
A recommender system to assist conceptual modeling with UML

Maxime Savary-Leblanc∗,∗∗ Xavier Le Pallec∗ Sébastien Gérard∗∗

∗Univ. Lille, UMR 9189 CRIStAL, F-59000 Lille, France ∗∗CEA LIST, Palaiseau, France
E-mail: maxime.savary-leblanc@univ-lille.fr

Abstract
This paper explores the understudied field of conceptual

modeling assistance. More specifically, we focused on the
design and application of recommender systems as software
assistants for conceptual modeling. Prior work on such sys-
tems has shown that trust plays a key role in the acceptance
and exploitation of such systems. Consequently, as a starting
point of our research, we applied established methods for con-
structing multi-criteria recommender systems (MCRS) to con-
ceptual modeling in a way which could foster the emergence
of trust. Finally, we chose supervised-learning techniques to
refine and customize the recommendations generated by these
systems. To help us determine the feasibility and practicality
of our approach, we designed and implemented a prototype
system that assists conceptual modeling with UML. Our sys-
tem currently recommends class attributes when constructing
UML class diagrams. A preliminary evaluation of this tool
indicated a strong match between the recommendations pro-
vided by our system and personal choices made by the partic-
ipants.

1 Introduction
Domain knowledge is a prerequisite to produce software

design and implementation tailored to stakeholders’ require-
ments. One common way to formalize that knowledge is
achieved through conceptual models, which are commonly
used to describe or simulate a system. Acquiring such ex-
pertise requires to discuss with knowledgeable stakeholders
and/or to get an access to useful documents, which both might
not always be easily accessible.

In the same time, more and more model samples can be
gathered from multiple sources, what represents an increas-
ing number of already formalized and accessible knowledge
pieces. For example, some companies keep archives of inter-
nal model repositories [1]. There also exist numerous open
source projects that contain models [2] while some model-
ing tools even offer the possibility to create public projects
that are free to browse. However, when it comes to hundreds
of thousands models, the time spent browsing them manually

DOI reference number: 10.18293/SEKE2021-039

and filtering the relevant ones seems unreasonable given the
original problem.

One facility for exploiting this large amount of data is to
build recommender systems [3] whose recommendations are
based on such data. In our work, we decided to investigate the
use of recommender systems to support the conceptual mod-
eling activity. Our general research objective is to develop
a comprehensive general methodology for designing recom-
mender systems for conceptual modeling. As an initial step,
we first developed a working prototype that can serve as a
testbed to help in evaluating and refining our approach. The
specific objective of this phase of our work was to develop a
Multi-Criteria Recommender System (MCRS) that generates
semantically meaningful attribute recommendations for UML
classes. We used Roy’s method to develop our approach and
then performed an initial empirical evaluation as described in
Section 5.

To the best of our knowledge, this is the first semantic rec-
ommender system for UML class modeling. As such, we feel
that it is an important contribution to the modeling commu-
nity. It provides a means of assisting the modeling process
– something that could particularly benefit less experienced
modelers. This can, in turn, lead to a broader adoption of
model-based software engineering by software developers. In
addition and in line with our overall objective, we believe that
the approach applied here can be extended to cover other types
of recommender systems to be used in modeling.

The remainder of the paper is organized as follows. In
Section 2, we explain our approach, while in Section 3, we
identify and formalize suitable recommendation criteria. A
criteria aggregation method is described in Section 4. Section
5 presents the prototype tool and an initial experiment used to
evaluate its suitability and effectiveness. Related work is cov-
ered in Section 6. Finally, Section 7 provides a brief summary
followed by a discussion of potential future work.

2 Methodology
Most recommender systems implement one of the fol-

lowing three common recommendation methods: collabora-
tive filtering [4], content-based techniques [5], or knowledge-
based techniques [6]. Each has advantages and limitations.
Common limitations include overspecialization, cold-start is-

sues, and scalability [3]. To deal with these, different ad-
vanced recommendation approaches have been proposed, in-
cluding multi-criteria recommender systems (MCRS) [7].
The quality of modeling recommendations invariably depends
on more than one criterion. Thus, no single-criterion recom-
mendation approach is likely to be adequate, which is why we
chose to build our system as an MCRS. Such systems involve
multiple criteria in selecting the final set of ranked recom-
mendations. Adomavicius and Kwon [8] identify multiple se-
lection techniques, such as rating-based, multi-objective op-
timization, or outranking relations. Because the user’s goal
cannot be inferred with certainty, and because extracting out-
ranking relations between attributes seems semantically unre-
liable, we applied the rating-based selection technique. Thus,
we use scores to determine the candidate attributes to recom-
mend.

