
Formal verification of multitask hybrid systems by the OTS/CafeOBJ method

Masaki Nakamura 1 Kazutoshi Sakakibara 1 Yuki Okura 1 Kazuhiro Ogata 2

1Toyama Prefectural University,
Toyama, Japan

2Japan Advanced Institute of Science and Technology,
Ishikawa, Japan

Abstract- Hybrid systems combine both continuous and dis-
crete behaviors. Formal descriptions of hybrid systems may
help us to verify desired properties of a given system formally
with computer supports. In this paper, we propose a way to de-
scribe a formal specification of a given multitask hybrid system
as an observational transition system in CafeOBJ algebraic
specification language and verify it by the proof score method
based on equational reasoning implemented in CafeOBJ inter-
preter.

Keywords-component; hybrid system; algebraic specifica-
tion; observational transition system; proof score method

I. Introduction

Formal methods are mathematically based techniques for
specification and verification of software and hardware sys-
tems. Formal specification languages play important role
in formal methods. CafeOBJ is an executable formal spec-
ification language, which provides specification execution
based on a rewrite theory. The OTS/CafeOBJ method is a
formal method in which a system is modeled as an observa-
tional transition system (OTS), its specification is described
in CafeOBJ, and properties are verified formally by using
specification execution function implemented in CafeOBJ,
called the proof score method [1, 2]. In our previous work
[3], we have proposed a way to describe and verify mul-
titasking real-time systems in the OTS/CafeOBJ method.
A real-time system is regarded as a hybrid system where
only time is its continuous data. In the literature [4], a way
to describe and verify formal specifications of hybrid sys-
tems based on CafeOBJ has been proposed, however, only a
single-task system is considered. In this study, we propose a
way to describe a formal specification of a multitask hybrid
system as an observational transition system in CafeOBJ
algebraic specification language by extending the existing
results, and verify it by the proof score method based on
equational reasoning implemented in CafeOBJ interpreter.

This work was supported by JSPS KAKENHI Grant Number
JP19K11842.

DOI reference number: 10.18293/SEKE2021-029

II. Preliminaries

A Hybrid automata of a signal control system

In this article, we consider a hybrid automaton of a sim-
ple signal control system, represented in Fig.1. The system
consists of a signal and a car such that the car is prohibited
from being in a specific area, between cs0 and cs1, while the
signal is red. The specific area is called the critical section.
The signal has three modes indicating its color label. Each
color of the signal should be kept more than t0 time units.
The car has two modes: going and not-going. In the going
mode, the car moves forward according to time advancing.
The car stays there in the not-going mode. If the signal la-
bel is not green, the car cannot enter the critical section. If
the signal label is changed into yellow while the car exists
in the critical section, the car should keep the going mode,
that is, it should not stop. Thus, if the interval t0 is more
than the time which the car needs to go through the criti-
cal section (cs1 − cs0), the car does not exist in the critical
section while the signal is red.

Hybrid automata are models of hybrid systems with dis-
crete and continuous behavior. We give a model of our sim-
ple hybrid system according to the literature [5]. Figure 2
represents a hybrid automaton

(Loc, Lab, Edg, X, Init, Inv, Flow, Jump)

of our simple signal control system with a single car.
Locations Loc and edges Edg with labels lab are de-
picted as circles and arrows between them. X is given
as {pos, now, l}. The initial values are all zero, that is,
Init(pos) = Init(now) = Init(l) = 0, where pos and now
stand for the position of the car and the current time, and l is

𝑐𝑠! 𝑐𝑠"

Figure 1. A signal control system

(g,	0,	0) (g,	0,	1)

(g,	1,	0) (g,	1,	1)

𝑆𝑇𝑂𝑃

𝐺𝑂𝐼𝑁𝐺

𝑆𝑇𝑂𝑃

𝐺𝑂𝐼𝑁𝐺

𝐶𝑆 𝐶𝑆

𝐶𝑆 𝐶𝑆

𝑖𝑛

𝑜𝑢𝑡

𝑠𝑡𝑜𝑝 𝑔𝑜𝑠𝑡𝑜𝑝 𝑔𝑜

(r,	0,	0)

(r,	1,	0) (r,	1,	1)

