
Formal verification of Anderson mutual exclusion protocol
by introducing an auxiliary variable

Naoki Asae, Duong Dinh Tran, and Kazuhiro Ogata
School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
Email: {s1910005,duongtd,ogata}@jaist.ac.jp

Abstract—The second and third authors of the present paper
have formally verified that A-Anderson protocol, which is an
abstract version of Anderson mutual exclusion protocol, enjoys
the mutual exclusion property in their previous work. The
reason why they did not conduct formal verification with the
original version of Anderson but with A-Anderson instead is
that Anderson uses a finite boolean array and the modulo
(or remainder) operation of natural numbers, causing the
challenge to conduct formal verification in a sense of theorem
proving. Since then, we have successfully completed formal
verification with Anderson to which an auxiliary variable is
introduced. The protocol is specified in CafeOBJ, an algebraic
specification language, and it is formally verified that the
protocol enjoys the property with CafeOBJ. The auxiliary
variable does not change the behavior of Anderson. We then
conclude that Anderson enjoys the mutual exclusion property
by proving that the property is an invariant of the specification.
We also informally discuss why it is necessary to introduce
auxiliary variables so that we can successfully complete formal
verification with some protocols or systems.

Keywords-algebraic specification language; mutual exclusion
protocol; auxiliary variable; proof score

I. INTRODUCTION

Mutual exclusion is the problem such that at most one
thread, process, node, or any execution entity is allowed
to enter its critical section to use some shared resources,
such as shared memory in concurrent and/or distributed
systems. Mechanisms or protocols that solve the problem
are called mutual exclusion protocols. Anderson protocol (or
Anderson) [1] is a mutual exclusion protocol. Thus, the most
important property the protocol should satisfy is the mutual
exclusion property. It is, however, challenging to formally
verify that Anderson protocol enjoys the mutual exclusion
property, in a sense of theorem proving. The reason is that
its algorithm uses a finite array and the modulo operation
of natural numbers. In the paper [2], the second and third
authors of the present paper have introduced an abstract
version of Anderson, which is called A-Anderson protocol
(or A-Anderson), and formally verified that A-Anderson
enjoys the mutual exclusion property.

This research was partially supported by JSPS KAKENHI Grant Number
JP19H04082.

DOI reference number: 10.18293/SEKE2021-038

Although as mentioned in the paper [2], the authors
have successfully proved that Anderson enjoys the mutual
exclusion property by showing that there exists a simulation
relation from Anderson to A-Anderson, and such simulation
preserves the property, directly proving that Anderson enjoys
the property still interests us. In Anderson, each process is
located at one of three locations: rs (Remainder Section), ws
(Waiting Section), or cs (Critical Section). Initially, each
process is located at rs, and when a process wants to
enter cs, it first moves to ws from rs. By introducing an
auxiliary variable to record a collection of processes currently
located at ws or cs, we have successfully completed the
proof that Anderson satisfies the mutual exclusion property
without using the abstract version A-Anderson but with an
auxiliary variable introduced. This modification only records
information in the current and past states but does not
affect the current or future values of any other variables
in the algorithm. Therefore, we can guarantee that adding
the auxiliary variable does not change the behavior of
Anderson. Originally, we got stuck in the formal verification
of Anderson because the proof requires a lemma that is
obvious but so tough to prove. Introducing the auxiliary
variable helps us to accomplish the proof of that lemma,
leading to the complete formal verification. The proof of the
lemma has not yet been completed as of the paper submission
without introducing any auxiliary variables, though.

Our verification in this paper uses observational transition
systems (OTSs) [3] as state machines. The OTS formalizing
Anderson is specified in CafeOBJ [4], which is a formal
specification language. Then, in the specification, we in-
troduce an auxiliary variable to store a list of processes
currently located at ws or cs. Formal proofs are conducted
by writing what is called “proof scores” [3] in CafeOBJ and
executing them with CafeOBJ. Proof scores are developed by
simultaneous structural induction on a state variable of the
OTS. We verify that Anderson enjoys the mutual exclusion
property by proving that the property is an invariant of
the OTS formalizing Anderson. The verification requires
the use of some additional lemmas, one of them is the
lemma mentioned above that makes us so stuck to prove its
correctness.



