
Formal verification of IFF & NSLPK authentication protocols with CiMPG

Thet Wai Mon, Shuho Fujii, Duong Dinh Tran, and Kazuhiro Ogata
School of Information Science, Japan Advanced Institute of Science and Technology (JAIST)

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
Email: {thetwaimon,s1910186,duongtd,ogata}@jaist.ac.jp

Abstract—Proof scores are programs written in an algebraic
specification language, such as CafeOBJ, to conduct formal
verification. Thus, the proof score approach to formal verifi-
cation (PSA2FV) can be regarded as a kind of proving by
programming and then flexible. PSA2FV, however, is subject
to human errors. To address the issue, a proof assistant called
CiMPA was developed for CafeInMaude, the world’s second
implementation of CafeOBJ. Furthermore, a proof generator
called CiMPG was developed to benefit from the strong points
of both PSA2FV and CiMPA. Although some case studies
have been conducted with CiMPG, it is necessary to do some
more. The present paper reports on case studies in which it
is formally verified that two authentication protocols enjoy
desired properties with CiMPG.

Keywords-algebraic specification language; proof assistant;
proof generator; authentication protocol

I. INTRODUCTION

Theorem proving that systems enjoy some desired prop-
erties by writing proof scores have been intensively used.
This approach uses observational transition systems (OTSs)
[1] as state machines to formalize systems. Then, the OTSs
are specified in CafeOBJ [2], which is a formal specification
language. Formal verification is conducted by writing what
is called “proof scores” [1] in CafeOBJ and executing them
with CafeOBJ. Although writing proof scores is flexible to
conduct formal verification, the proof may contain some
flaws since proof scores are subject to human errors (e.g.,
users may overlook some cases during the proof).

CafeInMaude is the second implementation in Maude
of CafeOBJ in addition to the original implementation in
Common Lisp, where Maude [3] is a sibling language of
CafeOBJ. CafeInMaude introduces CafeOBJ specifications
into the Maude system. It comes with two extension tools
CafeInMaude Proof Assistant (CiMPA) and CafeInMaude
Proof Generator (CiMPG) [4]. CiMPA is a proof assistant
that allows users to write proof scripts in order to prove
invariant properties on their CafeOBJ specifications. CiMPG
provides a minimal set of annotations for identifying proof
scores and generating CiMPA scripts for these proof scores.
Using CiMPA to develop the formal verification by writing
proof scripts can help us to avoid the flaw made by human
users as in the proof score approach. However, it is often the

This work was supported by JST SICORP Grant Number JPMJSC20C2,
Japan.

DOI reference number: 10.18293/SEKE2021-037

case that CiMPA is not flexible enough to conduct formal
verification. CiMPG allows users to combine the flexibility
of the proof score approach and the reliability of CiMPA.
Given proof scores that should be slightly annotated, CiMPG
generates proof scripts for CiMPA. Feeding the generated
proof scripts into CiMPA, if CiMPA successfully discharges
all goals, the proof scores are correct for the goals.

This paper presents the formal verification with
CiMPA and CiMPG of two authentication protocols:
Identity-Friend-or-Foe authentication protocol (IFF) [5] and
Needham-Schroeder-Lowe Public Key authentication proto-
col (NSLPK) [6]. The former is a simple protocol used to
check if a principal (or an agent) is a member of a group.
The latter is an advanced authentication protocol, which is a
modification of NSPK protocol [7] made by Lowe. We use
CiMPA and CiMPG to formally verify that: (1) IFF enjoys
the identifiable property, and (2) NSLPK enjoys the nonce
secrecy property and one-to-many correspondence property.

Although it has been formally verified that NSLPK enjoys
the nonce secrecy property with CiMPG [4], we are the
first to formally verify that NSLPK enjoys the one-to-many
correspondence property with CiMPG as well as CiMPA.
IFF is a tiny protocol but nobody has formally verified that it
enjoys a desired property with either CiMPA or CiMPG. All
specifications and proofs presented in this paper are available
at https://github.com/twmon14/fvap.

