
AnB2Murphi: A Translator for Converting
Alice&Bob Specifications to Murphi

Yongxin Zhao1, Hongjian Jiang1, Jin Lv1, Sijun Tan2, Yongjian Li2∗
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

2 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, China

Abstract—As an important part of Internet of Things and
5G network technology, security protocols play a critical role
in ensuring communication security. Formal analysis of security
protocol has been successfully applied to find design flaws in
recent years. Many formal verification tools have been used to
verify the security protocols, including Murphi model checker.
However, security protocols are often expressed in so-called
Alice&Bob notation to describe the messages exchanged between
honest principals. And security protocols defined by the A&B
specifications can not be applied to the formal verification tool di-
rectly. Therefore, there is a gap between Alice&Bob specifications
and the modeling languages of the formal tools. In this paper,
we propose AnB2Murphi, a novel and general translator which
compiles the Alice&Bob specifications of security protocols into
the input language of Murphi to bridge the gap. First, we specify
the Alice&Bob specifications of the security protocol. Then we
take the strand space as the intermediate form between A&B
specifications and Murphi formal model. Finally, we use the
Murphi model checker to verify the generated model of security
protocol. The case studies of security protocols like Needham-
Schroeder public key protocol and 5G EAP-TLS authentication
protocol demonstrate the efficiency of our translator.

Index Terms—Murphi, Alice&Bob specifications, Strand Space,
Security Protocol, Dolev-Yao

I. INTRODUCTION

As an important part of Internet of Things and 5G network
technology, security protocols play a critical role in ensuring
communication security. It simulates the communication pro-
cess of multiple entities in the complex network environment
and ensures the security of communication. When designing
security protocols, such security properties should be ensured,
including authentication, secrecy, et al., even with the presence
of an intruder who can perform malicious actions. However, the
design of these protocols is usually error-prone. This has led
to the development of many verification theories and automatic
verification tools such as ProVerif [1], Maude-NPA [2] and
Murphi [3]. Formal methods have been used to verify security
protocols for many years. However, it’s difficult for people
who have no profound insights into verification theories to
model the security protocols by these protocol analysis tools.

Alice&Bob specifications for security protocols ranges from
informal narrations of message flows to formal assertions
of protocol properties. These message flows provide secure
network communication by using the public key encryption.

*Corresponding author: lyj238@ios.ac.cn
DOI reference number: 10.18293/SEKE2021-028

In text-books, the Alice&Bob (abbr. A&B) notation [4] has
been often used to describe the message exchanged between
honest agents for the successful runs of security protocols. The
following example expresses that Alice intends a message to
Bob:

Alice −→ Bob : message

A&B notation is the most intuitive way to express the corre-
spondence between principals of security protocols. However,
the meaning of a protocol specification considered in a context
only represents the ideal cryptosystem without active saboteurs.
Moreover, A&B notation is too literary to be applied directly in
formal verification or code implementation of security protocols.
The modelling language of a formal verification tool is often
low-level and detailed. Therefore, it is a cumbersome and
time-consuming process to formally model security protocols.

The strand space model is a promising framework developed
by Guttman et al. to prove the correctness of security protocols.
The strand in strand space represents a sequence of events
which denote the execution of legitimate party in a security
protocol or else a sequence of actions by a penetrator. A strand
space is a collection of such strands. The graph structure is
generated by causal interaction between strands. With the help
of mathematically straightforward methods, strand space model
justifies the correctness of security protocols.

In this work, we are motivated to implement a translator
AnB2Murphi, which can convert A&B specifications of security
protocols to Murphi automatically. We take strand space model
as the intermediate form to ensure semantic consistency during
the conversion processes. The existence of the intruders in
the network and the attack ability of the intruders may pose
a challenge to the security of the protocol. Therefore, we
construct the deductive rules for intruders and model intruders’
behavioral capabilities based on Dolev-Yao model [5].

