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Abstract—Sequential recommendation aims to recommend the
next item that a user will likely interact with by capturing
the useful sequential patterns from users’ historical behaviors.
Recently, it has become an important and popular component in
various e-commerce platforms. As a successful network, Trans-
former has been widely used to adaptively capture the dynamics
of users’ historical behaviors for sequential recommendation. In
recommender systems, the size of embedding is usually set to be
small. Under small embedding, the dot-product in Transformer
may have the limitation on calculating the complex relevance
between keys and queries. To address the common but neglected
issue, in this paper, we present a new model, Deep Self-Attention
for Sequential Recommendation (DSASrec), which proposes a
chunking deep attention to compute attention weights. The
chunking deep attention has two modules: a deep module and
a chunking module. The deep module is used to improve the
nonlinearity of the attention function. The chunking module is
used to calculate attention weights several times like the multi-
head attention in Transformer. Extensive experiments on three
benchmark datasets show that our model can achieve state-of-
the-art results. Our implementation is available in PyTorch 1.

Keywords—Recommender System, Transformer, Dot-product,
Chunking Representation, Deep Learning

I. INTRODUCTION

Recommender system has become an important prevalent
component in real-world applications. Learning the embed-
dings of users and items is an essential topic in recommender
systems [1]–[4]. Beyond using the embeddings of users, se-
quential recommendation considers the sequential patterns in
users’ historical behaviors as the pre-existing features of users.
To exploit the sequential patterns, Transformer [5] has been
widely deployed to sequential recommendation. For example,
SASrec [6] tried to capture the dynamics of users’ historical
behaviors via Transformer instead of using Recurrent Neural
Networks (RNNs). BERT4rec [7] introduced a deep bidirec-
tional sequential self-attention model and a Cloze objective to
the field of recommender systems.

Although the previous methods have been proven effec-
tive, the previous methods fail to consider the dot-product
in Transformer may have the limitation on calculating the
complex relevance between keys and queries. In most cases,
Transformer is used in the field which has high dimensional

1https://github.com/Book1996/DSASrec
DOI reference number: 10.18293/SEKE2021-035
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Fig. 1. An example of dot-product’s limitation. Since u4 is most similar to
u1, u4 only can be piloted as the red vectors. However, no matter how u4 is
piloted, it can not satisfy this relationship: s41 > s43 > s42.

embeddings. For example, Transformer paper and GPT [8] pa-
per used 512-dimensional vectors and 768-dimensional vectors
to represent words, respectively. In recommender systems, the
size of embedding is usually set to be small. For example,
SASrec used 50-dimensional vectors to represent items. NCF
[9] used 64-dimensional vectors to represent items and users.
The size of embedding vector has a great influence on the
limitation of dot-product [9]. Suppose we have a user-item
interaction graph G as Figure 1(left). There are the similarity
relations between u1, u2 and u3 as s23 > s12 > s13, where sab
indicates the similarity of user a and user b. When we project
the users into 2D space, the geometric relations of u1, u2 and
u3 can be expressed by dot-product as in Figure 1(right). There
are other similarity relations about u4 as s41 > s43 > s42.
However, the relations s41 > s43 > s42 can’t be expressed
accurately in the 2D space. If we place v4 closest to v1 as the
red vectors in Figure 1, v4 is closer to v2 than v3. It would
contradict s41 > s43 > s42. Thus, under small embeddings,
using dot-product may lead to that the complex relevance
between keys and queries is ignored.

To address the aforementioned problems, in this paper, we
present a new model, Deep Self-Attention for Sequential Rec-
ommendation (DSASrec). DSASrec takes a user’s historical
behaviors and a candidate item as input and outputs the user’s
preference for the candidate item. Specifically, we first project
users’ historical behaviors into vector representations and then
apply a self-attention mechanism to predict users‘ preferences.
Distinct from existing works [6], [10], we propose a chunking
deep attention (CDA) to compute attention weights. The
chunking deep attention has two modules: a deep module and a
chunking module. The deep module in CDA is used to improve
the nonlinearity of attention function. The chunking module in
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Fig. 2. The network architecture of DSASrec. Matrix O indicates the output of DSAB. On indicates the n− th row of O, which combines information of
n items. On is used to compute the user’s preference for the (n+ 1)− th (next) item.