We followed Roy’s methodology for analysing multi-
criteria decision-making problems [9], as suggested by [8] to
build our system. To do so, we first define the object of deci-
sion of our system, then a coherent family of criteria to assess
candidate attributes, and finally a utility function which aggre-
gates single criterion into a global score. The object of deci-
sion consists of all context elements that might be involved
in deciding whether a candidate attribute represents an appro-
priate recommendation, as follows: attributes (i) selected by
their nature or their presence in the hierarchy of classes or
packages, (ii) represented in class diagrams, and (iii) tailored
to the user of the modeling tool, who may have previous expe-
rience, personal preferences, and various levels of propensity
to trust. All the candidate attributes can then be filtered and
ranked based on the utility function scores (see Section 4), ac-
cording to how well they perform on each criteria defined in
Section 3.

3 Criteria formalisation
In this section, we describe the criteria and their rationale,

on which each recommendation is assessed.

3.1 In-class recurrence criterion (C1)
In the following, the term ’owner class’ of an attribute

refers to the class that directly owns that attribute.
Rationale. The attribute is often present in classes with

the same name as the owner class.
Selection filter. Attributes owned by classes with the same

name as RC.
Rating approach. The most frequently occurring candi-

date gets the highest score and the least frequently occurring
candidate gets the lowest non-null score. Candidates that do
not appear in a class with the same name as the owner class
get a null score.

3.2 In-class exclusivity criterion (C2)
Rationale. The attribute is only present in classes with the

same name as the owner class.

Selection filter. Attributes owned by classes with the same
name as RC.

Rating approach. Candidates which only appear in
classes with the same name as the owner class get the highest
score. Those that appear equally in all classes of the data set
get the lowest score. Candidates that never appear in a class
with the same name as the owner class get a null score.

3.3 Attribute synergy criterion (C3)
Rationale. The attribute is often present along with other

attributes of the owner class.
Selection filter. Attributes connected to attributes owned

by RC through their presence in a common class. Common
classes are those classes that share the same name.

Rating approach. The more often a candidate and an at-
tribute of RC appear together in a class, the higher the score.
The more that a candidate appears together with different at-
tributes of RC, the higher the score. Candidates which never
appear together in a class get a null score.

3.4 Context similarity criterion (C4)
Rationale. The attribute often describes a class named the

same as the owner class in similar models.
Selection filter. Attributes owned by classes named |RC|

in models which share at least two common classes with
M(RC).

Rating approach. Candidates from models that share the
highest number of classes with M(RC) get the highest score.
Candidates from models which have no class in common get
a null score.

4 Utility Function
The third step of our approach consists in constructing a

utility function that aggregates the score of each single cri-
terion into a global score, on which to base the ranking. In
defining what makes a good explanation in recommender sys-
tems, [10] argue that ”justifying [a] recommendation is just
half of the solution, the second half is to make it scrutable”.
To that end, in this section we first select an aggregation
method that enhances system transparency. Then we em-
phasize support for context adaptability, and, finally, propose
a determination process that allows system control through
scrutability.

4.1 Utility Function selection
Adomavicius and Kwon [8] identify two major tech-

niques for dealing with multi-criteria ratings to produce an
overall rating: heuristic-based and model-based techniques.
Heuristic-based techniques compute the score of each item
for a given user, based on data derived from observing one
specific user, using some heuristic assumption. To perform
matching operations, these techniques often require specific
knowledge about multiple users, based on their profile and

from collaborative filtering. In contrast, model-based tech-
niques generate a predictive model, typically using statistical
or machine-learning methods that best explain the observed
data. Once the model becomes available, they use it to esti-
mate the score of individual recommendations.