The rest of the paper is organized as follows: Sect. II
describes Anderson protocol. Sect. III presents how to for-
mally specify the protocol in CafeOBJ. Sect. IV presents
our proof attempt to formally verify that Anderson protocol
enjoys the mutual exclusion property and the reason why
we got stuck to complete the proof. Sect. V describes our
solution to complete the verification by introducing an
auxiliary variable and informally discusses why we need
to do so. Some related work is mentioned in Sect. VI.
Finally, Sect. VII concludes the paper. The specification
and proof scores presented in this paper are available at
https://gitlab.com/duongtd23/anderson-au.

II. ANDERSON PROTOCOL

We suppose that there are N processes participating in
Anderson protocol. The pseudo-code of Anderson protocol
for each process p can be written as follows:

Loop “Remainder Section”
rs : place[p] := fetch&incmod(next ,N );
ws : repeat until array [place[p]];

“Critical Section”
cs : array [place[p]],

array [(place[p] + 1)%N] := false, true;

We suppose that each process is located at rs, ws or
cs and initially located at rs. place is an array whose
size is N and each of whose elements stores one from
{0, 1, . . . ,N − 1}. Initially, each element of place can be
any from {0, 1, . . . ,N − 1} but is 0 in this paper. Although
place is an array, each process p only uses place[p] and
then we can regard place[p] as a local variable to each
process p. array is a Boolean array whose size is N .
Initially, array [0] is true and array [j] is false for any
j ∈ {1, . . . ,N − 1}. next is a natural number variable
and initially set to 0. fetch&incmod(next ,N ) atomically
does the following: setting next to (next + 1)%N and
returning the old value of next . x, y := e1, e2 is a concurrent
assignment that is processed as follows: calculating e1 and e2
independently and setting x and y to their values, respectively.

III. FORMAL SPECIFICATION OF ANDERSON PROTOCOL

We use four observation functions pc, next, place,
array to store information about the location of each
process, the value of the global variable next , the value
stored in each element of place and the value stored in each
element of array , respectively:

op pc : Sys Pid -> Label .
op next : Sys -> SNat .
op place : Sys Pid -> SNat .
op array : Sys SNat -> Bool .

Sys is the sort that represents the state space of Anderson.
Pid is the sort denoting the set of process IDs. Label
is the sort that expresses the set of labels (rs, ws and cs).
SNat is the sort of natural numbers and Bool is the sort of

Boolean values. Observation function array observes the
value stored in each element of array by passing to array
the index of element as the second argument.

We also introduce the observer count to keep track of
the number of processes that would like to enter the Critical
Section and/or to be there (i.e., the number of processes
currently located at cs or ws):

op count : Sys -> SNat .

If N + 1 or more processes participate in the protocol, the
protocol does not enjoy the mutual exclusion property, which
we realzied when we were formally specifying the protocol
in CafeOBJ. This is implicitly assumed by the protocol but
it is necessary to make the assumption explicit so as to do
formal verification. This is tiny but important, demonstrating
worth formally specifying systems.

We have the declaration of N and its property as follows:

op N : -> SNzNat . eq (1 < N) = true .

SNzNat is the sort of non-zero natural numbers and a sub-
sort on SNat. N is expressed as the constant N of SNzNat.
The property says that N is greater than 1 because if there
is only one process, we do not need to use any mutual
exclusion protocols. In the formal specification, we declare
1 as a constant of SNzNat that equals s(0) (i.e., 1 is
successor of 0).

We use one constructor that represents an arbitrary initial
state as follows:

op init : -> Sys {constr} .

init is defined in terms of equations, specifying the values
observed by the four observation functions in an arbitrary
initial state as follows:

eq pc(init,P) = rs . eq next(init) = 0 .
eq place(init,P) = 0 . eq count(init) = 0 .
eq array(init,I)
= (if I = 0 then true else false fi) .

where P is a CafeOBJ variable of Pid and I is a CafeOBJ
variable of SNat.