CDA is used to calculate attention weights several times like
the multi-head attention in Transformer. We perform extensive
experiments on four standard large real-world datasets, and the
results show our model can achieve state-of-the-art results. To
justify the designs in our model, we further conduct ablation
studies on DSASrec. The results show each component of
DSASrec has contributions to performance. To summarize, this
work makes the following main contributions:
• We point out the dot-product in Transformer may have

the limitation on calculating the relevance of keys and
queries when the size of embedding is set to be small.

• We propose a new model DSASrec, which applies chunk-
ing deep attention instead of the multi-head attention in
Transformer to model attention weights.

• We demonstrate our proposed can achieve state-of-the-art
results by extensive experiments on four standard large
real-world datasets.

II. RELATE WORK

A. Attention Mechanism

Attention mechanism can be described as a weighted sum of
values, where the weights assigned to each value are computed
by a compatibility function [5]. Attention mechanism has
become more and more popular in various tasks such as
recommender system [6],machine translation [11] and Multi-
media [12]–[14]. Recently, Transformer [5] was proposed and
achieved promising empirical results in machine translation.
Due to the efficiency of Transformer, substantial research
focuses on improving the performance of Transformer. For
example, Transformer-XL [15] introduced a segment-level
recurrence mechanism and a novel positional encoding scheme
to learn sequential dependency beyond a fixed-length with-
out disrupting temporal coherence. Transformer-XL learned
dependency that is 80% longer than RNNs and 450% longer
than vanilla Transformers. Reformer [16] replaced dot-product
attention by using locality-sensitive hashing and reduced the
complexity of dot-product. Synthesizer [17] proved that us-
ing dot-product to learn attention weights from token-token
(query-key) interactions was useful but not that important.

B. Sequential Recommendation

Most early researches in sequential recommendation use
Markov Chains (MCs) to estimate users’ preference for items.
FPMC [18] combined Matrix Factorization (MF) and MC for
each user owning a personalized transition matrix. Extensive
experiments showed FPMC could outperform MF and MCs.
Fossil [19] fused similarity-based methods with MC to tackle
sparsity issues and the long-tailed distribution of datasets.
With progress in deep learning, Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN) based methods
have proliferated. Since the MC-based methods were difficult
to consider all users’ historical behaviors, GRU4Rec [20]
introduced a ranking loss function and used Gated Recurrent
Unit (GRU) [21] to exploit users’ historical behaviors. Caser
[22] argued that not all adjacent actions had dependency
relationships. Hence, they proposed a CNN-based model that
regarded users’ historical behaviors in the latent space as an
“image”. Inspired by Transformer [5], several models were
proposed to adaptively capture the heterogeneous, polysemous
relationship between items in dynamic sequence for sequential
recommendation. For example, SASRec [6] balanced long-
term pattern and predictions based on relatively several pre-
vious actions via Transformer. SASrec is over ten times
faster than RNN and CNN-based methods with GPUs and
achieved state-of-the-art results. TiSASrec [10] combined the
advantages of absolute position and relative time intervals to
learn the weights of different items. BERT4rec [7] employed
the deep bidirectional self-attention to model user behavior
sequences. SSE-PT [23] introduced additional personalized
embeddings to improve the performance of Transformer for
sequential recommendation. Although the previous methods
have been proven effective, they ignore the limitation of dot-
product when the size of embedding vector is small.

III. PROPOSED METHOD

In this section, we present the architecture of DSASrec,
which concludes an embedding layer, stacked deep self-
attention blocks, and a prediction layer as Figure 2.



A. Problem Formulation

In sequential recommendation, let U = {u1, u2, ..., u|U |} be
a set of users, I = {i1, i2, ..., i|I|} be a set of items, and Su =
{su1 , su2 , ..., su|Su|} be a historical interaction sequence for a
user u ∈ U , where sut ∈ I is the item that u has interacted with
at time step t. Given the interaction history Su, the sequential
recommendation seeks to predict the next item that user u will
interact with.