𝑆𝑇𝑂𝑃

𝐺𝑂𝐼𝑁𝐺 𝐺𝑂𝐼𝑁𝐺

𝐶𝑆

𝐶𝑆 𝐶𝑆𝑜𝑢𝑡

𝑠𝑡𝑜𝑝 𝑔𝑜

(y,	0,	0)

(y,	1,	0) (y,	1,	1)

𝑆𝑇𝑂𝑃

𝐺𝑂𝐼𝑁𝐺 𝐺𝑂𝐼𝑁𝐺

𝐶𝑆

𝐶𝑆 𝐶𝑆𝑜𝑢𝑡

𝑠𝑡𝑜𝑝 𝑔𝑜

	𝐶𝑆 ∶ 𝑐𝑠! ≤ 𝑝𝑜𝑠 ∧𝑝𝑜𝑠 ≤ 𝑐𝑠"
𝐶𝑆 ∶ (0 ≤ 𝑝𝑜𝑠 ∧𝑝𝑜𝑠 ≤ 𝑐𝑠!) ∨ 𝑐𝑠" ≤ 𝑝𝑜𝑠

	𝐶𝐻 ∶ 𝑙 ≤ 𝑛𝑜𝑤 ∧ 	𝑙#= 𝑛𝑜𝑤 + 𝑡!

𝑐ℎ𝑎𝑛𝑔𝑒
𝐶𝐻

			𝑆𝑇𝑂𝑃 ∶ 	𝑝𝑜𝑠 $ = 0 ∧ 𝑛𝑜𝑤 $ = 1
𝐺𝑂𝐼𝑁𝐺 ∶ 	𝑝𝑜𝑠 $ = 1 ∧𝑛𝑜𝑤 $ = 1

𝑖𝑛

𝑜𝑢𝑡

init

Figure 2. A hybrid automaton of a signal control system

used for the signal interval control. Loc = {g, y, r} × {0, 1} ×
{0, 1} is the set of locations where (label, going, cs) ∈ Loc
represents the location where the color of the signal is label,
the car moves when going and the car exists in the critical
section when cs. The top, the middle and the bottom la-
bels in a location correspond to locations, flow conditions
and invariants of the location respectively. For example,
Flow(l) = S TOP and Inv(l) = CS for l = (g, 0, 0).

The flow conditions of locations are given by S TOP :
pos′ = 0 ∧ now′ = 1 or GOING : pos′ = 1 ∧ now′ = 1,
where x′ stands for the time derivative of x. Since now′ = 1
holds in each location, the value of now always increases
according to time advancing. Thus, now keeps the elapsed
time from the initial state. The value of pos is unchanged
when S TOP holds, and increases when GOING holds. The
invariants CS : cs0 ≤ pos ≤ cs1 and CS : (0 ≤ pos ≤
cs0) ∨ cs1 ≤ pos mean that the car exists and does not exist
in the critical section respectively.

The edges e between different color’s locations are la-
beled by change and the jump condition Jump(e) is given
as CH : l ≤ now ∧ l+ = now + t0, which means that the
edge can be executed when l ≤ now and then the value of l
is updated by now + t0. We omit some of change and CH
in Figure 2. We also omit unchanged variables in the jump
condition, that is, x+ = x for each variable x.

The state transition system is obtained by a hybrid au-
tomaton, where a state (l, v) ∈ S is a pair of a location and
values of variables. From the above conditions, there is no
path s0 → s1 → · · · → sn such that s0 is an initial state,
and sn = ((r, x, y), v) and cs0 < v(pos) < cs1, that is, the car
does not exist in the critical section when the signal is red.
We call it the safety property.

Hybrid automata of plural cars can be obtained by com-
posing the copies of the above hybrid automaton. Consider

the hybrid automaton with two cars. A location is a pair
(l1, l2) where li = (labeli, goingi, csi). There is an edge be-
tween (l1, l2) and (l′1, l

′
2) if there is an edge ei between li and

l′i and l j = l′j (i, j ∈ {1, 2}, i , j). When the number of cars
increases, the state space is exponentially increases, e.g., the
number of locations becomes 10n for n cars.

In the following sections, we describe OTS/CafeOBJ
specifications of the above hybrid automaton with a sin-
gle car and with plural cars, and give a formal proof of the
safety property.

B The OTS/CafeOBJ method

We introduce some notion and notation of the OTS/-
CafeOBJ method including the proof score method [1].

