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Abstract—The outbreak of the COVID-19 pandemic
arises enormous attention to online education then knowl-
edge tracking is an increasingly crucial task with its vigor-
ous development. However, the surge of student historical
interactions and the lack of prior knowledge is engendering
a sequence of issues, such as the decrease in prediction
accuracy while the increase in training time. Simultaneously,
most existing approaches fail to provide in-depth insights
into why a student is likely to answer the question incorrectly
and what affects the knowledge state of the student. To
address those issues, we propose a multi-head self-attention
model named MAKT for dynamic knowledge tracing, which
makes the prediction results interpretable at the model
and instance level. The customized multi-head self-attention
layer has high training efficiency owing to its parallelization
capability and spends about 6 seconds in each epoch on a
single GPU. We further visualize the attention weights of
MAKT and student knowledge acquisition tracking, finding
that not all historical interactions are equally important but
the recent interactions profoundly establish the knowledge
state of students. In the end, extensive experiments on three
datasets demonstrate the robustness and superiorities of
MAKT, improving ACC by 1.14 % and AUC by 1.20 %
on average.

Index Terms—MOOC, Knowledge Tracing, Educational
Data Mining, Attention Mechanism, Sequence Modeling

I. INTRODUCTION

Online education systems, such as Massive Online
Open Course (MOOC), Intelligent Tutoring System (ITS)
and Online Judge (OJ) Systems, have a long history
dating back to the 1980s [1], [2] and have still witnessed
the proliferation with the computer-aid technology and
artificial intelligence in recent years. Specifically, students
in these systems can finish a series of appropriate tests
individually according to their needs and acquire the
necessary knowledge in the process of solving relevant
exercises. As shown in Fig.1, the availability of such
exercising process offers an opportunity to model student
learning in terms of predicting student performance (e.g.,
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Fig. 1. An example of the learning process.

forecasting whether or not this student can answer an
exercise correctly in the next time) and tracking student
knowledge state (e.g., estimating the mastery level of key
knowledge components based on historical data.).

Knowledge tracing has undergone many paradigm
shifts in the past forty years and many approaches have
been developed from both educational psychology and
data mining areas, such as sparse factor analysis [3],
deep learning [4], topic modeling [5] and matrix fac-
torization [6]. Hidden Markov Model (HMM) was tradi-
tionally utilized in Bayesian Knowledge Tracing (BKT)
and its variants [7]. More recently, a series of Recurrent
Neural Network (RNN) based sequential models have
been proposed to capture these long term dependencies
between the student historical interactions, such as DKT
[4] and DKT+ [8]. Simultaneously, Convolutional Neural
Network (CNN) is gradually employed to model individ-
ualization in the student learning process [9].

Nonetheless, there are still three main challenges in the
knowledge tracking task: (1) Long sequence information
modelling and (2) Hidden relationship mining between
exercises and (3) Interpretation of the prediction results.
Existing approaches have achieved certain results in the
first two points, but failed to provide in-depth insights into



why a student is likely to answer the question incorrectly
and what affects the knowledge state of the student.

In this paper, we propose a Multi-head Self-Attention
model for Knowledge Tracing (MAKT). MAKT can
effectively improve the predicted performance and dy-
namically track the knowledge state. More importantly,
MAKT has excellent interpretability and the potential to
exploit the implicit relationship between exercises without
prior knowledge. In summary, our main contributions in
this paper are three folds:

• We customize a multi-head self-attention layer to
model individualization, positional encoding rather
than the traditional RNN-based model is utilized to
capture sequence information.

• We perform extensive experiments on three different
datasets and demonstrate that MAKT in addition
to showing its robustness and superiorities, supports
parallel computing.

• We visualize attention weights and student knowl-
edge acquisition tracking, offer intuitive and in-depth
insights on the predicted result at both the model and
instance level.

II. RELATED WORK

Cognitive diagnosis refers to predict student perfor-
mance by discovering student states from the exercis-
ing records in educational psychology. The traditional
cognitive diagnostic models can be divided into two
groups: continuous models and discrete models. Taking
item response theory (IRT) as an example of the con-
tinuous model, IRT utilizes the logistic regression based
on the student ability and the exercise (item) difficulty to
assume student performance [10]. Discrete models, such
as Deterministic Inputs, Noisy-And gate model (DINA),
leverage the student knowledge components proficiency
by a binary latent vector with a given Q-matrix to improve
prediction results [11].

Knowledge Tracing is an essential task for evaluating
the knowledge state of a student based on his past
interaction. Bayesian knowledge tracing (BKT), followed
by Hidden Markov Model (HMM), models the latent
knowledge state as a set of binary variables to trace
it. Further extensions incorporate more side information
about student’s prior knowledge and exercise difficulty
into BKT [7]. More recent approaches leverage factor-
ization methods to model individualization with a latent
vector that depicts student’s knowledge state [6].

