuracy.

V. EXPERIMENTS

A. Experimental Setup

Datasets: We prepare four different benchmarking datasets
widely used in the task of text classification, including the
sentence polarity dataset from Rotten Tomatoes web pages
(RT) [16], AG’s News (AG), DBPedia (DBP) and Yahoo
Answers (Yah) [17].
Machine Learning Models: We train three different machine
learning models, including logistic regression (LR), multino-
mial naive bayes (NB) and support vector machine (SVM).
We use Anchor [12] as the baseline to generate the local
explanations here. As we will show later, Anchor is very
inefficient when dealing with long documents, so we perform
the comparisons on RT whose documents are shorter.
Deep Learning Models: We choose two popular text clas-
sification models, including FastText and TextCNN, as the
target deep learning models. Later, we will evaluate some
gradient-based explanatory methods specially designed for
neural networks, so we distinguish the experiments on deep
learning models from the traditional machine learning models.
Algorithm Details: We set B1 = 100, B2 = 500, kgen =
10, kpop = 10 ∗ n, kpar = n, kmut = 1, where n is the length
of the document. For Yah dataset, we set kgen = 20 since
it consists of longer documents. We present some practioners’
guides for the fine-tuning of parameters: B1 and B2 are closely
related to the trade-off between the algorithm’s efficiency and
the LUR’s accuracy estimation. A larger kgen improves the
possibility of identifying the near-optimal LUR whose natural
length is long; A larger kpop contributes to finding the LUR
as short as possible; The size of kpar should be at least n
to ensure a good start point; We suggest setting kmut = 1
to ensure a steady evolution. We use the 100 nearest words
in the pre-trained embedding space from the vocabulary of
each dataset to generate the perturbation distribution instead
of setting a fixed ε. The performance threshold τ is set to 0.9.

B. Evaluating LURs in Machine Learning

On the test set of RT, we generate LURs with our proposed
LURLocator algorithm. We also generate anchors [12] with
their original implementations, including the greedy-search

TABLE I
COMPARISONS BETWEEN LUR AND ANCHOR EXPLANATIONS IN MACHINE LEARNING.

Model LUR Anchor (Greedy Search) Anchor (Beam Search)
Accuracy Length Time Accuracy Length Time Accuracy Length Time

LR 93.31% 3.15 2.02s 92.19% 2.93 4.26s 91.38% 2.88 15.26s
NB 94.02% 3.46 2.03s 93.04% 3.55 5.36s 92.54% 3.39 21.94s

SVM 92.90% 3.63 1.99s 92.01% 3.43 5.21s 91.21% 3.34 22.01s

TABLE II
EXEMPLARY LOCAL EXPLANATIONS FROM THE TEST SET OF RT.

Document Model LUR Anchor (Greedy Seach) Anchor (Beam Seach)
Two generations within one family
test boundaries in this intelligent

and restrained coming-of-age drama.

LR intelligent family, intelligent intelligent, age
NB boundaries boundaries within

SVM drama within, boundaries, drama within, boundaries, intelligent
The beautiful, unusual music
is this film’s chief draw, but

its dreaminess may lull you to sleep.

LR beautiful beautiful,films beautiful, may
NB chief unusual, chief beautiful, chief

SVM beautiful beautiful, music, draw beautiful, draw

algorithm and the beam-search algorithm. For each local ex-
planation A, we evaluate it on D′A which consists of 10000 test
instances sampled from DX(·|A)}. The average test accuracy
has been reported in Table I. Besides, we also report the
average length of local explanations as well as the average
time for the generation of one local explanation. The time cost
of searching synonyms in the vocabulary has been excluded
from the reported time, because synonyms can be identified
in advance and saved in a hash table.

It can be clearly seen that our algorithm produces reasonable
accuracy gains compared to the two baselines. The average
length is comparable for LURs and anchors while significantly
shorter than the average document length, so both local expla-
nations achieve a similar level of conciseness and coverage in
practical use. In terms of the running time, LURLocator leads
to better efficiency compared to the two baselines.