A CafeOBJ specification consists of modules. A
CafeOBJ module SP = (ΣSP, ESP) consists of its signature
and axioms. A signature ΣSP = (S SP,≤SP, FSP) consists of
a set of sorts, an ordering on the sorts and an S SP-sorted
set of operations. A ΣSP-algebra A is an algebra which
has a carrier set As for each s ∈ S SP and an operation
A f : As0×· · ·×Asn → As for each f ∈ (FSP)s0...sn s. An axiom
l = r if c ∈ E is a conditional equation whose both sides l
and r of the equation are terms of a same sort and condition
is a term of boolean sort constructed from the operations in
ΣSP and variables. A SP-algebra is a ΣSP-algebra which sat-
isfies all equations in ESP. When SP has tight denotation, it
denotes the initial SP-algebra. When SP has loose denota-
tion, it denotes all SP-algebras.

The following is a loose module specifying an arbitrary
set with a binary predicate.

mod* PID { [Pid]

op _=_ : Pid Pid -> Bool {comm} }

A loose module (mod*) denotes all models satisfying ax-
ioms. Module PID denotes an arbitrary set with a binary
relation. The following is a tight module specifying labels
of a traffic signal.

mod! LABEL{ [Label]

ops gr re ye : -> Label

pred _=_ : Label Label {comm}

op next : Label -> Label

eq (L:Label = L) = true . eq (gr = re) = false .

eq (gr = ye) = false . eq (re = ye) = false .

eq next(re) = gr . eq next(gr) = ye .

eq next(ye) = re . }

A tight module (mod!) denotes the initial model. In the ini-
tial mode, any elements of a carrier set is represented by a
term constructed from its signature, and no two elements of
a carrier set are equivalent unless the corresponding terms
can be shown to be equal using its axioms. Module LABEL
has three constant operators gr, ye and re of Label, a bi-
nary predicate = , and a unary operation next on Label.
The first four equations define the equality predicate, which

takes two labels and returns true if they are same, other-
wise false. The unary operation next returns a next label,
defined by re⇒ gr⇒ ye⇒ re.

An OTS/CafeOBJ specification consists of data modules
and a system module. Modules LOC and PID are examples
of data modules. A system module is given as a behavioral
specification of CafeOBJ. A behavioral specification has a
special sort, called a hidden sort, and special operations,
called behavioral operations, whose arguments include the
hidden sort. A behavioral operation whose returned sort is
not hidden is called an observation. A behavioral operation
whose returned sort is hidden is called a transition. Two el-
ements of the hidden sort are observationally equivalent if
their observed values are equivalent for each observation.
An OTS/CafeOBJ specification is a restricted behavioral
specification, where observational equivalence is preserved
by transitions.

The following is an OTS/CafeOBJ specification of a sig-
nal control system:

mod* SIGNAL{ pr(LABEL) *[Sys]*

op init : -> Sys bop color : Sys -> Label

bop change : Sys -> Sys

eq color(init) = gr .

eq color(change(S:Sys)) = next(color(S)) . }

Module SIGNAL imports module LABELwith the protect-
ing mode, where a model of the importing module includes
a model of the imported module as it is. Hidden sort Sys
is declared, which denotes the state space of a system to
be specified. Constant init is declared as an initial state.
Observation color observes a color, where term color(s)
represents the current color in state s of the signal control
system. Transition change changes a color, where term
change(s) represents the state obtained after changing.

The first equation color(init) = gr specifies the ini-
tial state through observation such that the initial color is
green. The second equation specifies the behavior of transi-
tion change through observation. Term change(S) repre-
sents the state obtained by applying change to S. The color
of change(S) is defined as the next color of S. For exam-
ple, color(change(change(init))) is equivalent to re.

III. OTS/CafeOBJ specifications of hybrid systems

In this section, we introduce a way to describe OTS/-
CafeOBJ specifications of hybrid systems. We model sig-
nal control systems with a single car and with plural cars as
hybrid automata, and describe them as OTS/CafeOBJ spec-
ifications.