The main contributions of our work lies in the following
aspects:
• Automatic Translator. We implement a translator

AnB2Murphi to bridge the gap between high-level Al-
ice&Bob specifications and low-level detailed Murphi
model checker, which can convert the Alice&Bob spec-
ifications of security protocols to the input language
of Murphi. Finally, AnB2Murphi has been successfully
applied to several security protocols including typically 5G
EAP-TLS authentication protocol. The verification result
finds and reports the counterexample of errors in the design

of the 5G authentication protocol, which demonstrates the
efficiency of our translator.

• Intruder Generation. Based on Dolev-Yao model, we
construct the deduction rules for active intruders, which
can help simulate the possible attacks in an insecure
network, such as replay attack, man-in-the-middle attack,
etc. Besides, we have implemented the Diffie-Hellman
exchange in our work which supports the algebraic oper-
ations and digital signatures to verify the TLS protocol.

The remainder of this paper is organized as follows. In
Section II, we review the most related works. In Section III,
we give a brief introduction of A&B specifications, strand
space and Murphi model checker. In Section IV, we present the
architecture of AnB2Murphi and the corresponding relationship
between Alice&Bob specifications and Murphi model, then
we elaborate the implementation details. In Section V, we
report the verification results of the generated Murphi model.
In Section VI, we conclude this paper and discuss the future
work.

II. RELATED WORK

There has been a lot of discussion on formal verification of se-
curity protocols [6]. Besides, the research of A&B notation has
received considerable attention. In [7], the authors generalized
the formal protocol specification languages and gave the formal
semantics for a language based on Alice and Bob including
algebraic reasoning. But it was still not expressive enough.
In [8], the authors proposed a formal protocol specification
language based on the popular Alice&Bob notation, that
was AnBx. This specification language extended the formal
semantics of A&B notation with a novel notation of forwarding
channels. This inspires me to use specific term tmp to represent
the forward specific messages in the implementation process. In
[9], Omar and Sebastian et al. formalized the language SPS and
an automatic translation to robust real-world implementations
and corresponding formal models, whose translation was
effective.

Besides, there is also a lot of research work on converting
A&B specifications to detailed implementation. David Basin
et al. [10], they translated A&B protocol specifications to the
input language of Tamarin. However, Tarmin [11] is a prover
based on theorem proving, which verifies the correctness of
the protocol by using multiset rewriting. It requires the user
to understand the protocol and supply auxiliary lemmas by
heuristics, which is hard even for experts. In contrast, the
authors presented a methodology for using Murphi to analyze
security protocol in [12]. Murphi is a model checker that
supports verification with parameters and has been successfully
applied to several industrial protocols. Based on the previous
research work, we can see that it is significant to automatically
generate the Murphi formal model from the A&B protocol
specifications to verify these security protocols.

III. PRELIMINARIES

In this section, we present A&B specifications of security
protocols and introduce strand space and Murphi.

A. Formal A&B Specifications Syntax
In cryptography, Alice&Bob specifications are commonly

used to describe security protocols. The A&B specifications are
intuitive, succinct and yet expressive. The security protocol is
specified as a list of message exchange steps of the following
form:

A −→ B : message

where the initiator A sends the message to the responder B.
As shown in Fig.1, we take Needham-Schroeder public key

protocol [13] as the example. The A&B specifications consist
of the following parts:
• Types. This part declares all identifiers of the protocol

specification. In the example, we specify agents A and B,
PK is a function that we yield the public key for agents.

• Knowledge. This part specifies the initial knowledge
attached to each regular agent, consisting of a set of
messages. We define the term initKnwRole(Role) to
be the initial knowledge of the agent Role. For instance,
initKnwRole(A) = {A,B,Na} in the example.

• Agents. Agents is the core of A& specifications which
describes the ideal, safe run of the protocol. Every Agent
contains two parts: the agent’s knowledge and the list
of actions to exchange messages. Actions defines the
process of protocol execution.