Since genetic algorithms are stochastic and it is impossible
to report the average-case complexity for LURLocator, we
analyze it in the worst case. The time overhead mainly depends
on model predictions. If we need to sample a new batch of
instances every time, model predictions run in O(kgen ∗kpop ∗
B1 + kpar ∗ B2) time. Given our suggested parameters, O
scales linearly with the document length n.

To further investigate the relationship between the document
length and the required time, we report the distribution of time
cost in Figure 3. For anchors, we only report the greedy-
search algorithm since the beam-search algorithm requires
much more time. Along the vertical direction, most green
markers are above the red markers, and the distribution of
green markers is more discrete. We attribute this observation
to the fact that LURLocator is more efficient and stable when
dealing with a fixed-length document. Along the horizontal
direction, while the time cost of both algorithms keeps increas-
ing with document length, our algorithm shows slower growth
definitely with a higher Pearson’s correlation coefficient. The
results demonstrate that our algorithm has better scalability
when dealing with longer documents.

We display some examples in Table II. Interestingly, the

0 5 10 15 20 25 30 35 40 45 50
Document Length

0

10

20

30

40

Ti
m

e
Co

st
 (s

)

LURLocator for LURs
Greedy Search for Anchors

Fig. 3. The required time for the generation of local explanations on the test
set of RT. The model is LR here. Each scatter point represents a test sample.
The horizontal axis represents the document length, and the horizontal axis
represents the time cost. (LURLocator: Pearson ρ = 0.797, p-value=1.27e-23;
Greedy Search: Pearson ρ = 0.589, p-value=1.52e-98)

selected words from LURs and anchors are often overlapped
with each other. A possible explanation is that these words
contain the most important information for the current predic-
tion. Besides, the local explanations across different models
vary a lot. In fact, local explanations only reflect the model’s
decision-making process rather than human reasoning, and
different models can have their own views on the decision
boundary, which results in different local explanations for
the same instance. It is worth mentioning that the examples
themselves can not indicate which explanatory method is more
faithful, since the objective judgments does not necessarily
align with the true model views.

C. Evaluating LURs in Deep Learning

We compare LURLocator with one perturbation-based ex-
planatory method LIME [4] and three feature-additive meth-
ods popular in deep learning, including sensitivity analysis
(SA) [9], gradients × inputs (GI) [10] and leave-one-out
(LOO) [11]. Since the last three methods assign importance
scores to every input features, we select the most salient words

TABLE III
COMPARISONS BETWEEN LURS AND OTHER LOCAL EXPLANATIONS IN DEEP LEARNING.

Dataset Model Length LURLocator LIME Rand SA GI LOO

RT. FastText 1.79 99.04% 44.64% 44.92% 45.21% 45.50% 45.21%
TextCNN 1.71 98.47% 58.62% 54.69% 60.34% 64.94% 64.37%

AG. FastText 2.42 95.48% 58.65% 57.15% 57.54% 62.31% 63.29%
TextCNN 2.29 96.52% 75.43% 71.40% 76.82% 78.60% 77.95%

DBP. FastText 2.24 97.47% 92.89% 92.38% 92.71% 94.29% 93.92%
TextCNN 1.96 97.05% 92.07% 91.19% 92.64% 93.67% 93.89%

Yah. FastText 6.88 93.64% 40.17% 38.96% 39.17% 41.83% 40.70%
TextCNN 7.95 93.77% 75.86% 71.25% 78.89% 80.87% 79.18%

as sufficient conditions whose length is the same as LUR. We
also set a Rand baseline to randomly select words as local
explanations. Table III reports the average test accuracy and
the average length of LURs.

We can observe that the average length of LURs on Yah
is longer than other datasets because the average document
length on Yah is much longer. In fact, if we increase kgen or
kpop, the search space of the optimal LUR will be expanded,
and consequently a shorter average length can be achieved.
Another interesting observation is that the average length of
LURs on RT here is significantly shorter than the results in
Table I. A possible reason is that the deep learning models
based on neural networks are more robust to perturbations than
the traditional machine learning models, so a shorter LUR is
enough to achieve a high accuracy.