Another line of research includes methods based on
Deep Learning, which has achieved great success. Deep
Knowledge Tracing (DKT) [4] employs Long Short Term
Memory (LSTM) to model student exercising process
while DKT+ [8] exploits a regularization term on the
foundation of DKT to further improve the predicted

TABLE I
NOTATIONS

Notations Description
b The bias vector
i The i-th dimension of embedding

r, r̂ The actual and predicted label
E The latent embedding matrix
Q The knowledge matrix
D The dimension of latent embedding
E The total number of exercises
H The number of Heads
N The number of Encoders
S The total number of students
T The time of learning sequence
W The weight matrix
X The input of layer

Q,K, V The query, key and value matrix

performance. Memory Augmented Recurrent Neural Net-
work (DKVMN) [12] is proposed to bridge the gap
between exercises and knowledge concepts for a better
performance prediction. CKT [9] utilizes a hierarchical
convolutional network to model individualization.

III. THE PROPOSED MODEL

A. Problem Definition

In an online education system, suppose there are
S students, E exercises, and K knowledge concepts,
where students do these exercises individually at different
times. As shown in Fig.1, the knowledge tracing (KT)
task can be formalized as follows: given a learning se-
quence xs = {(e1, k1, r1), (e2, k1, r2), ..., (eT , kK , rT )}
or xs = {(e1, r1), (e2, r2), ..., (eT , rT )} with T learn-
ing interactions of a certain student s, we aim to as-
sess the knowledge state of students after each learn-
ing interaction. Here et represents the exercise being
answered at learning interaction t ∈ T and rt ∈
{0, 1} indicates whether the exercise et has been an-
swered correctly (1 stands for right and 0 else). In
short, knowledge tracing aims to estimate the proba-
bility P [rt = 1|(e1, k1, r1), ..., (eT−1, kK , rT−1), eT ] or
P [rt = 1|(e1, r1), ..., (eT−1, rT−1), eT ].

In the following, we will specify the probabilistic
modelling and parameter learning of MAKT. For better
illustration, the key notations are summarized in Table I.

B. Model of MAKT

The framework we propose approach is showed in
Fig.2. The core part of our framework is the multi-head
self-attention layer, which utilizes the attention mecha-
nism to better model the learning process of students.

Input Embedding. We firstly transform learning se-
quence of student into an interaction embedding matrix
ES×2D, where 2D is the latent dimension. Following
[13], we extend the answer value rt to a zero vector
er = (0, 0, ..., 0) with the same D dimensions as the



Fig. 2. An illustration of the proposed model.

exercise embedding ek and integrate them into the input
embedding as follows:

x =

{
[er
⊕

ek] , if rt = 0
[ek
⊕

er] , if rt = 1
(1)

Considering the actual situation of different datasets,
the original information is distinct, and we adopt two
methods to initialize ek in this paper. If one exercise re-
lates to one knowledge concept or more, we can construct
a binary knowledge matrix QE×K . However, The number
of feature categories is massive, resulting in the generated
matrix being high-dimensional and sparse. Hence, we
employ an embedding layer to reduce dimensionality and
reshape it into a D-dimensional space (QE×K  EE×D).
The other method is to randomly initialize EE×D with an
embedding layer, for it will be updated automatically in
the later training process.

Position Embedding. We do not utilize the recurrent
and convolution units but the positional encoding to
capture sequence information, for the positional encoding
is superior in long-distance feature capture capability and
operational efficiency. There exist multiple options for
position coding [14] and the widely adopted one can be
formulated as follows:

PE(t, 2i) = sin(t/10000i/D)

PE(t, 2i + 1) = cos(t/10000i/D)
(2)

Where t is the absolute sequence of each interaction
and i is the i-th dimension of the input embedding x.
The adopted positional encoding sine and cosine functions
have periodicity. For a fixed-length deviation ∆, PEt+∆

can be expressed as a linear change of PEt, which is
convenient for the model to learn a relative sequence
relationship between interactions.

Self-Attention. We employ the scaled dot-product at-
tention mechanism [15] rather than additive attention,
for this attention mechanism is more computationally
efficient and space-saving. The calculation process of self-
attention is as follows:

Q = WQ(x + ep),K = WK(x + ep), V = WV (x + ep)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

(3)
where Q,K, V represent the query, key and value

matrix, W∗ ∈ RD×d∗ is the corresponding weight matrix
and d∗ = D/H . The purpose of scaling through

√
dk is to

avoid too large dot product because when the dot product
is too large, the gradient through softmax will be small.
And softmax facilitates the gradient calculation of back
propagation, and smooth the result to the [0, 1] interval.