• Environments. This part defines a protocol instance, in
which we need to give the actual parameters to instantiate
the formal atomic parameters in the Knowledge part. See
that Init[1] is an instance of agent A and the initial
knowledge of A[1] is < Alice, Intruder,Na >.

• Goals. We specify the security properties that the protocol
should achieve. In this work, we mainly focus on goals
such as secrecy and non-injective agreement.

Protocol : Needham-Schroeder public key
Types:(* Global Types*)
Agent: A,B;
Function: PK;
Knowledge:(* Intitial Knowledge*)
A : A,B,Na
B : B,Nb
Agents:
Init(A,B,Na)
[1]+, B, (Na,A,B) : {|Na,A|}PK(B)

[2]− {|Na,Nb|}PK(A)

[3]+, B, () : {|Nb|}PK(B)

Resp(B,Nb)
[1]− : {|Na,A|}PK(B)

[2]+, A, (Nb) : {|Na,Nb|}PK(A)

[3]− : {|Nb|}PK(B)

Environments: (*Protocol instance*)
[agent1]Init[1] :< Alice, Intruder,Na >
[agent2]Resp[1] :< Bob,Nb >
Goals: (*Security Goals*)
[secrecy] Nb secret of < A.B >
[weakB] B non− injectively agrees with A on Na
end

Fig. 1: The Needham-Schroeder Public Key Protocol in A&B
Specifications

B. Extended Strand Space

The A&B specifications is a relatively high-level language
without implementation details, which cannot be directly used
for verification with model checking tools. The strand space
[14], which is one of the most successful and widely used
formalizations, serves as the intermediate representation format
of A&B specifications.

The security protocol defines a sequence of message-
exchanged events for each agent. In strand space theory, an
action that agents can take during the execution of security
protocols includes sending a message and receiving a message.
We denote the sending and receiving action by a set of two
signs Sign = {+,−}, respectively. An event is a pair (σ,m),
where σ ∈ Sign and m is a message. For example, a node
in a strand is like (+,m) which means that the owner of the
strand sends a message m.

A strand represents a sequence of events of an agent in a
particular protocol run. A strand element is called a node. If
s is a strand, (s, i) denotes ith node in strand s. In NSPK
protocol, the strand of agent A specifies a sequence of events
which can be seen on the left of Fig.2. In this strand, the agent
A sends a message {|Na,A|}PK(B) to agent B, and expects
to receive back a message of the form {|Na,Nb|}PK(A), after
which it will send {|Nb|}PK(B).

A strand space Σ is a set of strands of the principals
participating in the running protocol. We have drawn the strand
space model of NSPK protocol as shown in Fig. 2, from which
we can see the following relationships:
• The relation n =⇒ n′ represents the inner-strand commu-

nication. It holds between nodes n and n′ if n = (s, i)
and n′ = (s, i+ 1).

• The relation n −→ n′ represents the inter-strand com-
munication. The inter-strand communication (sA, 1) −→
(sB , 1) represents that agent A is sending a message
{|Na,A|}PK(B) out, and agent B will finally receive a
message like this.

Init(A, B, Na) Resp(B, Nb)
(+, { 𝑁𝑎, 𝐴 }>?(B)) (-, { 𝑁𝑎, 𝐴 }>?(A))

(+, { 𝑁𝑎, 𝑁𝑏 }>?(*))(-, { 𝑁𝑎, 𝑁𝑏 }>?(*))

(+, { 𝑁𝑏 }>?(A)) (-, { 𝑁𝑏 }>?(A))

(𝑆*, 1)

(𝑆*, 2)

(𝑆*, 3)

(𝑆B, 1)

(𝑆B, 2)

(𝑆B, 3)

Fig. 2: Regular Strands of NSPK Protocol

Different from the aforementioned A&B specifications, the
strand form can be regarded as a state machine, which is more
close to the implementation level. It includes states and state
transitions with communication actions of messages. It also
demonstrates the asynchronous communication style of the
agents in the network.