A An OTS/CafeOBJ specification of a signal control sys-
tem with a single car

In our OTS model of the signal control system, there are
three observations for discrete locations and three observa-
tions for continuous variables. Observations color, going
and cs observe the value of elements of a location. Obser-
vations now, pos and l observes the value of those variables.
There are two kinds of transitions in OTS models: discrete
and continuous transitions. Discrete transitions go, stop, in,
out and change correspond to edges. A continuous transi-
tion tickt advances the system’s time by t ∈ Q∗.

Table 1 shows the correspondence between the hybrid
automaton in Section 1 and our OTS/CafeOBJ specification.

We give a system module SIGNAL which imports the
built-in module RAT of rational numbers and LABEL given
in the previous section. The following is a part of module
SIGNAL specifying the initial state.

eq now(init) = 0 . eq pos(init) = 0 .

eq going(init) = false . eq cs(init) = false .

eq color(init) = gr . eq l(init) = 0 .

The initial values of now, pos and l are defined as 0. The
initial values of going and cs are false. The initial color is
green. Module SIGNAL includes declaration ops cs0 cs1
t0 : -> Rat of constants cs0, cs1 and t0.

Transition change is specified as follows:

eq c-change(S) = l(S) <= now(S) .

ceq change(S) = S if not c-change(S) .

ceq color(change(S)) = next(color(S))

if c-change(S) .

ceq l(change(S)) = now(S) + t0 if c-change(S) .

eq now(change(S)) = now(S)

The effective condition c-change(S) is defined in the first
equation such that l ≤ now. The second (conditional) equa-
tion specifies that the state is unchanged if change is not ef-
fective. The third and fourth equations specify the updated
values of color and l such that color becomes the next color

Table 1. The correspondence between our hybrid automaton and OTS/-
CafeOBJ specification

Hybrid Automaton OTS/CafeOBJ specification
Loc color, going, cs

Edg go, stop, in, out, change

X now, pos, l

Init init

Inv c-tick

Flow observed values after tick
Jump effective conditions and

observed values after transitions

∗We assume a temporal domain is dense, that is, there is a point be-
tween any pair of points. We use rational numbers for the clock values.

and l is set to t0 time later. The remaining equations specify
other variables are unchanged.

Transition in is specified as follows:

eq c-in(S) = (cs0 = pos(S) and color(S) = gr) .

ceq cs(in(S)) = true if c-in(S) .

Transition in is effective when the car exists at cs0 and the
signal is green. When in is effective, cs(in(S)) becomes
true, that is, location (, , 0) is changed into location (, , 1).
The other discrete transitions are defined similarly.

Next, we specify the continuous transition. Time ad-
vancing tickr is described as follows:

ceq now(tick(X,S)) = now(S) + X if c-tick(X,S) .

ceq pos(tick(X,S)) =

(if going(S) then pos(S) + X else pos(S) fi)

if c-tick(X,S) .

Term tick(r,s) is the result state of applying tickr to state
s. Since now′ = 1, the value of now increases by 1 × r.
If we have more complex differential equations in Flow,
equations become larger.

For a given r ∈ Q, when tickr is done, the current time
now increases by r. The position pos increases by r if going
is true, that is, the car moves forward. The effective condi-
tion c-tick is given by invariants of the hybrid automaton.

eq c-tick(X,S) = 0 <= X and X <= cs1 - cs0

and (cs(S) and going(S) implies

cs0 <= pos(S) + X and pos(S) + X <= cs1)

and ...

and (cs1 < pos(S) + X implies not cs(S)) .

Invariants in hybrid automata should always hold, which
means that time cannot advance if the invariants do not hold.
Thus, the effective condition c-tick is given as the con-
junction of all invariants.

B An OTS/CafeOBJ specification of a signal control sys-
tem with plural cars

Consider the case that more than one cars appear in our
signal control system. The system is an example of multi-
task hybrid systems. In OTS models of multitask systems,
observations and transitions related to processes are param-
eterized, for example, posp and gop are an observation and
a transition for a process p respectively. In OTS/CafeOBJ
specifications, multitask systems are described with the im-
port of loose module PID. For example, posp is given by
pos : Pid Sys -> Rat.