B. Embedding Layer

Following the prior works [6], [10], we firstly transform the
sequence Su = {su1 , su2 , ..., su|Su|} into a fixed-length sequence
{su1 , su2 , ..., suN}, where N is a hyper-parameter meaning max-
imum sequence length. If the length of Su is less than N , we
add zero-paddings to the left side. If the length of Su is greater
than N , we only consider the most recent N interactions.
Then, we create an item embedding matrix M ∈ R|I|×d
and apply a lookup layer on M to transform Su into vector
representations, where d is latent dimensionality. We inject
a learnable position embedding P ∈ RN×d. Thus, the input
embedding Eu corresponding with Su is defined as:

Eu =


Msu1

+ P1

Msu2
+ P2

...
MsuN

+ PN

 . (1)

C. Deep Self-Attention Block

1) Deep Module: An attention function can be described
as mapping a query and a set of key-value pairs to a weighted
sum of the values. In Transformer, the attention function is
defined as:

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V, (2)

where Q ∈ RN×d,K ∈ RN×d, V ∈ RN×d. N is the length of
sequence length and d is latent dimensionality as Section III-B
shows. To address the limitation of dot-product, our method
replaces the matrix multiplication term QKT with a multi-
layer perceptron (MLP). The deep attention can be defined
as:

Deep Attention(Q,K, V ) = Softmax(MLP (QK))V, (3)

where QK ∈ RN×N×d is the matrix that includes all key-query pairs
and MLP: RN×N×d → RN×N . The element of QK is defined as:

QKmn = Qm||Kn, (4)

where Qm is m − th row of Q, Kn is n − th row of K and || is
the concatenation operation. Recall that we add zero-paddings to the
left side, if the length of Su is less than N . And our model should
consider only the first h items when predicting the (h+1)− th item.
Thus, some key-query pairs are useless and should not be used to
compute corresponding weights. Formally, there are three cases that
would let QKmn be an useless key-query pair: Case 1: m < n; Case
2: Qm represents pad item; Case 3: Kn represents pad item. In order
to alleviate the computing cost of MLP, we highly optimize our code
to no longer use these useless key-query pairs.

2) Chunking Module: Transformer has found it beneficial to
linearly project the queries, keys and values several times with dif-
ferent, learned linear projections. We keep the multi-head mechanism
to disentangle different information from representation by splitting
the queries, keys and values evenly into P chunks as follows:

K = (K1;K2; ...;KP ),

Q = (Q1;Q2; ...;QP ),

V = (V 1;V 2; ...;V P ),

(5)

where Kj , Qj , and V j ∈ RN× d
P . The chunking deep attention

(CDA) are defined as:

CDA(Q,K, V ) = Concat(head1, ..., headh),

where headj = Deep Attention(Qj ,Kj , V j).
(6)

3) Self-Attention: Recently, a self-attention method was pro-
posed which used the same objects as queries, keys, and values [5].
Following previous methods [6], [10], we apply the self-attention
mechanism to capture the sequential patterns in users’ historical
behaviors. The deep self-attention (DSA) in our case is defined as
follows:

DSA(Eu) = CDA(Eu, Eu, Eu). (7)

Following Transformer, we employ two position-wise fully connected
feed-forward networks (FFN) with a ReLU activation in between to
strengthen the performance of DSA as follows:

A = LayerNorm(Eu +Dropout(DSA(Eu))),

A′ = ReLU(AW1 + b1)W2 + b2,

Zu
1 = LayerNorm(A+Dropout(A′)),

(8)

where W1 ∈ Rd′×d, b1 ∈ Rd′ ,W2 ∈ Rd×d′ , b2 ∈ Rd are model
parameters, d′ is a hyper-parameter and Zu

1 ∈ RN×d indicates the
output of the first deep self-attention block. For the sake of simplicity,
we define the entire deep self-attention block (DSAB) as follows:

Zu
1 = DSAB(Eu). (9)

We stack DSABs to capture more complex feature transition. The
b− th DSAB is defined as:

Zu
b =

{
DSAB(Eu) b = 1,
DSAB(Zu

b−1) b > 1.
(10)

D. Prediction Layer
After an embedding layer and B deep self-attention blocks, the

behaviors sequence Su is transformed into Zu
B ∈ RN×d. Following

the prior works [6], [10], we calculate user u’s preference for item
o ∈ I through a dot-product operation as follows:

yuo,j = zjM
T
o . (11)

where zj denotes the j−th row of Zu
B , Mo denotes the embedding of

item o and yuo,j denotes the possibility of item o being the (j+1)−th
item for user u given the previous j items.