II. FORMAL VERIFICATION OF IFF

IFF [5] is used to check if a principal is a member of a
group. The IFF protocol can be described as the following
two message exchanges:

Check p → q : r
Reply q → p : εk(r, q)

Each principal (or agent) such as p and q belongs to only
one group. A symmetric key is given to each group, whose
members share the key, and keys are different from group
to group. If a principal p wants to check if a principal q
is a member of the p’s group, p generates a fresh random
number r and sends it to q as a Check message. On receipt
of the message, q sends back to p a Reply message that
consists of r and ID q encrypted by the symmetric key k of
the q’s group. When p receives the Reply message, p tries
to decrypt the ciphertext received with the symmetric key of
the p’s group. If the decryption succeeds and the plaintext

https://github.com/twmon14/fvap


consists of r and q, p then concludes that q is a member of
the p’s group.

We suppose that the cryptosystem used is perfect, there
is only one legitimate group, all members of the group
are trustable, and there are also untrustable principals who
are not members. Trustable principals exactly follow the
protocol, but untrustable ones may do something against
the protocol as well. The combination and cooperation of
untrustable principals are modeled as the most general enemy
(or intruder). The enemy gleans as much information as
possible from messages flowing in the network and creates
fake messages based on the gleaned information, provided
that the enemy cannot break the perfect cryptosystem.

A. Formal Specification of the Protocol

We first declare the operator enc to specify the ciphertexts
used in the protocol as follows:
op enc : Key Rand Prin -> Cipher .

op k : Cipher -> Key . op r : Cipher -> Rand .
op p : Cipher -> Prin .

where Key is the sort (or type) representing symmetric keys,
Rand is the sort denoting random numbers, Prin is the sort
representing principals, and Cipher is the sort denoting
ciphertexts. Given a key k, a random number r and a principal
p, enc(k, r, p) denotes the ciphertext obtained by encrypting
r and p with k. Operators k, r and p return the first, second
and third arguments of enc(k, r, p), respectively.

We specify two messages Check and Reply by two
operators cm and rm as follows:

op cm : Prin Prin Prin Rand -> Msg
op rm : Prin Prin Prin Cipher -> Msg

where Msg is the sort denoting messages. The first, second
and third arguments of each of cm and rm are the actual
creator, the seeming sender and the receiver of the corre-
sponding message. The first argument is meta-information
that is only available to the outside observer and the principal
that has sent the corresponding message, and that can not be
forged by the enemy; while the remaining arguments may
be forged by the enemy.

The network is modeled as a multiset of messages, in
which the enemy can use as his/her storage. Any message
that has been sent or put once into the network is supposed
to be never deleted from the network because the enemy can
replay the message repeatedly, although the enemy can not
forge the first argument. Consequently, the empty network
(i.e., the empty multiset) means that no messages have been
sent.

The enemy tries to glean two kinds of values from the
network, which are random numbers and ciphertexts. The
collections of these values gleaned by the enemy are denoted
by operators rands and ciphers, which are declared as
follows:

op rands : Network -> ColRands

op ciphers : Network -> ColCiphers

where Network is the sort denoting networks, ColRands
is the sort denoting collections of random numbers, and
ColCiphers is the sort denoting collections of ciphertexts.
ciphers is defined by the following equations:

eq C \in ciphers(void) = false .
ceq C \in ciphers(M , NW) = true if rm?(M)
and C = c(M) .
ceq C \in ciphers(M , NW) = C \in ciphers(NW)
if not(rm?(M) and C = c(M)) .

where void denotes the empty multiset (or empty network),
operator rm? checks if a given message is a Reply message,
operator c takes a Reply message as a parameter and returns
its ciphertext (i.e., the fourth argument of rm operator), \in
is an infix operator checking the existence of an element in
a collection, and operator , in M , NW denotes the data
constructor of nonempty multisets. The equations say that
a ciphertext C is available to the enemy iff there exists a
Reply message whose content is C. rands can be defined
likewise.