C. Murphi

Murphi is an enumerative (explicit state) model checker with
its own input language, which supports the guard −→ action
notation. It can abstract the behavior of a system and simulate
the running rules of this system. Murphi model checker has a
formal verifier that is based on explicit state enumeration, which
has been successfully applied to several industrial protocols.
States encountered in this mode are saved in a global hash
table. States generated that exist in the hash table are not
expanded. The description of Murphi input language consists
of declaration part, transition rule part, initialization part and
property part.

Declaration Part
--Constant declarations
--Type declarations
--Global variable declarations
--Procedure and function declarations

TransitionRulePart
rule "ruleName"

guard part -- conjunction of predicates
==>

action part -- a set of statements
endrule

Initializationpart
startstates

--initial the value of variables
end

Propertypart
invariant "inv"

-- define the security property
end

Fig. 3: The Basic Structure of Murphi Model

The basic structure of a Murphi model can be seen in Fig.3,
among which the most important is the transition rule part
to describe the transition from one state to another state. A
transition rule mainly consists of two parts: guard and action.
Only if the predicates in the guard are satisfiable can the
statements in the action part execute. Given a Murphi model,
the model checker Murphi will enumerate the entire state space
explicitly until no new reachable state can be explored or the
properties fail to hold on to the protocol. Relatively, a set of
all possible reachable states is regarded as the reachable state
set (abbr. RS(P)). Murphi starts from the initial state, which
is prescribed in the initialization part. Then, it will randomly
choose a transition rule whose guard is satisfied and execute
the corresponding action.

IV. TRANSLATE TO MURPHI

In this section, we discuss how to translate A&B specifi-
cations to Murphi. Meanwhile, we take NSPK protocol as a
running example.

A. The Architecture of AnB2Murphi

First of all, The overall architecture of AnB2Murphi shown in
Fig.4 consists of two main phases: Converting and Verification.

• Converting. This phase aims at converting high-level
A&B specifications of security protocols into corre-
sponding Murphi model. It includes two important pro-
cesses: parsing and generating. The parsing process uses
Ocaml/menhir tools to analyze and transform the structure
of A&B specifications into the extended strand space. The
generating process is the focus of our framework. After
parsing the A&B specifications, we generate the transition
rule part and the built-in environment into the Murphi
model based on the extended strand space.

• Verification. This phase aims at checking the Murphi
model generated in the converting phase. Murphi compiler
first compiles the model into a C++ file, then uses the
compiling and executing mode of the C++ program to
perform the verification process, which accelerates the
speed of model detection.

C
on

ve
rt

in
g

Generating
Built-in

Environment

Ve
ri

fic
at

io
n

Verification
Result

Protocol
(A&B notation)

Parsing

Extended
Strand Space

Generating
Transition

Rule

Output
(result.m)

Murphi
Compiler

Result.cppResult.out

Fig. 4: The Architecture of AnB2Murphi

We have given the description of A&B specifications and the
structure of Murphi model in Section.III. The corresponding
relationship between the A&B specifications and Murphi
is shown in Fig.5. The rest of this section focuses on the
implementation phases, mainly including Converting and
Verification.

B. Converting

Converting is mainly constructed by Parsing and Generating
processes. The Parsing process transforms the A&B specifica-
tions into the extended strand space to ensure the consistency of
semantic during the conversion processes. And the Generating
process is used to generate transition rule part and built-in
environment in Murphi model.