We use three transition functions that are also constructors:

op want : Sys Pid -> Sys {constr}
op try : Sys Pid -> Sys {constr}
op exit : Sys Pid -> Sys {constr}

The three transition functions capture the actions that each
process moves to ws from rs, tries to move to cs from ws
and moves back to rs from cs, respectively. The reachable
states are composed of the four constructors.

Each of the three transition functions is defined in terms
of equations, specifying how the values observed by the four
observation functions change. Let S be a CafeOBJ variable
of Sys, P & Q be CafeOBJ variables of Pid and I & J be
CafeOBJ variables of SNat.
want is defined as follows:

https://gitlab.com/duongtd23/anderson-au


ceq pc(want(S,P),Q)
= (if P = Q then ws else pc(S,Q) fi)

if c-want(S,P) .
ceq place(want(S,P),Q)
= (if P = Q then next(S) else place(S,Q) fi)

if c-want(S,P) .
ceq next(want(S,P))
= (s(next(S)) rem N) if c-want(S,P) .
eq array(want(S,P),I) = array(S,I) .
ceq count(want(S,I)) = s(count(S))

if c-want(S,I) .
ceq want(S,P) = S if c-want(S,P) = false .

where c-want(S,P) is

pc(S,P) = rs and count(S) < N

s of s(next(S)) is the successor function of natural
numbers. x rem y calculates the remainder obtained by
dividing x by y. The equations say that if c-want(S,P)
is true, the location of P changes to ws, the location of each
other process Q does not change, the P’s place changes to
next , each other process Q’s place does not change, next
is updated to (next + 1)%N , count is incremented, and
array does not change in the state denoted want(S,P); if
c-want(S,P) is false, nothing changes.
try is defined as follows:

ceq pc(try(S,P),Q)
= (if P = Q then cs else pc(S,Q) fi)
if c-try(S,P) .
eq place(try(S,P),Q) = place(S,Q) .
eq array(try(S,P)) = array(S) .
eq next(try(S,P),I) = next(S) .
eq count(try(S,I)) = count(S) .
ceq try(S,P) = S if c-try(S,P) = false .

where c-try(S,P) is

pc(S,P) = ws and array(S,place(S,P)) = true

The equations say that if c-try(S,P) is true, the location
of P changes to ws, the location of each other process Q
does not change, place , next and count do not change in the
state denoted try(S,P); if c-try(S,P) is false, nothing
changes.
exit is defined as follows:

ceq pc(exit(S,P),Q)
= (if P = Q then rs else pc(S,Q) fi)
if c-exit(S,P) .
eq place(exit(S,P),Q) = place(S,Q) .
eq next(exit(S,P)) = next(S) .
ceq array(exit(S,P),I) =
(if I = (s(place(S,P)) rem N) then true
else (if I = place(S,P) then false
else array(S,I) fi) fi) if c-exit(S,P) .

ceq count(exit(S,I)) = (sd(count(S),1))
if c-exit(S,I) .

ceq exit(S,P) = S if c-exit(S,P) = false .

where c-exit(S,P) is pc(S,P) = cs. sd(x, y) re-
turns the difference of x and y. The equations say that if
c-exit(S,P) is true, the location of P changes to rs,

Figure 1. Case spliting for case (3) of the proof of mutex

the location of each other process Q does not change, place
does not change, next does not change, count is decreased
by one, the Ith element of array is set true if I equals
s(place(S,P)) rem N, the Jth element of array is set
false if J equals place(S,P), and each other element of
array does not change in the state denoted exit(S,P); if
c-exit(S,P) is false, nothing changes.

IV. FORMAL VERIFICATION BY PROOF SCORES

The mutual exclusion property is specified as follows:

eq mutex(S,P,Q) = ((pc(S,P) = cs and
pc(S,Q) = cs) implies (P = Q)) .

The equation says that if there are processes in the critical
section, there is one, namely that exists at most one process
in the critical section at any given moment.

We prove mutex(S,P,Q) for all reachable states S
and all process IDs P & Q by structural induction on S.
There are four cases to tackle: (1) init, (2) want, (3)
try and (4) exit. Let us consider case (3). What to
prove is mutex(try(s,r),p,q), where s is a fresh
constant of Sys representing an arbitrary state and p, q
and r are fresh constant of Pid representing arbitrary
process IDs. The induction hypothesis is mutex(s,P,Q)
for all process IDs P & Q. Let us note that s is shared
by mutex(try(s,r),p,q) and mutex(s,P,Q), while
the variables P and Q can be replaced with any terms of
Pid, such as p and q.