Now, we are ready to specify the protocol. We use two
obsevational functions nw and ur to observe the network
and the set of used random numbers, respectively as follows:

op nw : Sys -> Network . op ur : Sys -> URands

where Sys is the sort denoting the state space of IFF,
URands is the sort denoting the sets of random numbers.

We use five transitions together with one constant of Sys
to represent an arbitrary initial state as follows:

op init : -> Sys {constr}
op sdcm : Sys Prin Prin Rand -> Sys {constr}
op sdrm : Sys Prin Msg -> Sys {constr}
op fkcm1 : Sys Prin Prin Rand -> Sys {constr}
op fkrm1 : Sys Prin Prin Cipher -> Sys {constr}
op fkrm2 : Sys Prin Prin Rand -> Sys {constr}

sdcm and sdrm formalize sending Check and Reply
messages exactly following the protocol, respectively. The
remaining actions fkcm1, fkrm1, and fkrm2 are the
enemy’s faking messages, which can be understood as
follows:

• fkcm1: a random number R is available to the enemy,
the enemy fakes and sends a Check message using R,

• fkrm1: a ciphertext C is available to the enemy, the
enemy fakes and sends a Reply message using C,

• fkrm2: a random number R is available to the enemy,
the enemy fakes and sends a Reply message using R.

sdcm is defined as follows:

ceq nw(sdcm(S,P1,P2,R)) = (cm(P1,P1,P2,R) ,
nw(S)) if c-sdcm(S,P1,P2,R) .
ceq ur(sdcm(S,P1,P2,R)) = (R ur(S))
if c-sdcm(S,P1,P2,R) .
ceq sdcm(S,P1,P2,R) = S
if not c-sdcm(S,P1,P2,R) .



where c-sdcm(S,P1,P2,R) is not(R \in ur(S)).
The equations say that if c-sdcm(S,P1,P2,R) is true
(i.e., R has not been used), then the Check message
cm(P1,P1,P2,R) is put into the network nw(S), R is put
into ur(S) in the state denoted by sdcm(S,P1,P2,R);
if c-sdcm(S,P1,P2,R) is false, nothing changes. The
remaining transitions can be defined likewise.

B. Formal Verification with CiMPA

One property of IFF we would like to confirm is whenever
p receives a valid Reply message from q, q is always a
member of the p’s group. Such property is called identifiable
property in this paper. The property is specified as follows:

op inv1 : Sys Prin Prin Prin Key Rand
-> Bool .
eq inv1(S,P1,P2,P3,K,R) = ((not(K = k(enemy))
and rm(P1,P2,P3,enc(K,R,P2)) \in nw(S))
implies not(P2 = enemy)) .

We describe how to prove that IFF enjoys the property by
writing proof scripts and running with CiMPA. In the proof
of inv1, we need to use a lemma inv2 that is as follows:

op inv2 : Sys Key Rand -> Bool .
eq inv2(S,K,R) = (enc(K,R,enemy) \in
ciphers(nw(S)) implies (K = k(enemy))) .

where k(enemy) denotes the symmetric key of the group
to which the enemy belongs to.

The proof starts with the goals we need to prove:

open IFF .
:goal{
eq [iff1 :nonexec] : inv1(S:Sys,P:Prin,
P1:Prin,P0:Prin,K:Key,R:Rand) = true .
eq [iff :nonexec] :
inv2(S:Sys,K:Key,R:Rand) = true . }

where IFF is the module in which the specification of IFF
together with inv1 and inv2 are available. :nonexec
instructs CafeInMaude not to use the equations as rewrite
rules.