In our case, the lack of data about the profiles of all
users rules out heuristic-based techniques. On the other hand,
model-based techniques using machine-learning methods en-
able the system to learn directly from the user, resulting in
finely-tuned data. Consequently, we take a machine-learning
model-based approach to determine the overall utility func-
tion. Note that, for greater system transparency, the aggre-
gation process must be explainable. Therefore, rather than
relying exclusively on machine-learning processes, which are
rarely fully explainable, we define the utility function as a
weighted sum of criteria rating functions.

We define this function as follows:

Let (a, b, c, d) ∈ [0; 1]4 where a+ b+ c+ d = 1,

overallRC : |A| → [0; 1]
|p| 7→ a× s1 + b× s2 + c× s3 + d× s4

with s1, s2, s3, s4 the scores for criteria 1 to 4
(1)

The machine-learning process is used to determine the values
of the weights a, b, c, and d.

4.2 Context adaptability
Adomavicius and Kwon [11] also note that the aggregation

function can have different scopes: total (i.e., when a single
aggregation function is learned based on the entire data set),
user-based, or item-based (i.e., when a separate aggregation
function is learned for each user or item).

In the context of recommending UML attributes for
classes, we identify four different possible Contexts i.e. sit-
uations. The system will provide recommendations for the
following:

• Context 1: A class owning no attributes and no other
classes in the model.

• Context 2: A class owning one or more attributes and
no other classes in the model.

• Context 3: A class owning no attributes in a model but
containing one or more other classes.

• Context 4: A class owning one or more attributes in a
model and also containing one or more other classes.

Each of the above contexts has access to different infor-
mation so that not all of the criteria can be applied equally
to all of them. For instance, the context similarity criterion
C4 relies on the presence of other classes in the model and is,
therefore, not applicable to contexts 1 and 2. Consequently,

we define the overall utility function in context k overallk,RC

as:

overallk,RC(|p|) = ak×s1+bk×s2+ck×s3+dk×s4 (2)

This results in four different utility functions correspond-
ing to the four different contexts. They are determined indi-
vidually in the course of the machine-learning process.

4.3 Utility function determination
The quality of a recommender system depends primarily

on its ability to propose items that the user is likely to choose
rather than items the user is unlikely to choose. Therefore, a
high-quality recommender system must fit user preferences.
Our system offers the possibility to reflect these preferences
by assigning values to the weights of the four overall utility
functions. This can be done manually, but finding suitable val-
ues would likely lead to suboptimal results. Instead, we chose
a machine-learning approach to automatically determine these
weights.

We collect labelled data through a dedicated interface
(presented in section 5.1, and in the web page) during a
preference-elicitation phase. This interface first presents mul-
tiple situations (a class diagram with recommendation target
class) one at a time. A list of unranked candidates —potential
recommendations— is displayed for each situation. Using
this interface, the user is asked to remove all attributes that
do not fit semantically in the presented situation. Once this
is completed, the user is then asked to create a ranked list
of the top 10 best recommendations from the displayed ele-
ments. This task should be repeated for multiple situations
in different contexts a sufficient number of times in order to
collect enough information to determine the four utility func-
tions. Once this data is collected, it is used to calculate ak,
bk, ck, dk weights in such a way that they maximize the Mean
Top Average Precision metric defined in Section 5.2.2.

5 Implementation and Evaluation
In this section we first describe the implementation of our

solution followed by a description of the initial evaluation and
its results. More details about the implementation and its be-
haviour are available online1.

5.1 Implementation
Recommender system. Our implementation conforms to

the standard three-tier architecture pattern2: the data tier, the
application tier, and the presentation tier. The data tier con-
sists of a Neo4j3 server which holds the full models data set
represented as a graph. The application tier is a Spring Boot4

server exposed as an API which is responsible for computing

1https://hufamo.univ-lille.fr/modeling-assistant
2https://www.tandfonline.com/doi/abs/10.1080/10580539608906981
3https://www.neo4j.com
4https://spring.io/projects/spring-boot

the scores and the output of the utility function, to produce
recommendations. Finally, the presentation tier is a Papyrus5

plugin which presents recommendations to the user and make
it exploitable.