1) Parsing: The main task of this process is to analyze the
structure of A&B specifications by tool Ocaml/Menhir. This
process is relatively simple and we will not elaborate on it
too much. The result of parsing A&B specifications is given
directly below.

type ProtocolContext = [
|Protocol of type ∗ knowledge ∗ agent ∗ environment ∗ goal
|Null]

A&B Specifications Murphi Model

Agents

Knowledge

Environments

Goals

Transition Rule Part

Initialization Part

Property Part

Declaration Part

Strand Space

Types

Fig. 5: Correspondence of A&B Specifications and Murphi

We translate the security protocol as a type of ProtocolContext,
which includes the following five parts: type, knowledge, agent,
environment and goal. The Protocol is the tag of a protocol.
Therefore, the A&B specifications of a protocol will be parsed
into Protocol(t, k, a, e, g), in which the element in the quintuple
are corresponding to the five parts of the A&B specifications,
respectively.

In addition, the possible messages which can be exchanged
between agents in security protocols are defined below:
type message = [
| Nonce of identifier (*Nonce*)
| Agent of roleName (*Agent Identifier*)
| Const of identisirt (*Const Number*)
| Pk of roleName (*Public Key*)
| Sk of roleName (*Secret Key*)
| K of roleName * roleName (*Symmetry Key*)
| Mod of message * message (*Mod*)
| Exp of message * message (*Exp*)
| Tmp of messageName (*Temporary*)
| Sign of message * message (*Signature*)
| Aenc of message * message (*Aencrypt*)
| Senc of message * message (*Sencrypt*)
| Concat of message list (*Concatenation*)

]

The message consists of atomic messages and compound
messages. Atomic messages are non-divisible messages, such
as Nonce,Agent,Pk and so on. Compound messages are
composed of multiple atomic messages, which are encrypted
symmetrically or asymmetrically, or combined by connections.

According to the Agents part of in A&B specifications, we
construct the extend strand space model of the protocol by
using the following methods.

(1) genStrand(agent, rolei): This method converts the
Agents in A&B specifications into a node of strand rolei.

genStrand(Agent(roleName,message list, action list), rolei)
= action list if roleName = rolei.

In the A&B specifications, Agents is expressed into the
form of Agent(roleName,message list, action list). If rolei is
the name of the agent, then the result of method genStrand is
the corresponding action list.

(2) genAction(action, sign): This method converts the action
of some node in strand space to the send action and the receive
action.

genAction(action, sign) =

 (+,M) if sign = +
(−,M) if sign = −
ε otherwise

The action has been shown in below, and consists of the
Send and Receive parts. If the sign is +, the result returns
the sending action; if sign is −, then the result returns the
receiving action; otherwise the result is ε.

type action = [
|Send of int ∗ sign ∗ roleName ∗message list ∗message
|Receive of int ∗ sign ∗message
|Null]

In Needham-Schroeder public key protocol, there are two
agents A and B. The strand space and actions between two
agents can be constructed by the above two methods.

2) Generating: This process generates the input language of
Murphi model based on the extended strand space constructed
at last process. Generating process consists of two sub-
processes: Generating Transition Rule and Generating Built-In
Environment.

As for Generating Transition Rule process, we first generate
the transition rules for regular principals. The strand of agents
can be regarded as a state machine. Each node in the strand
can be treated as a state of the state machine. When an agent
receives a message or sends a message, its state will be changed,
i.e., a state transition has occurred. For each regular principal,
we use a variable commit to record whether it has completed
the execution of the protocol. In Murphi, rule expresses the
state transition. After generating the strand of each agent from
agents, we use the method trans() to convert the ith node of
strand rolei into Murphi rule. The behavior of regular principal
is relatively simple. It only consists two parts: construct the
sent message and deconstruct the received message. The
function genSendAct() and genRecvAct() generate the action
of corresponding rule for sending or receiving message.

trans(act,M, i, rolei) =
let atoms = getAtoms(M) in
match act with
| (+,M) −→ genRuleName(rolei, i);

genSendGuard(rolei, i);
genSendAct(rolei, i, atoms)

| (−,M) −→ genRuleName(rolei, i);
genRecvGuard(rolei, i);
genRecvAct(rolei, i, atoms)

Then we generate deduction rules for active intruders. Based
on the Dolev-Yao model, we describe the behavior of intruders:
• Eavesdrop and intercept any message in the network;
• Participate in the operation of the agreement as a legal

principal or counterfeit legal principal;
• Deduce new knowledge from existing knowledge set;
• Forge messages according to the knowledge he obtained

and send them to the regular principal who may accept.