Then, we select S with the command :ind on as the
variable on which we start proving the goals by simultaneous
induction:

:ind on (S:Sys) :apply(si)

The command :apply(si) starts the proof by simultane-
ous induction on S, generating six goals for fkcm1, fkrm1,
fkrm2, init, sdcm, and sdrm, where si stands for
simultaneous induction. Each goal consists of two equations
to prove, corresponding to inv1 and inv2. With the first
goal for fkcm1, we first apply theorem of constants by using
the command: :apply(tc). The command generates two
sub-goals as follows:

1-1.> TC eq [iff1 :nonexec]: inv1(fkcm1(
S#Sys,P#Prin,P0#Prin,R#Rand),P@Prin,
P1@Prin,P0@Prin,K@Key,R@Rand) = true .
1-2. TC eq [iff :nonexec]: inv2(fkcm1(S#Sys,

P#Prin,P0#Prin,R#Rand),K@Key,R@Rand) = true .

The command :apply(tc) replaces CafeOBJ vari-
ables with fresh constants in goals. S#Sys, P#Prin,
P0#Prin, and R#Rand are fresh constants introduced
by :apply(si), while P@Prin, P1@Prin, P0@Prin,
K@Key, and R@Rand are fresh constants introduced by
:apply(tc). To discharge goal 1-1, the following com-
mands are first introduced:

:def c1 = :ctf [R#Rand \in rands(nw(S#Sys)) .]
:apply(c1)

Goal 1-1 is split into two sub-goals 1-1-1 and 1-1-2
correspond to when R#Rand \in rands(nw(S#Sys))
holds and does not hold, respectively. Then, two sub-goals
are discharged by the following commands:

:imp [iff1] by {K:Key <- K@Key ;
P0:Prin <- P0@Prin ; P1:Prin <- P1@Prin ;
P:Prin <- P@Prin ; R:Rand <- R@Rand ;}
:apply (rd)
:imp [iff1] by {K:Key <- K@Key ;
P0:Prin <- P0@Prin ; P1:Prin <- P1@Prin ;
P:Prin <- P@Prin ; R:Rand <- R@Rand ;}
:apply (rd)

The induction hypothesis is instantiated by replacing the
variables with the fresh constants and the instance is used
as the premise of the implication. For example, P1:Prin
is replaced with P1@Prin. Then, :apply(rd) is used to
check if the current goal can be discharged. Two goals 1-1-1
and 1-1-2 are discharged in this case. The current goal is
changed to 1-2.

Goal 1-2 is split into two sub-goals and they are discharged
by the following commands:

:def c2 = :ctf [R#Rand \in rands(nw(S#Sys)) .]
:apply(c2)
:imp [iff] by
{K:Key <- K@Key ; R:Rand <- R@Rand ;}
:apply (rd)
:imp [iff] by
{K:Key <- K@Key ; R:Rand <- R@Rand ;}
:apply (rd)

We have all done with goal 1, the current goal moves to 2.
With goal 2, we first introduce the following commands to
conduct case splitting.

:def c3 = :ctf
[C#Cipher \in ciphers(nw(S#Sys)) .]
:def c4 = :ctf {eq P@Prin = enemy .}
:def c5 = :ctf {eq P#Prin = P1@Prin .}
:def c6 = :ctf {eq P0#Prin = P0@Prin .}
:def c7 = :ctf {eq k(C#Cipher) = K@Key .}
:def c8 = :ctf {eq r(C#Cipher) = R@Rand .}
:def c9 = :ctf {eq p(C#Cipher) = P1@Prin .}
:def c10 = :ctf {eq K@Key = k(enemy) .}
:apply(c3) :apply(c4) :apply(c5) :apply(c6)
:apply(c7) :apply(c8) :apply(c9) :apply(c10)

Case splittings are carried out based on one Boolean term
and seven equations. The first sub-goal in which the Boolean
term is true and seven equations hold can be discharged:



:imp [iff1] by {K:Key <- K@Key ;
P0:Prin <- P0@Prin ; P1:Prin <- P1@Prin ;
P:Prin <- P@Prin ; R:Rand <- R@Rand ;}
:apply (rd)

However, with the sub-goals in which the Boolean term is
true, first six equations hold and the last equation does not
hold, we need to conduct case splitting more as well as use
inv2 as a lemma:

:def c11 = :ctf {eq P1@Prin = enemy .}
:def c12 = :ctf [enc(K@Key,R@Rand,enemy)
\in ciphers(nw(S#Sys)) .]