In terms of test accuracy, LURLocator always outperforms
alternative solutions by a large margin. The results can be
further improved if we increase the threshold τ . The Rand
baseline achieves a remarkable result (over 90%) on DBP. The
intuitive explanation is that the decision boundary to segment
the data points on DBP is extremely robust (Refer to Figure 1
where X2 safely locates inside the decision boundary), so
that slight perturbations can hardly change the prediction.
In fact, the accuracy achieved by Rand will be decreased
if we increase the number of synonyms in the perturbation
distribution intentionally. From the results, it can be concluded
that LURs excel at providing sufficient justifications, while
existing feature-additive explanatory methods have trouble
selecting such a set of words.

D. Conclusions

In this paper, we shed light on the problem of model
interpretabilty for text classification and introduce locally
universal rules (LURs), which are a minimal set of input
features sufficient to rationalize the instance-wise predictions.
We propose LURLocator based on genetic algorithms to iden-
tify the optimal LUR. Extensive experiments are performed
on a variety of models and datasets to evaluate the proposed
algorithm as well as the generated LURs. The results show
that our algorithm leads to better performance.

REFERENCES

[1] V. D. S. Silva, A. Freitas, and S. Handschuh, “On the
semantic interpretability of artificial intelligence models,” CoRR,
vol. abs/1907.04105, 2019.

[2] B. Carter, J. Mueller, S. Jain, and D. K. Gifford, “What made you do
this? understanding black-box decisions with sufficient input subsets,”
in The 22nd International Conference on Artificial Intelligence and
Statistics, AISTATS 2019, 2019, pp. 567–576.

[3] O. Camburu, E. Giunchiglia, J. Foerster, T. Lukasiewicz, and
P. Blunsom, “Can I trust the explainer? verifying post-hoc explanatory
methods,” CoRR, vol. abs/1910.02065, 2019.

[4] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should I trust you?”:
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 1135–1144.

[5] G. Plumb, D. Molitor, and A. S. Talwalkar, “Model agnostic supervised
local explanations,” in Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, 2018, pp. 2520–2529.

[6] S. Serrano and N. A. Smith, “Is attention interpretable?” in Proceedings
of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, 2019, pp. 2931–2951.

[7] W. J. Murdoch, P. J. Liu, and B. Yu, “Beyond word importance:
Contextual decomposition to extract interactions from lstms,” in 6th
International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, 2018.

[8] A. Jacovi, O. S. Shalom, and Y. Goldberg, “Understanding convolutional
neural networks for text classification,” in Proceedings of the
Workshop: Analyzing and Interpreting Neural Networks for NLP,
BlackboxNLP@EMNLP 2018, 2018, pp. 56–65.

[9] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen,
and K. Müller, “How to explain individual classification decisions,” J.
Mach. Learn. Res., vol. 11, pp. 1803–1831, 2010.

[10] M. Denil, A. Demiraj, and N. de Freitas, “Extraction of salient
sentences from labelled documents,” CoRR, vol. abs/1412.6815, 2014.

[11] J. Li, W. Monroe, and D. Jurafsky, “Understanding neural networks
through representation erasure,” CoRR, vol. abs/1612.08220, 2016.

[12] M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision
model-agnostic explanations,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), 2018, pp.
1527–1535.

[13] T. Lei, R. Barzilay, and T. S. Jaakkola, “Rationalizing neural
predictions,” in Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2016, 2016, pp.
107–117.

[14] D. Nguyen, “Comparing automatic and human evaluation of local expla-
nations for text classification,” in Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers),
2018, pp. 1069–1078.

[15] K. G. Murty and S. N. Kabadi, “Some np-complete problems in
quadratic and nonlinear programming,” Mathematical Programming,
vol. 39, no. 2, pp. 117–129, 1987.

[16] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales,” in ACL 2005,
43rd Annual Meeting of the Association for Computational Linguistics,
University of Michigan, USA, 2005, pp. 115–124.

[17] X. Zhang, J. J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Annual Conference on Neural
Information Processing Systems, 2015, pp. 649–657.