We give a system module MS which imports data mod-
ules RAT, LABEL and PID for a signal control system with
plural cars. Observations and initial state of module MS are
specified as follows:

eq now(init) = 0 . eq going(P,init) = false .

eq pos(P,init) = 0 . eq cs(P,init) = false .

eq color(init) = gr . eq l(init) = 0 .

where observations pos, going, cs related to cars are pa-
rameterized. Equation pos(P,init) = 0 means that the
initial positions are zero for all cars P, for example. The
definition of discrete transitions are modified as follows:

eq c-in(P,S) =

(cs0 = pos(P,S) and color(S) = gr) .

ceq in(P,S) = S if not c-in(P,S) .

eq cs(P’,in(P,S)) = P’ = P or cs(P’,S)

In the third equation above, term cs(p′,in(p,s)) means
that the value of csp′ at the result state of applying inp to
state s for processes p and p′. Thus, when p = p′, it is true
otherwise it is unchanged.

The effective condition of tickr should check all
invariants for all processes. First, we parameterize
c-tick(P,X,S) by processes P as follows:

eq c-tick(P,X,S) =

(cs(P,S) and going(P,S) implies

cs0 <= pos(P,S) + X and pos(P,S) + X <= cs1)

and ...

and (cs1 < pos(P,S) + X implies not cs(P,S)) .

We give a way to describe multitask hybrid systems in
OTS/CafeOBJ specifications which denote hybrid automata
without fixed numbers of processes. We introduce a speci-
fication PSET of a set of processes:

mod* PSET{ [Pid < PSet]

op _ _ : PSet PSet -> PSet {assoc comm idem}

op nil : -> PSet pred _in_ : Pid PSet

vars P Q : Pid var PS : PSet

eq (P in (P PS)) = true .

eq (P in nil) = false . eq (P in Q) = (P = Q) .

eq (P in (Q PS)) = (P = Q) or (P in PS) . }

Sort PSet is declared as a super sort of Pid, and the se-
quence of two elements of PSet is also an element of PSet.
Thus, a sequence of Pid is a term of PSet, for example, p1
p2 p3 is a term of PSet when p1, p2 and p3 are terms of
Pid. Operation in denotes the membership predicate on
PSet.

We also introduce an observation ps which is a set of
active processes. A process becomes active when it moves.
After a process becomes active, it is active until it stops. The
initial value of ps is empty. When a car p starts to move, ps
is updated by p ps. The following is a part of description
related to ps:

eq ps(init) = nil . eq ps(go(P,S)) = P ps(S) .

The effective condition c-tick is defined for ps. The ef-
fective condition of tickr is defined on ps inductively:

eq c-tick(nil,X,S) = true .

eq c-tick(P PS,X,S) = c-tick(P,X,S) and

c-tick(PS,X,S) .

eq c-tick(X,S) = 0 <= X and X <= cs1 - cs0 and

c-tick(ps(S),X,S) .

For example, c-tick(p q r,x,s) = c-tick(p,x,s) and
c-tick(q,x,s) and c-tick(r,x,s).

IV. Verification of multitask hybrid systems

In this section we give a formal proof of the safety prop-
erty. We declare the relationship between constants cs0, cs1
and t0 such that 0 < cs0 < cs1 and cs1 − cs0 ≤ t0. Then, the
specification denotes all models satisfying the above condi-
tion including the test model in the previous section. First,
we give a state predicate inv1(p, s) such that the car p does
not exist in the critical section when the signal is red at s.

eq inv1(P,S) = not (color(S) = re and

cs0 < pos(P,S) and pos(P,S) < cs1) .

If we prove inv1(p,s) for all processes p and all reach-
able state s from the initial state, the safety property holds.
We denote the set of all reachable states by RS . We prove
∀s ∈ RS .∀p ∈ APid.inv1(p, s) by the induction on structure
of reachable terms.

A A proof passage for the induction on the reachable state
space

As the induction basis, we apply the reduction command
to inv1(p,init) to prove the initial state to satisfy inv1,
where p is a fresh constant as an arbitrary element. CafeOBJ
interpreter returns true, which implies the induction basis
holds, that is, inv1 holds at the initial state.

In the induction step, we prove that each transition pre-
serves the state predicate. We first assume an arbitrary state
s satisfies inv1(p,s) for all processes p. Then, under the
assumption we prove inv1(p,s’) for the state s’ obtained
by any transition. The following is a template module for
the induction step.

eq istep1(P:Pid) = inv1(P,s) implies inv1(P,s’) .