Supervised Learning Platform. The aim of the super-
vised learning approach is to determine a combination of a,
b, c, d values that maximizes the accuracy of the system for
a specific context. Initially, we start the learning process with
equal values for these weights. These values are then varied
using a predefined increment while maintaining the constraint
specified by equation 1. For each configuration of a, b, c, and
d, we calculate the chosen evaluation metric for the system
and compare it to the previous maximum value. The high-
est value is stored as well as the associated configuration of
weights. After all configurations are analysed, the one that
maximized the chosen metric is selected. This algorithm is
coded in Java as part of the application tier. To compute accu-
racy, the algorithm exploits the labelled data created through
our dedicated interface. The labelling interface is a web ap-
plication coded in HTML/CSS/JS that enables labelled data
collection. It takes JSON files and class diagram pictures as
input and outputs JSON files containing user preferences as
output.

5.2 The evaluation
The preliminary evaluation of our approach is based of as-

sessing improvements in the quality of the recommendations,
as well as the adequacy of system control, information trans-
parency, and system transparency. To the best of our knowl-
edge, no similar approach can be found in the literature. A
replication package contained the labelled data, the original
files and the metrics source code is available online6.

5.2.1 Data gathering

The evaluation involved data from over 95’000 models. These
contained approximately 634’000 classes and 616’000 at-
tributes. The models were retrieved from the GenMyModel7

public repositories by courtesy of Axellience. For quality pur-
poses, we only selected models greater than a minimum size
(over 10 kilobytes).

We gathered labelled data according to the method de-
scribed in Section 4.3. From this, we obtained 9,858 la-
belled attributes from 30 participants: 9 senior and 4 junior
researchers, 3 senior and 12 junior developers from industry,
and 2 M.Sc. students. Prior to starting the labelling exer-
cise, participants were asked to answer questions about their
familiarity with UML and the extent of their modeling work.
On average, participants estimated their knowledge of UML
class diagrams to range between fair and good (mean: 3.5 on
5-point Likert scale, std. deviation: 1.0). This assured us that

5https://www.eclipse.org/papyrus/
6https://hufamo.univ-lille.fr/modeling-assistant
7https://www.genmymodel.com

participants had a relatively good understanding of the context
and consequently, that the information gathered was semanti-
cally meaningful. Participants were asked to respond to up to
20 examples of different situations: 5 per context. In order to
minimize the impact of participant fatigue on the results, the
20 examples were randomly displayed and participants were
allowed to respond in several sessions.

5.2.2 Evaluation metrics

To more accurately evaluate the attribute recommendations,
we compared the ranked results of our system with the ranked
preferences as chosen by the users who created their top-5
ranked list. Consequently, we computed metrics for just the
top-5 recommended attributes; i.e., the five attributes with the
highest scores.

Precision@5 (P@5) is the proportion of recommended
items that a user deemed as belonging in the top-5 list of rele-
vant attributes. In our case, relevant attributes were those that
were not excluded by the user from the candidate list.

P@5(set) =
n° of relevant items in system top-5

5
(3)

TopPrecision@5 is the proportion of recommended items
in the top-5 list provided by the recommender system that are
also included in the top-5 set chosen by the user.

TP@5(set) =
n° of common items in user and system top-5

5
(4)

TopAveragePrecision@5 (TAP@5) takes ranking into
consideration in evaluating the mean average precision of the
top-5 of the system. Mean Average Precision (MAP) is a pop-
ular metric for measuring recommendation algorithms in in-
formation retrieval. We defined TAP@5 as follows:

TAP@5(set) =
5∑

n=1

P (n)× pos(n)

R
(5)

where pos(k) indicates whether the element from system top-
5 in position k matches the position of the element in a user’s
top-5 list, while R refers to the number of elements for which
pos(k) = 1; P(k) is the ratio of correctly recommended ele-
ments over top-k recommended elements.

These metrics can be computed for each ranked set of
attributes. Therefore, as users provided several sets of at-
tributes, we considered the means of these metrics as follows:

Mm(S) =
∑
s∈S

m(s)

N
(6)

where m is the metric for which the mean is calculated (i.e.,
MP, MTP, and MTAP); S is the data set for which the mean
was computed, and N is the number of elements in S.