E. Model Training
Following previous methods [6], [23], we adopt a binary cross

entropy loss to optimize DSASrec, which is defined as:

−
∑
u∈U

∑
1≤j<N

[
log(σ(ŷuoj ,j) +

∑
o′ /∈Su

log(σ(1− ŷo′,j))

]
, (12)

where σ is Sigmoid function, o′ indicates a negative item and oj
indicates an expected item. It is worth noting that when our model
inputs a sequence {su1 , su2 , ..., su|Su|−1} and its expected output is



Table I. The statistics of the datasets

Dataset Users Items
avg.

actions
/user

avg.
actions
/item

Samples

Beauty 52,240 57,289 6.9 7.6 0.4M
Games 31,013 23,715 12.1 9.3 0.3M
Steam 334,730 13,047 11.0 282.5 3.7M

ML-1M 6,040 3,416 163.5 289.1 1.0M

a ‘shifted’ version of the same sequence: {su2 , su2 , ..., su|Su|} during
training process. Thus, oj can be defined as:

oj =

{
0 if Su

j is a padding item
Su
j+1 if 1 ≤ j < N

(13)

For alleviating calculation, as in [6], [23], we randomly generate one
negative item o′ for each of expected items.

IV. EXPERIMENTS

A. Experimental Setup
1) Compared Methods: To show the effectiveness of our ap-

proach, we compare it with the following state-of-the-art methods:
• GRU4Rec+ [24]. GRU4Rec is an RNN based approach for rec-

ommendations, which introduced a novel ranking loss function
and GRU in sequential recommendation.

• Caser [22]. This method viewed the sequence of recent items
as an “image” and used convolutional filters to learn sequential
patterns as obtained local features.

• SASRec [6]. This method applied Transformer to balance long-
term pattern and predictions based on relatively several previous
actions.

• TiSASrec [10]. This method combined the advantages of abso-
lute position and relative time intervals to learn attention weight.

• BERT4rec [7]. This method employed the deep bidirectional
self-attention to model user behavior sequences.

• SSE-PT [23]. This method introduced additional personalized
embeddings to improve the performance of Transformer model
for sequential recommendation.

2) Dataset: We evaluate our method on four datasets from
three real-world platforms. The four datasets are exactly as same as
SASrec used. We request the three datasets from the SASrec. These
public datasets have different domains, sizes, and sparsity. In the
prepossessing stage, we closely follow the common procedure from
SASrec. For all datasets, we treat a review or rating for an item as
implicit feedback, and we filter out cold-start users and items with
fewer than 5 interactions. Each dataset is split into two parts: (1) the
most recent action for testing, (2) all remaining actions for training.
The statistics of the dataset are shown in Table I.
• MovieLens: A widely used benchmark dataset for evalu-

ating collaborative filtering algorithms. We use the version
(MovieLens-1M) that includes 1 million user ratings.

• Amazon: A series of datasets were introduced in [25]. Followed
by the existing work [6], we consider two categories: ’Beauty’
and ’Games.’

• Steam: A dataset is crawled from Steam by SASrec [6].
It includes rich information like users’ play hours, pricing
information, media scores, categories, and developers.

3) Evaluation Metrics: To evaluate recommendation, we use
the same protocols as previous methods [6]: Hit@10 and NDCG@10.
In the testing phase, for each user, we randomly sample 100 items
and rank these items with the most recent action.

Table II. The recommendation results. Bold scores are the best and
underlined scores are the second best.