:apply(c11) :apply(c12)
:imp [iff] by {K:Key <- K@Key ;
R:Rand <- R@Rand ;}
:imp [iff1] by {K:Key <- K@Key ;
P0:Prin <- P0@Prin ; P1:Prin <- P1@Prin ;
P:Prin <- P@Prin ; R:Rand <- R@Rand ;}
:apply (rd)

The lemma inv2 is instantiated by replacing the variables
K:Key and R:Rand with the fresh constants K@Key and
R@Rand, and the instance is used as the premise of the
implication. The induction hypothesis is instantiated by
replacing the variables with the fresh constants, and the
instance is used as the premise of the implication. Then,
:apply(rd) is used to discharge the current goal. The
remaining sub-goals of 2 can be discharged directly without
using any lemma. The remaining goals from 3 to 6 can be
discharged likewise.

C. Formal Verification with CiMPG

The following is the proof score for the case corresponding
to goal 1-1-1 in the last section:

open IFF .
op s : -> Sys . ops a b c d e : -> Prin .
op k : -> Key . ops r1 r2 : -> Rand .
eq (r2 \in rands(nw(s))) = true .
red inv1(s,a,b,c,k,r1)
implies inv1(fkcm1(s,d,e,r2),a,b,c,k,r1) .
close

where open makes the module IFF available, close stops
the use of the module and red reduces (computes) the given
term. s and k correspond to S#Sys and K@Key in the
last section, respectively. a, b, c, d, and e correspond to
P@Prin, P1@Prin, P0@Prin, P#Prin, and P0#Prin,
respectively. r1 and r2 correspond to R@Rand and R#Rand,
respectively. The details of the proof score approach as well
as how to write proof scores to conduct formal verification
can be found in paper [1]. In comparison with proof scripts,
proof scores are often easier to understand for human users,
and writing proof scores are also more flexible than writing
proof scripts. That is the reason why when conducting
formal verification, we prefer to write proof scores rather
than proof scripts. However, because of the flexibility, proof
scores are subject to human errors. For example, during the

verification users may overlook some cases, leading to the
flaw verification.

After writing proof scores that IFF protocol enjoys the
property, we can confirm that the proof scores are correct
by doing the formal verification with CiMPA as described in
the last section. Although we are able to conduct the formal
verification with CiMPA once we have completed formal
verification by writing proof scores in CafeOBJ, it would be
preferable to automatically confirm the correctness of proof
scores. CiMPG makes it possible to automatically confirm
the correctness of proof scores by generating proof scripts
for CiMPA from the proof scores.

To use CiMPG, we need to add :id(iff) into each
open-close proof score fragment. For example, the open-
close fragment shown above becomes as follows:

open IFF .
:proof(iff)
op s : -> Sys . ops a b c d e : -> Prin .
op k : -> Key . ops r1 r2 : -> Rand .
eq (r2 \in rands(nw(s))) = true .
red inv1(s,a,b,c,k,r1)
implies inv1(fkcm1(s,d,e,r2),a,b,c,k,r1) .
close

Moreover, we need to add one more open-close fragment
to the proof scores, which is as follows:

open IFF .

:proof(iff)

close

where iff is just an identifier, can be replaced by another
one that is more preferred.

Feeding the annotated proof scores into CiMPG, CiMPG
generates the proof script for CiMPA. The generated proof
script is quite similar to the one written manually. Feeding
the generated proof script into CiMPA, CiMPA discharges
all goals, confirming that the proof scores are correct.

III. FORMAL VERIFICATION OF NSLPK

NSLPK [6] is a modification of NSPK authentication
protocol [7] made by Lowe. The NSLPK protocol can be
described as the following three message exchanges:

Init p → q : εq(np, p)
Resp q → p : εp(np, nq, q)
Ack p → q : εq(nq)

Each principal such as p and q has a pair of keys: public
and private keys. εp(m) denotes the ciphertext obtained by
encrypting the message m with the principal p’s public key.
np is a nonce (a random number) generated by principal p.
A nonce is a unique and non-guessable number that is used
only one time. Again, we also suppose that the cryptosystem
used is perfect.