Multi-head Attention. In order to better satisfy paral-
lel calculation while learning different aspects of attention
in different subspaces, the attention weight of H (Fol-
lowing [15], we set H to 8) head will be calculated as
follows:

Multi− head(Q,K, V ) = Concat(head1, ..., headH)WO

headj = Attention(Qj ,Kj , Vj), 1 ≤ j ≤ H
(4)

Where WO ∈ RHD×dk is the corresponding weight
matrix.

Add & Norm. The Add & Norm layer is composed
of Add and Norm. Inspired by ResNet [16], Add is a
residual connection, usually used to solve the problem
of multi-layer network training, allowing the network to
focus only on the current difference. Norm refers to layer
normalization [17], usually utilized in the RNN structure.
Layer normalization converts the input of each layer of
neurons into the same mean and variance, which can
speed up the convergence. The calculation formula is as
follows:

X = LayerNorm(X + Multi− head(X))

X = LayerNorm(X + FFN(X))
(5)

Feed Forward Network. The encoder block consists
of sequentially aligned N copies (Following [15], we
set N to 6) of encoder layers. A single encoder layer
is a multi-headed self-attention layer followed by a feed
forward network (FFN) which is defined by:

FFN(X) = ReLU(W1X + b1)W2 + b2 (6)

where W1,W2 and b1, b2 are weights and biases, re-
spectively. In the end, a fully connected network with
sigmoid activation is leveraged to obtain the final proba-
bility r̂t of the student:

r̂t = Sigmoid(WX + b) (7)



TABLE II
STATISTICS OF ALL DATASETS

DataSet Statistics DensityStudents Concepts Records Avg.length
ASSIST2009 4,151 110 325,637 78 0.71

STATICS2011 333 1,223 189,297 568 0.46
Synthetic-5 4,000 50 200,000 50 1.00

C. Objective Function

To learn all parameters in MAKT and the input embed-
ding matrix RS×2D in the training process, the objective
function is to minimize the negative log likelihood of the
observed sequence of student responses. We employ the
cross-entropy loss between the prediction r̂t and actual
label rt with the Adam optimizer [18]:

L = −
T∑

t=1

(rtlog(r̂t) + (1− rt)log(1− r̂t)) (8)

IV. EXPERIMENTS

A. Data Insights

We adopt two real-world public datasets and one syn-
thetic dataset to show the effectiveness of MAKT. Table
II shows the statistics of all datasets.

ASSIST2009: ASSIST2009 is obtained from an on-
line tutoring system named ASSISTments, which covers
student response records in 2009 [19]. ASSISTments
provides high school math study trajectories, but the
original version contains some repeated records, which
will make the experimental results less reliable [20].
Hence, the updated version is utilized in this paper and the
number of skills reduces from 113 to 110. The updated
dataset contains two different versions of skill-builder
and non-skill-builder and we adopt the former, which
makes the preprocessing of knowledge tracing task more
convenient.

STATICS2011: STATICS2011 is collected from en-
gineering mechanics courses in a college [12]. Each
exercise contains multiple problem-solving steps in the
strength study concept. Since there are fewer different
exercises in this dataset, we regard the problem names
and the problem-solving step names as skills.

Synthetic-5: Synthetic-5 is a simulation dataset to
imitate virtual students learning virtual concepts in 2015
while many works have proved that this dataset is well
structured [4]. It is worth noting that each problem has
no specific actual concept and each exercise is simulated
from five hidden knowledge concepts, also containing the
structural relationship between the concepts, the degree
of exercise difficulty and the factors that contribute to
the growth of knowledge structure in the student learning
process.

B. Comparison methods

To illustrate the effectiveness of MAKT, we compare
our model with many other models as follows:

DKT [4]: DKT is a deep learning method that utilizes
a simple recurrent neural network (RNN or LSTM) to
model the exercising process for prediction. We select an
LSTM architecture and consider each unique exercise id
as a concept associated with the exercise.

DKT+ [8]: DKT+ leverages a regularization term
based DKT to enhance the consistency in prediction,
which effectively alleviates the two problems in DKT.
One is that DKT fails to reconstruct the observed input.
The other is the predicted performance for knowledge
components across time-steps is not consistent.

DKVMN [12]: DKVMN is a Memory Augmented
Recurrent Neural Network where in the relation between
different knowledge components are assumed by a key
matrix and the student proficiency of each knowledge
component by a value matrix.

CKT [9]: CKT is a Convolutional Knowledge Tracing
method to model individualization. CKT measures the
prior knowledge from the historical learning interactions
and utilizes a hierarchical convolutional layer to extract
individualized learning rates based on continuous learning
interactions of students.

C. Evaluation Metrics

For providing robust evaluation results, the perfor-
mance was evaluated in terms of Accuracy (ACC) and
Area Under Curve (AUC), which widely adopted in the
binary classification task. Generally, a larger ACC and
AUC value demonstrate better performance.