Table 1. Labelled data distribution
General Ctx. 1 Ctx. 2 Ctx. 3 Ctx. 4

Training 8,146 2,462 2,338 1,765 1,581
(205 sets) (50 sets) (43 sets) (59 sets) (53 sets)

Testing 1,712 544 562 303 303
(40 sets) (11 sets) (10 sets) (9 sets) (10 sets)

Total 9,858 3,009 2,900 2,068 1,884
(245 sets) (61 sets) (53 sets) (68 sets) (63 sets)

Table 2. Learned overall functions
Context Overall Function

Context 1 0.80× s1 + 0.20× s2
Context 2 0.03× s1 + 0.01× s2 + 0.96× s3
Context 3 0.51× s1 + 0.03× s2 + 0.46× s4
Context 4 0.56× s1 + 0.03× s2 + 0.29× s3 + 0.12× s4

5.2.3 Metrics results

We obtained 245 sets of labelled data from users, which con-
stitute a corpus of 9,858 attributes distributed for training and
testing phases, as presented in Table 1. We trained our overall
rating functions with 81% (205 sets) of the total labelled data
set and obtained the functions presented in Table 2. The goal
of the training was set to the maximization of the MTP@5
metric, as it is the most representative possible improvement
of our system when compared to unassisted user selections.

The added value of using machine-learning is demon-
strated by the evolution of the metrics before and after the
machine-learning process. Both situations only differ in the
the values and distribution of weights in the utility functions.
We set up the initial configuration (i.e. before ML) by set-
ting the weight values to be equal. For instance, we define
the initial aggregation function for Context 4 as overall4 =
0.25×s1+0.25×s2+0.25×s3+0.25×s4. The final config-
uration corresponds to the application of the utility functions
defined in Table 2.

We evaluated the overall utility functions on a specific test-
ing data set, which represents 19% of the full labelled data set,
(see Table 1). The other 81% were used for training purposes.
The results of the metrics evaluation are presented in Table 3.

5.3 Discussion
The initial general MP@5 is pretty high (87.0%). The low

impact of the learning process on this score (+4.5%) indi-
cates that the different criteria already strongly converge to

Table 3. Testing data set metrics measures
Metric General Ctx. 1 Ctx. 2 Ctx. 3 Ctx. 4

Initial MP@5 87.0% 83.6% 90.0% 84.4% 90.0%
Initial MTP@5 34.7% 23.6% 38.7% 36.7% 40.0%

Initial MTAP@5 27.8% 4.5% 22.5% 11.1% 35.0%

Final MP@5 91.5% 92.7% 90.0% 93.3% 90.0%
(+4.5%) (+9.1%) (-) (+8.9%) (-)

Final MTP@5 51.0% 56.4% 49.3% 52.2% 46.0%
(+16.3%) (+32.7%) (+10.7%) (+15.5%) (+6.0%)

Final MTAP@5 42.5% 50.0% 35.0% 50.8% 45.0%
(+14.7%) (+45.5%) (+12.5%) (+39.7%) (+10.0%)

recommend user-relevant attributes, and that the impact of
the weights on the overall rating functions are, in that case,
secondary. The impact of the supervised-learning process be-
comes more important according to the desired quality of the
recommendations. Indeed, the initial low value of MTP@5
increases from 34.7% to 51.0% after the learning process.
This means that, on average, more than two attributes of the 5
first recommendations of the system are attributes that partic-
ipants included in their top-5 best recommendations. Follow-
ing the learning step, MTP@5 shows the most significant in-
crease among all metrics (+16.3%). The utility functions were
defied so as to optimize this metric. MTAP@5 takes differ-
ences in recommendations ranking between system and user
top-5 into account. Only high-quality recommendations in-
crease this metric, which explains why it has the lowest initial
values for all contexts. With a final value of 42.5%, MTAP@5
indicates that, on average, more than 2 attributes of the 5 first
recommendations are in participants’ top-5, likely to be in top
positions and ordered as the participants expected.

5.4 Evaluation results
The empirical results obtained indicate that our approach

provides acceptable results (on average, more than 4 recom-
mended attributes out of 5 are deemed relevant, and also 2
recommendations out of 5 appear in users’ top-5 rankings).
However, as pointed out earlier, it is too early to make any
firm conclusions about the effectiveness of our approach com-
pared to alternatives until further evaluations are performed.
In addition, we can draw the following conclusions from the
evaluation:

• the initial effectiveness measure that we proposed here
looks as if it could serve as a common metric for future
related work.

• The defined criteria do seem to reflect information trust-
worthiness. Moreover, the rationale behind them can be
easily explained, which means that they do support in-
formation transparency.