Figure 1 shows the case splitting strategy to prove
case (3). Case (3) is first split into two sub-cases: (3.1)
pc(s,r) = ws and (3.2) (pc(s,r) = ws) = false.
Case (3.2) can be discharged, its proof score fragment is as
follows:

open INV .
op s : -> Sys . ops p q r : -> Pid .
eq (pc(s,r) = ws) = false .
red mutex(s,p,q) implies mutex(try(s,r),p,q) .
close

where INV is the module in which the specification of
Anderson together with mutex are available, open makes
the module INV available, close stops the use of the
module and red reduces (computes) the given term. Feeding
this proof score fragment into CafeOBJ, CafeOBJ returns
true, meaning that the case is discharged.

Case (3.1) is applied case splitting several more times as
shown in the Figure. With case (3.1.1.1.2.1), it requires us to
use a lemma to discharge the sub-case. Case (3.1.1.1.2.1) says
that process p is located at cs, process r (or q since q = r)
is located at ws and array(s,place(s,r)) = true.
In this case, process r can move to cs, breaking the property
concerned because there are two processes p and r located
at cs. That is the reason why we need to conjecture a lemma
to discharge this case. Such a lemma can be conjectured
from the assumptions made in this case. We have conjectured
inv1 as such a lemma, which is as follows:

eq inv1(S,P,Q) = ((array(S,place(S,P)) = true
and pc(S,P) = ws and (P = Q) = false) implies
((pc(S,Q) = ws and array(S,place(S,Q)) = true)
or pc(S,Q) = cs) = false) .

Then, in the proof score of case (3.1.1.1.2.1), we use inv1
as a lemma:

open INV .
op s : -> Sys . ops p q r : -> Pid .
eq pc(s, r) = ws .
eq array(s,place(s,r)) = true .
eq p = r . eq (q = r) = false .
eq pc(s,q) = cs .
red inv1(s,r,q) implies mutex(s, p, q)
implies mutex(try(s, r), p, q) .
close

The remaining cases can be discharged likewise. The proof
of mutex does not require any other lemma except for
inv1. We need to prove that inv1 is an invariant of the
OTS formalizing Anderson to complete the verification. If
inv1 is not an invariant of the OTS formalizing Anderson,
there exists a state such that there are two different processes
P and Q where P can freely enter the critical section and
Q is locating at the critical section or can freely enter the
critical section. In both cases, the mutual exclusion property
is broken. That is the reason why inv1 must be an invariant
of the OTS formalizing Anderson.

In the proof of inv1, we need to use another lemma
inv7 that is as follows:

eq inv7(S,P) = (pc(S,P) = ws or pc(S,P) = cs)
implies (0 < count(S)) .

where S is a CafeOBJ variable of Sys, P & Q are CafeOBJ
variables of Pid. inv7 intuitively says that if there exists
a process located at ws or cs in a state S, count(S) is
greater than 0. Considering the roles of count that keeps
track of the number of processes that have moved to ws and
not yet left cs, namely the number of processes that are
located at ws or cs, inv7 must be an invariant of the OTS
formalizing Anderson.

In the proof of inv7, we need to use a lemma inv7-2
that is as follows:

eq inv7-2(S,P,Q) = ((pc(S,P) = ws or pc(S,P)
= cs) and (pc(S,Q) = ws or pc(S,Q) = cs) and
(P = Q) = false) implies (s(0) < count(S)) .

inv7-2 intuitively says that if there are two different
processes located at ws or cs in a state S, count(S)
is greater than 1.

In the proof of inv7-2, we need to use a lemma inv7-3
that is as follows:

eq inv7-3(S,P,Q,R) = ((pc(S,P) = ws or pc(S,P)
= cs) and (pc(S,Q) = ws or pc(S,Q) = cs) and
(pc(S,R) = ws or pc(S,R) = cs) and (P = Q)
= false and (P = R) = false and (Q = R)
= false) implies (s(s(0)) < count(S)) .

where R is a CafeOBJ variable of Pid. inv7-3 intuitively
says that if there are three different processes located at ws
or cs in a state S, count(S) is greater than 2.