A. Formal Specification of the Protocol

We introduce the following three operators to represent
the ciphertexts used in the protocol:



op enc1 : Prin Nonce Prin -> Cipher1
op enc2 : Prin Nonce Nonce Prin -> Cipher2
op enc3 : Prin Nonce -> Cipher3

where Nonce is the sort denoting the nonce numbers;
Cipher1, Cipher2, and Cipher3 are the sorts denoting
three kinds of ciphertexts contained in Init, Resp, and Ack
messages, respectively. Given principals p, q and a nonce
np term enc1(q, np, p) denotes the ciphertext εq(np, p)
obtained by encrypting np and p with principal q’s public
key. enc2 and enc3 can be understood likewise.

We specify three messages used in NSLPK as follows:

op m1 : Prin Prin Prin Cipher1 -> Msg
op m2 : Prin Prin Prin Cipher2 -> Msg
op m3 : Prin Prin Prin Cipher3 -> Msg

Msg as well as the first three arguments of each operator
can be understood as in the specification of IFF explained
in the last section.

The intruder tries to glean four kinds of values from the
network, which are nonces and three kinds of ciphertexts.
Then, we use following four operators to denote those values:

op cnonce : Network -> ColNonce
op cenc1 : Network -> ColCipher1
op cenc2 : Network -> ColCipher2
op cenc3 : Network -> ColCipher3

where Network is the sort denoting networks (i.e., multisets
of messages) and ColX is a sort denoting collections of
values corresponding to the sort X . The equations defining
cenc1 are as follows:

eq E1 \in cenc1(void) = false .
ceq E1 \in cenc1(M,NW) = true if m1?(M) and
not(key(cipher1(M)) = intruder) and
E1 = cipher1(M) .
ceq E1 \in cenc1(M,NW) = E1 \in cenc1(NW)
if not(m1?(M) and E1 = cipher1(M))
and not(key(cipher1(M)) = intruder) .

where E1 is a CafeOBJ variable of Cipher1. m1? checks if
a given message is an Init message. Operator cipher1 takes
an Init message as an argument and returns its ciphertext (i.e.,
the fourth argument of m1 operator). Operator key takes a
ciphertext as an argument and returns the principal in which
the ciphertext is encrypted with its public key. void, M, NW,
as well as (M,NW) can be understood as explained in the last
section. The equations say that a ciphertext E1 is available
to the intruder iff there exists an Init message whose content
is E1 and E1 is not encrypted by the intruder’s public key.
Let us note that, if E1 is encrypted by the intruder’s public
key, E1 can be rebuilt by the intruder. cnonce, cenc2,
and cenc3 can be defined likewise.

We use two observers, nine transitions, together with one
constant that represents an arbitrary initial state to specify
NSLPK as follows:

op ur : Sys -> URand . op nw : Sys -> Network
op init : -> Sys {constr}

op sdm1 : Sys Prin Prin Rand -> Sys {constr}
op sdm2 : Sys Prin Rand Msg -> Sys {constr}
op sdm3 : Sys Prin Rand Msg Msg -> Sys
{constr}
op fkm11 : Sys Prin Prin Cipher1 -> Sys
{constr}
op fkm12 : Sys Prin Prin Nonce -> Sys {constr}
op fkm21 : Sys Prin Prin Cipher2 -> Sys
{constr}
op fkm22 : Sys Prin Prin Nonce Nonce -> Sys
{constr}
op fkm31 : Sys Prin Prin Cipher3 -> Sys
{constr}
op fkm32 : Sys Prin Prin Nonce -> Sys {constr}

where URand is the sort denoting sets of random numbers.
ur, nw, and init can be understood as in the last section.
The first three transitions formalize sending messages exactly
following the protocol, while the remaining formalize the
intruder’s faking messages, which can be understood as
follows:

• fkm11, fkm21, and fkm31: a ciphertext C is available
to the intruder, the intruder fakes and sends a/an Init,
or Resp, or Ack message using C, respectively.