Methods Metrics Beauty Games Steam ML-1M

GRU4REC+ Hit@10 0.3949 0.6599 0.8018 0.7501
NDCG@10 0.2556 0.5282 0.5595 0.5513

CASER Hit@10 0.4264 0.5282 0.7874 0.7886
NDCG@10 0.2547 0.3214 0.5381 0.5538

SASrec Hit@10 0.4852 0.7412 0.8716 0.8132
NDCG@10 0.3211 0.5633 0.6211 0.5842

TiSASec Hit@10 0.4629 0.7323 0.8657 0.8125
NDCG@10 0.3016 0.5437 0.6228 0.5711

BERT4rec Hit@10 0.4952 0.7499 0.8755 0.8266
NDCG@10 0.3311 0.5566 0.6315 0.6004

SSE-PT Hit@10 0.5028 0.7634 0.8764 0.8288
NDCG@10 0.3370 0.5622 0.6378 0.6122

DSASrec Hit@10 0.5341 0.7826 0.8803 0.8294
NDCG@10 0.3645 0.5672 0.6416 0.6138

Table III. The computing speed(s) for one epoch. Underlined scores indicates
the computation cost of DSASrec is 30% higher than that of SASrec.

Dimension Datasets Beauty Games Steam ML-1M

50 DSASrec 24 13 70 4
SASrec 23 13 69 4

100 DSASrec 24 17 110 6
SASrec 23 14 91 6

150 DSASrec 27 19 154 7
SASrec 24 15 120 6

200 DSASrec 26 22 200 7
SASrec 34 20 150 7

4) Parameter Settings: The proposed DSASRec is implemented
on PyTorch, we use two deep self-attention blocks, and each deep
self-attention block contains three network layers. The number of
neurons of each layer in MLP is 80, 60, 1, respectively. Item
embeddings in the embedding layer and prediction layer are shared.
The optimizer is the Adam optimizer from [26]. The learning rate is
0.001; batch size is 64; the dropout rate is 0.2 for ML-1m and the
Steam, 0.3 for the other datasets. By following the existing work [6],
the maximum sequence length N is set to 200 for ML-1m and 50
for the other three datasets. For all methods, the embedding size d is
searched in {30, 40, 50, 60}. The learning rate is searched in {0.005,
0.001, 0.0005, 0.0001}. The coefficient λ of L2 regularization term
is tuned in {10−4, 10−5, 10−6, 10−7, 10−8}.

B. Performance Comparison
Table II presents the recommendation performances of state-of-the-

art methods on the four datasets regarding Hit@10 and NDCG@10.
Table III presents the running time(s) of SASrec and DSASrec for
one epoch. The main observations are as follows:
• DSASrec achieves the best results on all datasets. In particular,

DSASrec significantly performs better on sparse datasets (e.g.,
Beauty, Game), where DSASrec’s relative improvements over
the strongest baselines w.r.t. Hit@10 are 6.22%, 2.51% in
Beauty, Games. These results show the high effectiveness of
DSASrec.

• Compared with SASrec, DSASrec significantly performs better
on sparse datasets (e.g., Beauty, Game). This comparison shows
that compared with the dot-product operation, deep neural
networks may need fewer data to learn transition between items.
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Fig. 3. Performance of SASrec, TiSASrec and BERT4rec w.r.t the scalability of CDA on HR@10.

Table IV. Performance comparison of DSASrec w.r.t. number of layers in
MLP. Bold scores are the best and underlined scores are the second best.

Layer# Metrics Beauty Games Steam ML-1M

1 layer Hit@10 0.5141 0.7608 0.8634 0.8094
NDCG@10 0.3536 0.5583 0.6204 0.5632

2 layers Hit@10 0.5305 0.7649 0.8686 0.8165
NDCG@10 0.3622 0.5604 0.6252 0.5957

3 layers Hit@10 0.5305 0.7734 0.8803 0.8294
NDCG@10 0.5341 0.5672 0.6416 0.6138

On the other hand, the dot-product operation is more likely
to overfitting when a dataset is sparse. As discussed in [27],
product features are more suitable for memorization, and deep
neural networks can generalize better.

• As discussed in III-C1, we avoid computing useless weights to
alleviate the computing cost of MLP, such as the weights for
pad items. Thus, the computational complexity of the attention
function in our model is O(Cd2/P ), where d is the latent
dimensionality, C is the number of valid key-query pairs and
P is the number of chunks. The computational complexity of
the attention function in SASrec is O(N2d), where N is the
maximum sequence length. Table III shows the computational
complexity of attention function in SASrec and DSASrec in
practice. The results show that although CDA generates some
additional computing costs compared with dot-product, in most
cases, the computing cost of DSASrec is not 30% higher than
that of SASrec.