• The linear utility function approach we used allows any
overall score to be traced to each criterion used to de-
rive it. This enables users to understand the inner mech-
anisms of the system and thus supports system trans-
parency.

• The utility function can either be set manually or defined
using supervised-learning. These settings allow users to
have control over the results that are presented giving
them control of the system.

6 Related work
In this section, we review published work in the following

related areas: (i) tools that help with semantics-related issues
involved in modeling, and (ii) recommender systems for soft-
ware engineering.

6.1 Conceptual modeling assistance

Although a lot of work has been done on supporting soft-
ware engineering with software assistants, not much of it
has been applied to modeling. Segura et al. [12] recognize
the need for assistance during modeling activities and intro-
duce Extremo, an Eclipse plugin for modeling. They pro-
pose a framework for integrating diverse data sources into the
Eclipse modeling environment. However, the data sources,
such as model repositories, must be provided by the user.
Koschmider et al. [13] propose a recommendation-based ed-
itor for business process modeling. Their system provides
users with recommendations about partial process models.

Kogel [14] describes the early stages of a work on model-
ing recommendations and proposes a prototype providing un-
ranked recommendations. Elkamel et al. [15] present a UML
class recommender system that recommends new classes for
a UML model. This system measures the similarity between
current model classes and existing ones from a repository
to recommend the closest matches. In a similar fashion,
Cerqueira et al. [16] proposed a content-based approach for
recommending UML sequence diagrams.

The above papers highlight both the novelty of and the
need for semantic assistance in modeling activities. Surpris-
ingly, while class diagrams remain among the most widely
exploited UML diagrams [17], almost no effort has been con-
ducted to address support for their design.

6.2 Recommender systems for software engineering

Only a few recommendation systems have been applied to
modeling to date. In fact, Dyke et al. [18] identify recom-
menders for modeling as a promising new area of research,
since recommender systems have already found their way into
general software engineering [19] and many of the software
lifecycle processes, as defined in ISO/IEC 12207 [20].

Multiple works [21] [22] investigated the application of
recommender systems to the field of requirements engineer-
ing. Sharma and Sodhi proposed a recommender system [22]
to help in dealing with the manual effort required to identify
and analyse relevant architectural patterns in the context of a
particular set of software requirements. A variety of recom-
mender systems focus on the software construction process,
from providing code examples to suggesting modifications
[19]. The work described in [23] provide developers with
recommendations about API usages and parameters. In [24],
Allamanis et al. propose an algorithm which suggests mean-
ingful class and method names to enhance software quality.
Some works also involve recommenders for finding relevant
answers to developer’s technical questions [25].

All of the above clearly identifies a gap in support for rec-
ommender systems in semantic-based assistance for concep-
tual modeling.

7 Conclusion and Future Work
In this paper, we are seeking to support the conceptual

modeling task. As an initial step we proposed, implemented,
and evaluated a modeling recommender system. The initial
evaluation, involving both practitioners and students and a
prototype implemented with Papyrus, indicates that the ap-
proach holds promise. A replication package was provided to
serve as first comparison point for future works in the domain.

Our plan is to generalize the approach realized in the proto-
type for other types of models, such as activity and sequence
diagrams, to move towards our greater objective of a generic
framework for building design-assisting recommender sys-
tems. We also plan to conduct further work specifically fo-
cusing human-centric aspects. This includes ways to provide
users with explanations about recommendations, but also the
types of interaction recommender systems should propose to
best fit users’ mental design process.

References
[1] Z. Yan, R. Dijkman, and P. Grefen, “Business process

model repositories – framework and survey,” Informa-
tion and Software Technology, vol. 54, no. 4, pp. 380 –
395, 2012.

[2] R. Hebig, T. H. Quang, M. R. V. Chaudron, G. Rob-
les, and M. A. Fernandez, “The quest for open source
projects that use uml: Mining github,” in Proceedings of
the ACM/IEEE 19th International Conference on Model
Driven Engineering Languages and Systems, ser. MOD-
ELS ’16. New York, NY, USA: Association for Com-
puting Machinery, 2016, p. 173–183.

[3] J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, “Rec-
ommender system application developments: A survey,”
Decision Support Systems, vol. 74, pp. 12–32, Jun. 2015.

[4] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen,
Collaborative Filtering Recommender Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 291–
324.