• fkm12 and fkm32: a nonce N is available to the
intruder, the intruder fakes and sends an Init or Ack
message using N, respectively,

• fkm22: two nonces N1 and N2 are available to the
intruder, the intruder fakes and sends a Resp message
using N1 and N2.

Let S be a CafeOBJ variable of Sys, and P & Q are
CafeOBJ variables of Prin. fkm11 is defined as follows:

eq ur(fkm11(S,P,Q,E1)) = ur(S) .
ceq nw(fkm11(S,P,Q,E1)) = m1(intruder,P,Q,E1)
, nw(S) if c-fkm11(S,P,Q,E1) .
ceq fkm11(S,P,Q,E1) = S
if not c-fkm11(S,P,Q,E1) .

where c-fkm11(S,P,Q,E1) is E1 \in
cenc1(nw(S)), intruder is a constant of Prin
denoting the intruder. The equations say that if
c-fkm11(S,P,Q,E1) is true, then the Init message
m1(intruder,P,Q,E1) is put into the network
nw(S), ur(S) does not change in the state denoted by
fkm11(S,P,Q,E1); if c-fkm11(S,P,Q,E1) is false,
nothing changes. The remaining transitions can be defined
likewise.

B. Formal Verification with CiMPA and CiMPG

There are two properties of NSLPK that we would like
to verify namely nonce secrecy property and one-to-many
correspondence property. The former says that all nonces
available to the intruder are those created by the intruder or
those created for the intruder. Let N be a CafeOBJ variable
of Nonce, we specify the nonce secrecy property as follows:

eq inv130(S,N) = (N \in cnonce(nw(S))
implies (creator(N) = intruder or



forwhom(N) = intruder)) .

The one-to-many correspondence property is specified by
the following two equations:

eq inv170(S,P,Q,Q1,R,N) = (not(P = intruder)
and m1(P,P,Q,enc1(Q,n(P,Q,R),P)) \in nw(S)
and m2(Q1,Q,P,enc2(P,n(P,Q,R),N,Q)) \in nw(S)
implies
m2(Q,Q,P,enc2(P,n(P,Q,R),N,Q)) \in nw(S)) .

eq inv180(S,P,Q,P1,R,N) = (not(Q = intruder)
and m2(Q,Q,P,enc2(P,N,n(Q,P,R),Q)) \in nw(S)
and m3(P1,P,Q,enc3(Q,n(Q,P,R))) \in nw(S)
implies
m3(P,P,Q,enc3(Q,n(Q,P,R))) \in nw(S)) .

where P1 & Q1 are CafeOBJ variables of Prin, R is a
CafeOBJ variable of Rand. inv170 says that whenever
P successfully sent an Init message to Q, and received a
corresponding Resp seemingly from Q, the principal that
P is communicating with is really Q even though there are
malicious principals (e.g., Q1). inv180 can be understood
likewise.

To verify the nonce secrecy property, we prove that
inv130 is an invariant of the OTS formalizing NSLPK.
The formal verification is also conducted in two ways: by
writing proof scripts with CiMPA and by using CiMPG
to generate proof scripts from proof scores. Both of them
require the use of the following lemmas:

eq inv100(S,E1) = (E1 \in cenc1(nw(S))
implies not(key(E1) = intruder)) .
eq inv110(S,E2) = (E2 \in cenc2(nw(S))
implies not(key(E2) = intruder)) .
eq inv120(S,E3) = (E3 \in cenc3(nw(S))
implies not(key(E3) = intruder)) .
eq inv140(S,E1) = (E1 \in cenc1(nw(S)) and
principal(E1) = intruder
implies nonce(E1) \in cnonce(nw(S))) .
eq inv150(S,E2) = (E2 \in cenc2(nw(S)) and
principal(E2) = intruder
implies nonce2(E2) \in cnonce(nw(S))) .
eq inv160(S,N) = (creator(N) = intruder
implies N \in cnonce(nw(S))) .

where E2 and E3 are CafeOBJ variables of Cipher2 and
Cipher3, respectively.