It seems necessary to use an unlimited number of similar
lemmas to complete the proof of inv7. If CafeOBJ made
it possible to use an operator with a variable number of
parameters, we could generalize the lemmas:

eq inv7-k(S,P1,...,Pk) = ((pc(S,P1) = ws or
pc(S,P1) = cs) and ... and (pc(S,Pk) = ws or
pc(S,Pk) = cs) and (P1 = P2) = false
and ... and (P(k-1) = Pk) = false)
implies (sˆ{k-1}(0) < count(S)) .

where sˆ{k-1}(0) denotes k−1. k can vary like a variable
and the number k of parameters can change. It is, however,
impossible to deal with such an operator with a variable
number of parameters in CafeOBJ. That is the reason why
we got stuck several months to prove that Anderson enjoys
the mutual exclusion property. If we could complete the
proof of inv7, then the verification is accomplished.

V. INTRODUCING AN AUXILIARY VARIABLE

A. Introducing psInWsCs

The proof of inv7 seems so tough despite its obviousness.
We overcome the problem by introducing an observer (also
can be called an auxiliary variable) psInWsCs that records



Table I
CASE SPLITTING FOR THE PROOF OF INV7

(1.1.1.1) pc(s,p) = cs, csb1, csb2, csb3

(1.1.1.2) pc(s,p) = cs, csb1, csb2, ¬csb3
(1.1.2) pc(s,p) = cs, csb1, ¬csb2
(1.2) pc(s,p) = cs, ¬csb1
(2) pc(s,p) = rs

(3.1.1.1) pc(s,p) = ws, csb1, csb2, csb3

(3.1.1.2) pc(s,p) = ws, csb1, csb2, ¬csb3
(3.1.2) pc(s,p) = ws, csb1, ¬csb2
(3.2) pc(s,p) = ws, ¬csb1

all processes currently located at ws or cs. The observer is
declared as follows:

op psInWsCs : Sys -> SetPids .

where SetPids is the sort denoting the set of process IDs.
psInWsCs is defined in the initial states and each transition
as follows:

eq psInWsCs(init) = emp .
ceq psInWsCs(want(S,P)) =

insert(P,psInWsCs(S)) if c-want(S,P) .
eq psInWsCs(try(S,P)) = psInWsCs(S) .
ceq psInWsCs(exit(S,P)) =

delete(P,psInWsCs(S)) if c-exit(S,P) .

where emp is the constant of sort SetPids representing
the empty set. The equations say that initially, psInWsCs
is empty; when process P moves to ws from rs, P is inserted
into psInWsCs; when process P moves to rs from cs, P
is removed from psInWsCs; psInWsCs does not change
when P moves to cs from ws.

Then, we can complete the proof of inv7 by using the
following lemmas:

eq inv10(S) = #(psInWsCs(S)) = count(S) .
eq inv11(S,P) = (pc(S,P) = ws or pc(S,P) = cs)
implies P \in psInWsCs(S) .

eq inv12(SE,E) = E \in SE implies 0 < #(SE) .

where # is the operator taking a set as the parameter and
returning the size of it, \in is the infix operator checking
the existence of an element in a set, SE and E are CafeOBJ
variables denoting arbitray set and element, respectively. To
prove inv7, we do not need to apply structural induction, but
only case splitting is enough. Table I shows the case splitting
for the proof of inv7, where each csbi for i = 1, 2, 3 is as
follows:
csb1 , (count(s) = #(psInWsCs(s)))
csb2 , p \in psInWsCs(s)
csb3 , 0 < #(psInWsCs(s))

For example, the proof fragment of case (1.1.1.2) is as
follows:

open INV .
ops p r : -> Pid . op s : -> Sys .
eq pc(s,p) = cs .
eq count(s) = #(psInWsCs(s)) .
eq p \in psInWsCs(s) = true .
eq (0 < #(psInWsCs(s))) = false .
red inv12(psInWsCs(s),p) implies inv7(s,p) .
close

The proof of this case uses inv12 as a lemma. Let us
repeat again that, to prove inv7, we do not apply structural
induction, but only conduct case splitting. The proof of case
(3.1.1.2) also uses inv12 as a lemma. The proofs of cases
(1.1.2) and (3.1.2) use inv11 as a lemma. The proofs of
cases (1.2) and (3.2) use inv10 as a lemma. The remaining
cases are proved without any lemma.