C. Impact of Limitation of Dot-product

Table IV shows the results of DSASrec w.r.t different depths of
MLP in CDA. Figure 4 shows the variances of attention weights
learned by SASrec and DSASrec. The main observations are as
follows:

• Compared with the dot-product, MLP can learn more sophis-
ticated features. Thus, the limitation of the dot-product in
Transformer may be related to nonlinear ability. To verify this,
we conduct DSASrec with different depths of MLP, because
MLP with different depths has different nonlinear ability. Table
IV shows the results of DSASrec w.r.t different depths of MLP.
The results show that stacking network layers from 1 to 3
can boost performance. Overfitting issues emerge in Beauty
when we stack four network layers. This may demonstrate
the representation ability of attention function plays a role in
recommendation performance.

• Figure 4 shows the variances of attention weights learned by
SASrec are lower than that of DSASrec. These results may
indicate the attention weights learned by DSASrec are more
decentralized and diversified and CDA can learn more the
pluralistic relevance between keys and queries.
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Fig. 4. The variances of attention weights learned by SASrec and DSASrec.

Table V. Performance of DSASrec and its variants. Bold scores are the best
and underlined scores are the second best.

Architecture Metric Beauty Games Steam ML-1M

Default Hit@10 0.5341 0.7826 0.8803 0.8294
NDCG@10 0.3645 0.5779 0.6416 0.6138

Remove PE Hit@10 0.5205 0.7758 0.8456 0.8115
NDCG@10 0.3558 0.5689 0.6047 0.5888

Remove FFN Hit@10 0.5159 0.7677 0.8551 0.8159
NDCG@10 0.3382 0.5586 0.5743 0.5850

Remove Dropout Hit@10 0.5053 0.7526 0.8635 0.8163
NDCG@10 0.3416 0.5521 0.6337 0.5875

D. Ablation Studies
We perform ablation studies on DSASrec to show how the com-

ponents of DSASrec affect performance. Table V shows the results
of DSASrec and its variants on three datasets.
• Remove PE (Positional Embedding): DSASrec without PE

achieves poor results on all datasets. This indicates the order
information is important to learn the sequential patterns for
sequential recommendation.

• Remove Dropout: On all datasets, this variant is significantly
worse than the default model. This shows the dropout effectively
alleviates overfitting problems in DSASrec.

• Remove FFN: We apply FFN to considers relationship between
elements in vectors. DSASrec without FFN achieves poor
results. Modeling the relationship between elements in vectors
can lead to better performance.

E. Scalability of Chunking Deep Attention
Transformer has been widely used to adaptively captures the

dynamics of the sequential patterns for sequential recommendation.
To show the scalability of CDA, we apply CDA to SASrec, Ti-
SASrec, and BERT4rec. Figure 3 shows SASrec+CDA and TiSAS-
rec+CDA can achieve better performance than SASrec, TiSASrec.
But BERT4rec+CDA achieves poor performance than BERT4rec.
Compared with BERT4rec, SASrec and TiSASrec have relatively
simple structures. The results show CDA may be more suitable for
a relatively simple method that uses Transformer.
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F. Number of Chunks
To study the influence of chunks number, we vary the number of

the chunks of queries, keys, and values in the range of {1, 2, 4, 8}
and show the performance on Beauty and Games datasets in Figure
5 (results on other dataset show similar trends which are omitted
for space). Increasing the number of chunks from 1 to 2 leads to
better performance. However, the recommendation performance drops
when the chunk number increases from 2 to 8. This suggests that the
DSASrec suffers from too fine-grained chunks.

V. CONCLUSIONS

In this paper, we propose a novel self-attention based method
for Sequential Recommendation named DSASrec. It proposes a
chunking deep attention (CDA) to computing the attention weights.
CDA is used to alleviate the limitation of dot-product in Trans-
former. Experimental results on four real-world datasets show that
DSASrec outperforms state-of-the-art techniques and each component
of DSASrec has contributions to performance. In section IV-C,
we demonstrate the performance of attention-based models can be
improved by enhancing the nonlinearity of attention function. The
variances of attention weights learned by dot-product attention are
lower than the attention weights learned by CDA. In the future, we
plan to extend the model by incorporating auxiliary information (e.g.
action types, item knowledge, etc.).
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