The proposition istep1(P) means that the proposi-
tion inv1(P,s’) holds under the induction hypothesis
inv1(P,s). The following is a part of the induction steps
with respect to tickt1 , where s’ is obtained by applying tickt1
to s.

eq s’ = tick(t1,s) . red istep1(p) .

If the above reduction returns true, it guarantees that
implication inv1(p, s) ⇒ inv1(tickt1 (p, s)) holds. Unfortu-
nately, it returns neither true nor false for the above proof
passage. We need to give more information for proofs. A
typical proof strategy is a case splitting by the effective con-
dition as follows:

eq c-tick(t1,s) = false . eq s’ = tick(t1,s) .

red istep1(p) .

eq c-tick(t1,s) = true . eq s’ = tick(t1,s) .

red istep1(p) .

If the above two proof passages both return true, the
original proof passage is satisfied, since (c − tick(t1, s) ⇒
istep1(p)) ∧ (¬c − tick(t1, s) ⇒ istep1(p)) ⇒ istep1(p). If
it does not so, we proceed case-splitting more.

B Lemma introduction

Repeating the process of case splitting, we may face
false as a returned value of the reduction command. The
following is such an example.

eq cs(p,s) = true

eq cs0 <= pos(p,s) = false . eq s’ = tick(t1,s) .

red istep1(p) .

Since csp is true, the position posp is greater than or equal
to cs0. The equation cs0 <= pos(p,s) = false contradicts
to it. Such a proof passage represents unreachable states.

For such a case, we introduce another appropriate safety
property, called a lemma. We add the following lemma to
the module INV and ISTEP:

eq inv3(P,S) = cs(P,S) implies

cs0 <= pos(P,S) and pos(P,S) <= cs1 .

eq istep3(P) = inv3(P,s) implies inv3(P,s’) .

The lemma inv3(P,S) denotes that the position of car p is
between cs0 and cs1 whenever csp is true. By replacing the
reduction command by adding the lemma, we obtain true
for the above proof passage.

red inv3(p,s) implies istep1(p) .

Proceeding the case splitting and introducing lemma, we
obtain true for all the remaining proof passages for inv1.

C Proving lemma

We proved invariant inv1 for all states reachable from
the initial state by the induction scheme under the assump-
tion of some lemmata. To complete the proof, we need to
show (1) the lemmata hold for the initial state, and (2) the
lemmata hold for result state of applying every transition to
states satisfying inv1 and the lemmata. In the other words,
we make a proof score of the conjunction of inv1∧· · ·∧invn,
where the induction base is represented by inv1(p, init) ∧
· · · ∧ invn(p, init) and the induction step is represented by
inv1(p, s′)∧ · · · ∧ invn(p, s′) under the induction hypothesis
inv1(p, s)∧· · ·∧invn(p, s). Note that in the previous section,
we prove inv3(p, s) ⇒ (inv1(p, s) ⇒ inv1(p, s′). The for-
mula is equivalent to (inv1(p, s) ∧ inv3(p, s)) ⇒ inv1(p, s′).
If we prove (inv1(p, s)∧ inv3(p, s))⇒ inv3(p, s′) for lemma
inv3, we obtain (inv1(p, s) ∧ inv3(p, s)) ⇒ inv1(p, s′) ∧
inv3(p, s′).

To complete a proof of inv1, we make seven lemmas and
136 proof passages†, all of which return true. The follow-
ing is the declaration of the lemmata inv2, inv3, inv4,
inv5, inv6 and inv7.

eq inv1(P,S) = not (color(S) = re and

cs0 < pos(P,S) and pos(P,S) < cs1) .

eq inv2(P,S) = not (cs(P,S) and

pos(P,S) < cs1 and color(S) = re) .

eq inv3(P,S) = cs(P,S) implies

cs0 <= pos(P,S) and pos(P,S) <= cs1 .

eq inv4(P,S) = cs(P,S) and not color(S) = gr

and l(S) <= now(S) implies cs1 <= pos(P,S) .

eq inv5(P,S) = cs(P,S) and not color(S) = gr

implies cs1 - pos(P,S) <= l(S) - now(S) .

eq inv6(P,S) = cs(P,S) or cs0 = pos(P,S) or

going(P,S) implies P in ps(S) .

eq inv7(P,S) = cs0 < pos(P,S) and pos(P,S) < cs1

implies cs(P,S) .