[5] M. J. Pazzani and D. Billsus, Content-Based Recommen-
dation Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 325–341.

[6] R. Burke, “Knowledge-based recommender systems,” in
ENCYCLOPEDIA OF LIBRARY AND INFORMATION
SYSTEMS. Marcel Dekker, 2000, p. 2000.

[7] N. Manouselis and C. Costopoulou, “Analysis and Clas-
sification of Multi-Criteria Recommender Systems,”
World Wide Web, vol. 10, no. 4, pp. 415–441, Dec. 2007.

[8] G. Adomavicius and Y. Kwon, “Multi-Criteria Recom-
mender Systems,” in Recommender Systems Handbook,

F. Ricci, L. Rokach, and B. Shapira, Eds. Boston, MA:
Springer US, 2015, pp. 847–880.

[9] B. Roy, Multicriteria Methodology for Decision Aiding.
Springer Science & Business Media, Nov. 2013, google-
Books-ID: lf7lBwAAQBAJ.

[10] N. Tintarev and J. Masthoff, “A survey of explanations
in recommender systems,” in 2007 IEEE 23rd Inter-
national Conference on Data Engineering Workshop,
2007, pp. 801–810.

[11] G. Adomavicius and Y. Kwon, “New recommendation
techniques for multicriteria rating systems,” IEEE Intel-
ligent Systems, vol. 22, no. 3, pp. 48–55, 2007.

[12] Ángel Mora Segura and J. de Lara, “Extremo: An
eclipse plugin for modelling and meta-modelling assis-
tance,” Science of Computer Programming, vol. 180, pp.
71 – 80, 2019.

[13] A. Koschmider, T. Hornung, and A. Oberweis,
“Recommendation-based editor for business process
modeling,” Data & Knowledge Engineering, vol. 70,
no. 6, pp. 483 – 503, 2011.

[14] S. Kögel, “Recommender system for model driven soft-
ware development,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017. New York: Association for Com-
puting Machinery, p. 1026–1029.

[15] A. Elkamel, M. Gzara, and H. Ben-Abdallah, “An uml
class recommender system for software design,” in 2016
IEEE/ACS 13th International Conference of Computer
Systems and Applications (AICCSA), 2016, pp. 1–8.

[16] T. Cerqueira, L. Marinho, and F. Ramalho, “A Content-
Based Approach for Recommending UML Sequence
Diagrams,” Jul. 2016.

[17] D. Akdur, V. Garousi, and O. Demirörs, “A survey on
modeling and model-driven engineering practices in the
embedded software industry,” Journal of Systems Archi-
tecture, vol. 91, pp. 62–82, Nov. 2018.

[18] A. Dyck, A. Ganser, and H. Lichter, “On design-
ing recommenders for graphical domain modeling en-
vironments,” in 2014 2nd International Conference on
Model-Driven Engineering and Software Development
(MODELSWARD), 2014, pp. 291–299.

[19] M. Robillard, R. Walker, and T. Zimmermann, “Rec-
ommendation systems for software engineering,” IEEE
Softw., vol. 27, no. 4, p. 80–86, Jul. 2010.

[20] “Iso/iec/ieee international standard - systems and soft-
ware engineering – software life cycle processes,” IEEE
STD 12207-2008, pp. 1–138, 2008.

[21] N. Hariri, C. Castro-Herrera, J. Cleland-Huang, and
B. Mobasher, Recommendation Systems in Require-
ments Discovery. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 455–476.

[22] S. Sharma and B. Sodhi, “Apr: Architectural pattern
recommender,” in Proceedings of the Symposium on
Applied Computing, ser. SAC ’17. New York, NY,
USA: Association for Computing Machinery, 2017, p.
1225–1230.

[23] F. Thung, S. Wang, D. Lo, and J. Lawall, “Automatic
recommendation of api methods from feature requests,”
in 2013 28th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2013, pp. 290–
300.

[24] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Sug-
gesting accurate method and class names,” in Proceed-
ings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: Association for Computing Machinery,
2015, p. 38–49.

[25] T. Du, J. Cao, Q. Wu, W. Li, B. Shen, and Y. Chen, “Co-
coqa: Question answering for coding conventions over
knowledge graphs,” in 2019 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), 2019, pp. 1086–1089.