To complete the verification, we also use the following
lemmas:

eq inv2(S,P) = ((pc(S,P) = cs)
implies (array(S,place(S,P)) = true)) .

eq inv3(S,G,H) = (((G = H) = false and
array(S,G) = true)
implies (array(S,H) = false)) .

eq inv4(S,P,Q) = (place(S,P) = place(S,Q) and
(pc(S,P) = rs) = false and (P = Q) = false)
implies (pc(S,Q) = rs) .

eq inv5(S,P,I) = (pc(S,P) = ws and
place(S,P) = ((I + next(S)) rem No))
implies ((I + count(S)) < No) = false .

eq inv6(S,P) = (place(S,P) < No) .
eq inv8(S,I) = (array(S,I) = true implies
next(S) = (I + count(S)) rem No) .

eq inv9(S) = (next(S) < No) .

The proof of inv1 uses mutex, inv4, inv8, and inv7
as lemmas. The proof of inv2 uses mutex as a lemma.
The proof of inv3 requires the use of inv2 as a lemma.
inv4 would be the most complicated invariant, its proof uses
inv1, inv2, inv5, inv6, inv7, and inv8 as lemmas.
To prove inv5, we need to use inv2, inv4, inv6, inv7,
and inv8 as lemmas. mutex and inv9 are used as a lemma
in the proof of inv6. The proof of inv8 uses inv2 and
inv3 as lemmas. We can prove inv9, inv11, and inv12
without using any other lemma. The proof of inv10 requires
to use inv11 as a lemma.

B. Discussion

To prove a property is an invariant of an OTS, we need to
conjecture some additional lemmas that are also invariants
on the fly during the proof. It is often the case such that
the lemma conjectured is not easy to prove such as inv7
in this paper. Sometimes, in some non-trivial sub-cases of
the induction proof, we do not have enough information
to verify that the lemma is preserved by a transition. Let
us return to inv7 and its lemmas inv7-2, inv7-3, etc.
in the last section to explain the difficulty made us could
not complete the proofs of them and the reason why it is
necessary to introduce auxiliary variables like psInWsCs.



The premise of inv7 or each inv7-k says that there exists
a set of processes that currently located at ws or cs, and its
corresponding conclusion concludes that count is greater
than or equal to the size of that set. However, we do not
have enough information to calculate the value of count
to make the comparison because we can not observe the
full set of all processes currently located at ws or cs. We
only know that there explicitly is/are one (P), or two (P
and Q), or three (P, Q, and R) process(es) currently located
at ws or cs corresponding to each inv7, or inv7-2, or
inv7-3, respectively. That is the reason why the proof of
inv7 or each of inv7-k becomes so tough or even almost
impossible. Since the difficulty comes from the impossibility
of observing the full set of all processes currently located at
ws or cs, we introduce the observer psInWsCs recording
the collection of processes that have entered ws and not yet
left cs. Consequently, we overcome the difficulty, accomplish
the proof inv7 as well as the complete verification.

VI. RELATED WORK

Tran and Ogata [2] have made an abstract version of
Anderson, which is called A-Anderson protocol, and for-
mally verified that A-Anderson enjoys the mutual exclusion
property. The verification is conducted in three ways: (1)
by writing proof scores in CafeOBJ, (2) with a proof
assistant CiMPA [5] for CafeOBJ and (3) with a proof
generator CiMPG [5] for CafeOBJ. The paper has also
mentioned how to formally verify that Anderson enjoys
the mutual exclusion property by showing that there exists
a simulation relation from Anderson to A-Anderson, and
such simulation preserves the property. The details of this
verification technique, however, were not presented in [2]
due to the page-limitation. They mentioned that they would
report that part in a longer version.