V. Related work

There are several tools for analyzing and/or verifying hy-
brid systems: MATLAB & Simulink‡ HSolver§, HyTech¶,
KeYmaera∥, PHAVer∗∗ and so on. See the literature [5]
for more details. One of the most relevant tools to our
study is Maude a language and tool supporting specifica-
tion description and verification based on rewriting logic
[6]. Both Maude and CafeOBJ are algebraic specification
languages and support user-defined abstract data type spec-
ifications, which is an advantage over the other tools for
hybrid systems. Real-time Maude [7] is an extension of
Maude which supports formal specification and analysis of
real-time and hybrid systems. HI-Maude [8] is another ex-
tension of Maude which deals with a wider range of hybrid
systems, called interacting hybrid systems. System modules
in Maude are based on rewriting logic, where systems tran-
sitions are described by rewrite rules. Verification in Maude
is based on exhaustive searching for reachable spaces ob-
tained by the rewrite rules. In Maude, systems with discrete
and continuous variables can be described, however, only
discrete time domains obtained by time sampling strategies
can be verified by search and model checking.

One of our advantages against these model checking ap-
proaches is that proof scores guarantee that verified prop-
erties hold for an arbitrary number of multiple processes.
To make state spaces finite, model-checking approaches
should restrict the size of the system to finite. Although
†Besides them, we need to add some lemmata which can be proved

without induction on reachable states, e.g. eq lemma1(P,X,S) = (P in
ps(S)) and c-tick(X,S) implies c-tick(P,X,S). We proved it by
the induction on structure of terms of sort PSet.
‡https://jp.mathworks.com/products/simulink.html
§http://hsolver.sourceforge.net/
¶https://ptolemy.berkeley.edu/projects/embedded/research/hytech/
∥http://symbolaris.com/info/KeYmaera.html
∗∗http://www-verimag.imag.fr/%7Efrehse/phaver web/index.html

model checking is fully-automated, the proof score method
is semi-automated and needs a human interaction to com-
plete proofs. In the literature [9], automated support of mak-
ing proof scores has been proposed. A case splitting phase
may be automated, however, lemma discovery is heuristic
and not easy to be automated.

VI. Conclusion

We described an observational transition system of a
simple signal control system with plural cars as an example
of multitask hybrid systems, and verified some safety prop-
erty by the proof score method. One of our future work is to
apply the proposed method to practical applications of mul-
titask hybrid systems, such as real-time operating systems,
automotive control systems, intelligent transport systems,
and so on.

References

[1] K. Ogata, and K. Futatsugi, Proof scores in the OTS/-
CafeOBJ method, FMOODS 2003, LNCS 2884, pp.170-
184. Springer, 2003.

[2] K. Ogata and K. Futatsugi, Modeling and verification of
real-time systems based on equations, Science of computer
programming, 66(2), pp.162-180, Elsevier, 2007.

[3] M. Nakamura, S. Higashi, K. Sakakibara and K. Ogata, For-
mal verification of Fischer’s real-time mutual exclusion pro-
tocol by the OTS/CafeOBJ method, SICE 2020, pp.1210-
1215, 2020.

[4] K. Ogata, D. Yamagishi, T. Seino and K. Futatsugi, Model-
ing and verification of hybrid systems based on equations,
DIPES 2004, pp.43-52, 2004.

[5] L. Doyen, G. Frehse, G. J. Pappas, and A. Platzer, Veri-
fication of hybrid systems, Handbook of model checking,
pp.1047-1110, Springer, 2018.

[6] P. C. Ölveczky and J. Meseguer, Semantics and pragmatics
of Real-Time Maude, Higher-order and symbolic computa-
tion 20, pp.161-196, Springer, 2007.

[7] D. Lepri, E. Ábrahám and P. C. Ölveczky, Timed CTL model
checking in real-time Maude, WRLA 2012, LNCS 7571,
pp.182-200, Springer, 2012

[8] M. Fadlisyah and P. C. Ölveczky, The HI-Maude tool,
CALCO 2013, LNCS 8089, pp.322-327, Springer, 2013.

[9] D. Gaina, D. Lucanu, K. Ogata, K. Futatsugi, On automation
of OTS/CafeOBJ method. SAS 2014, LNCS 8373, pp.578-
602, Springer, 2014.