In each way of verification, what we need to do is quite
similar to what we have described in the last section with
formal verification of IFF. However, with CiMPG, we also
need to make some modifications to the existing proof
scores. Let us consider an example in which we want to
split the current case into two sub-cases: (1) message m is
in nw(s), which is the network of the current state, and
(2) m is not in nw(s). CafeOBJ allows us to write proof
scores to conduct case splitting by introducing two equations:
(i) nw(s) = (m , nw’) to characterize (1) and (ii)
m \in nw(s) = false to characterize (2), where nw’
is a constant denoting an arbitrary network (or list of
messages). With CiMPA, if we declare equation (i) and

apply for case splitting, then it will automatically split the
current goal into two sub-goals in which (i) holds in the
first sub-goal, while it does not hold in the second one.
Thus, the second sub-goal is characterized by the equation
(nw(s) = (m , nw’)) = false. In this sub-goal, it
does not guarantee that m is not in nw(s) since m can be
in nw’. CiMPG also can not recognize that the use of two
equations (i) and (ii) for case splitting is correct. In the
existing proof scores of formal verification of NSLPK, there
are many times in which case splitting is “flexibly” applied
in the same way as based on two equations (i) and (ii)
mentioned above. This flexible case splitting is an advantage
of the CafeOBJ/proof score method but also is a disadvantage
because we need to ensure that the equations used for case
splitting cover every case and do not overlap each other.
However, to make it possible for CiMPG to generate the
proof scripts, the existing proof score needs to be modified.
With the example mentioned above, two equations used
for case splitting should be m \in nw(s) = true and
m \in nw(s) = false.

IV. CONCLUSION

This paper has presented the formal verifications with
proof assistant CiMPA and with proof generator CiMPG. In
comparison with the proof score approach, each verification
method has advantages as well as disadvantages. While
proof scores are flexible to write, they are subject to human
errors since human users can overlook some cases during the
verification. The proof scripts are reliable, but they are not
easy to develop, especially with non-expert users. CiMPG
combines the flexibility of the proof score approach and
the reliability of CiMPA. However, it often takes time for
CiMPG to generate proof scripts when the size of input proof
scores is large. Two case studies are presented in which
we formally verify that IFF protocol enjoys the identifiable
property, and NSLPK enjoys the nonce secrecy and one-to-
many correspondence properties.

REFERENCES

[1] K. Ogata and K. Futatsugi, “Proof scores in the OTS/CafeOBJ
method,” in FMOODS 2003, 2003, pp. 170–184.

[2] R. Diaconescu and K. Futatsugi, Cafeobj Report, ser. AMAST
Series in Computing. World Scientific, 1998, vol. 6.

[3] M. Clavel, et al., Ed., All About Maude, ser. Lecture Notes in
Computer Science. Springer, 2007, vol. 4350.

[4] A. Riesco and K. Ogata, “Prove it! Inferring formal proof
scripts from CafeOBJ proof scores,” ACM Trans. Softw. Eng.
Methodol., vol. 27, no. 2, pp. 6:1–6:32, 2018.

[5] R. J. Anderson, Security engineering - A guide to building
dependable distributed systems. Wiley, 2001.

[6] G. Lowe, “An Attack on the Needham-Schroeder Public-Key
Authentication Protocol,” Inf. Process. Lett., vol. 56, no. 3, pp.
131–133, 1995.

[7] R. M. Needham and M. D. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers,” Commun.
ACM, vol. 21, no. 12, pp. 993–999, 1978.


	Introduction
	Formal verification of IFF
	Formal Specification of the Protocol
	Formal Verification with CiMPA
	Formal Verification with CiMPG

	Formal verification of NSLPK
	Formal Specification of the Protocol
	Formal Verification with CiMPA and CiMPG

	Conclusion
	References