Lamport and Merz [6] has described how to introduce
auxiliary variables into TLA+ specifications to prove a
refinement mapping between two TLA+ specifications (i.e.,
the set of observable behaviors of the first specification is a
subset of the behaviors of the second one). Auxiliary variables
have been classified into three kinds: history, prophecy and
stuttering variables. History variables are used to record what
has happened in the past (including the present). Prophecy
variables are used to predict what will happen in the future.
Stuttering variables are used to introduce stuttering steps.
psInWsCs we have used in this paper corresponds to a
history variable. Lamport and Merz use auxiliary variables
to make it possible to find a refinement map from a TLA+
specification to another TLA+ specification. While we use
psInWsCs to complete the proof that a property is an
invariant of the OTS formalizing Anderson.

Auxiliary variables, go back to the past were originally
introduced by Owicki and Gries [7] in the form of history
variables. Later, Abadi and Lamport [8] have introduced the
idea of prophecy variables. In [8], Abadi and Lamport have

presented how to use both history and prophecy variables
to prove that one program is a correct implementation of a
specification, by showing that the former refines the latter.

VII. CONCLUSION

We have formally verified that Anderson protocol to
which an auxiliary variable is introduced enjoys the mutual
exclusion property. Consequently, we can conclude that
Anderson enjoys the property. Originally, we got stuck
several months in the verification attempt because the proof
requires a lemma that is so tough to prove the correctness
of it. Introducing an auxiliary variable psInWsCs helps
us to accomplish the proof of that lemma, leading to
the complete formal verification. psInWsCs records all
processes currently located at cs or ws, which means that
it does not affect the current or future values of any other
variables. Thus, it can be guaranteed that adding psInWsCs
does not change the behavior of Anderson.

Conjecture lemma has been considering as one of the
most challenging tasks to formally prove that a property
is an invariant of an OTS. Normally, we can not always
conjecture the best lemma every time we need to use a
lemma. Sometimes, the lemma is so tough or even almost
impossible to prove such as inv7 in this paper. Then,
introducing auxiliary variables into the specification can
help us to complete the lemma’s proof as well as the formal
verification such as psInWsCs in the present paper. We can
understand the reason why we need to introduce psInWsCs
in the formal verification of Anderson case study. However, in
general, we have not had a contented answer for the question:
when we need to introduce auxiliary variables to complete
formal verification of other case studies? That should be one
piece of our future work to answer such a question.

REFERENCES

[1] T. E. Anderson, “The performance of spin lock alternatives for
shared-memory multiprocessors,” IEEE Trans. Parallel Distrib.
Syst., vol. 1, no. 1, pp. 6–16, 1990.

[2] D. D. Tran and K. Ogata, “Formal verification of an abstract
version of Anderson protocol with CafeOBJ, CiMPA and
CiMPG,” in SEKE 2020, 2020, pp. 287–292.

[3] K. Ogata and K. Futatsugi, “Proof scores in the OTS/CafeOBJ
method,” in FMOODS 2003, 2003, pp. 170–184.

[4] R. Diaconescu and K. Futatsugi, CafeOBJ Report, ser. AMAST
Series in Computing. World Scientific, 1998, vol. 6.

[5] A. Riesco and K. Ogata, “Prove it! Inferring formal proof
scripts from CafeOBJ proof scores,” ACM Trans. Softw. Eng.
Methodol., vol. 27, no. 2, pp. 6:1–6:32, 2018.

[6] L. Lamport and S. Merz, “Auxiliary variables in TLA+,” CoRR,
vol. abs/1703.05121, 2017.

[7] S. S. Owicki and D. Gries, “An axiomatic proof technique for
parallel programs I,” Acta Informatica, vol. 6, pp. 319–340,
1976.

[8] M. Abadi and L. Lamport, “The existence of refinement
mappings,” Theor. Comput. Sci., vol. 82, no. 2, pp. 253–284,
1991.


	Introduction
	Anderson Protocol
	Formal Specification of Anderson Protocol
	Formal Verification by Proof Scores
	Introducing an auxiliary variable
	Introducing psInWsCs
	Discussion

	Related Work
	Conclusion
	References