D. Experimental Results

Student Performance Prediction: The performance
comparison results on three datasets are shown in Table
III. We use bold to mark the best performance and
underline to indicate the best performance other than
MAKT. We can observe that MAKT consistently out-
perform other baseline models on all datasets, which
demonstrates the robustness and superiorities of MAKT.
Additionally, MAKT gains higher promotions on dataset
ASSIST2009 and STATICS2011 with the longer learning
sequence length, which indicates that MAKT can capture
the core interactions without falling into certain local
irrelevant interactions. For the Synthetic-5 dataset, we
suspect that a possible reason for the low improvement is
that since the number of knowledge concepts in Synthetic-
5 is fairly small (five virtual concepts), this hidden
relationship between exercises is not distinguishable and
MAKT only leverages the sequence relationship modelled
by its self-attention mechanism.

Visualization of Attention Weights: Benefiting from
the attention mechanism, MAKT can offer an intuitive



TABLE III
RESULTS OBTAINED WITH DIFFERENT MODELS USING THERE DATASETS.

Datasets ACC AUC %Improv.DKT DKT+ DKVMN CKT MAKT DKT DKT+ DKVMN CKT MAKT
ASSIST2009 0.7721 0.7734 0.7632 0.7761 0.7878 0.8215 0.8234 0.8112 0.8256 0.8384 1.5075 // 1.5504

STATICS2011 0.8127 0.8129 0.8113 0.8156 0.8286 0.8273 0.8287 0.8275 0.8304 0.8453 1.5939 // 1.7943
Synthetic-5 0.7511 0.7523 0.7525 0.7542 0.7563 0.8254 0.8262 0.8284 0.8278 0.8297 0.2784 // 0.1569

Average 0.7786 0.7795 0.7757 0.7820 0.7909 0.8247 0.8261 0.8284 0.8279 0.8378 1.1381 // 1.1958

Fig. 3. Visualization of attention weights on different datasets.
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Fig. 4. An example of individualized knowledge tracing result of student.

and in-depth insight on the prediction result with the
attention weights visualization, which makes the learning
process interpretable at the model level. Fig.3 shows the
heatmap of the attention weight matrix on three datasets,
each small block depicts the average attention weights of
different interaction. An interesting observation is that not
all historical interactions are extremely important and the
higher weight parameters blocks are concentrated towards
the diagonal of the matrix, which can be explained by
the forget behaviour rule of the student learning process,
that is, the recent interactions profoundly establish the
knowledge state of students. Simultaneously, a consid-
erable number of blocks with high attention parameter
weights are still scattered in the matrix. Combining
with three different datasets, we further find that these
interactions share the same knowledge concept with the
final interactions, which can be identified by MAKT. A
more inspiring conclusion is that the attention mechanism
can dig out the hidden relationship between a series of
exercises through their attention weights, which benefits

the construction of Knowledge Graph in the real world.
Visualization of Knowledge Acquisition Tracking:

To make an intuitive and in-depth insight at the instance
level, we visualize the predicted mastery levels (i.e.,
calculated by Eq.(7)) of an exemplified student with the
attached knowledge concepts at each interaction during
the exercising process. For better visualization, we filter
the six most frequent knowledge concepts rather than
distinguishing each specific exercise. As shown in Fig.4,
we can notice that the current knowledge state is related
to both the original knowledge state and the recent in-
teractions. MAKT can dynamically obtain the knowledge
state of the student based on his historical data, which
is considered meaningful for further online education
auxiliary applications in the real world.

Training efficiency: Comparing the other baseline
methods, the computational efficiency of MAKT is ex-
tremely competitive under the same condition. As shown
in the Table IV, MAKT only spends about 6 seconds in
each epoch on a single GPU which is 11.7 less than
the time taken by DKT+, 7 times less than the time



TABLE IV
TRAINING EFFICIENCY COMPARISON OF DIFFERENT MODELS ON

THE ASSIST2009 DATASET.

DKT DKT+ DKVMN CKT MAKT
CPU 605 969 344 181 82
GPU 42 70 29 14 6

taken by DKT, 4.8 times less than the time taken by
DKVMN and 2.3 times less than the time taken by CKT.
Similarly, MAKT outperforms these models on a single
CPU because of its parallelization capability.

V. CONCLUSION

In this paper, we propose a multi-head self-attention
based model named MAKT for dynamic knowledge trac-
ing. Specifically, MAKT leverages the historical learning
interactions to effectively predict student performance
on future exercises and dynamically track the student
knowledge state. Simultaneously, MAKT has excellent
interpretability and high training efficiency owing to the
multi-head self-attention layer, which can offer insights
from different levels and support parallel computing.
In the end, extensive experimental results demonstrate
that MAKT outperforms other baseline models in both
ACC and AUC metrics on three different datasets, which
indicates the robustness and superiorities of MAKT.
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