The intruder in the Murphi model can deduce the message
according to the deduction rule listed in Table.I. Besides,
it keeps the Knws which stores the initial and deductive
knowledge the intruder holds. As for the example, the public
keys of agents A and B are in the intruder’s knowledge set
initially. After intercepting a message from the network, the
intruder makes the deduction of the message based on the
knowledge, and adds the knowledge into his knowledge set
Knws.

TABLE I: Deduction Rules

Decryption (decrypt)
{|m|}K ∈ Knws ∧ inv(K) ∈ Knws

{|m|} ∈ Knws

Encryption (encrypt)
{|m|} ∈ Knws ∧K ∈ Knws

{|m|}K ∈ Knws

Separation (deconcat)
{|m1;m2|} ∈ Knws

{|m1|} ∈ Knws ∧ {|m2|} ∈ Knws

Concatenation (enconcat)
{|m1|} ∈ Knws ∧ {|m2|} ∈ Knws

{|m1;m2|} ∈ Knws

Signature (signature) m ∈ Knws ∧ SK ∈ Knws
{|m|}signSK ∈ Knws

Verify (verify)
{|m|}signSK ∈ Knws

m ∈ Knws
Hash (hash) m ∈ Knws

hash(m) ∈ Knws

After generating transition rules which include the transition
rules for regular principals and the potential intruders, the built-
in environment is then generated to define the procedures and
functions in Murphi. It mainly includes the construction proce-
dure and destruction procedure of the exchanged messages.

(1) Extracting the exchanged messages from actions and
generating the patlist consisting of the message patterns and
its sub-patterns:

patList = rmEquiv(delDup(getPatList(actions))

There are three methods involved in the derivation of this
process in Ocaml. Method getPatList(actions) extracts the
messages and their sub-messages from actions and returns
a pattern list. Then method delDup(list) is used to delete the
duplicate items in the list and return without replicas. Finally,
method rmEquiv(list) helps remove the equivalence class in
the list. For example, Agent(A) and Agent(B) belong to the
same class and just keep one.

(2) Generating the construction procedures of messages.
Based on the generated pattern list, we generate the correspond-
ing built-in construction and destruction procedure for each
pattern. In Murphi, we use a global array msgs to store message
generated during the protocol execution. During construction
process, we first find out whether the message exists in the
msgs. If it exists, we directly returns its index; if not, we
construct the message and add the index of message into
msgs.

C. Verification

In Converting phase, we generate the Murphi model of the
security protocol illustrated in A&B specifications, and we

output the results to the file result.m.
Murphi model checker will first check whether there exists

some errors in the Murphi model. If not, Murphi compiler
convert the result.m into a C++ program result.cpp. Then,
we compile the C++ program using GNU compiler g++, which
gives us the resulting executable, a verifier that computes
reachability for the specific problem. Finally, execute the
program result.out to verify the security protocols, and the
result of the verification will be output to the terminal.

V. EVALUATION

We have implemented several security protocols in A&B
specifications which come from the security protocols repos-
itory [15]. Significantly, we model the 5G EAP-TLS Au-
thentication protocol which plays a critical role of the first
safeguard in ensuring the communication security. There are up
to 17 messages-exchanged in the authentication protocol which
involves sophisticated cryptography terms. When verifying this
complicated model, Murphi needs to explore the whole state
space. Basing on cmurphi5.4.9.1 as the verification engine, we
find that the weak-agreement and secrecy prekey are violated.
Murphi generates counterexamples for these two properties.

The experiments are carried out on a PC equipped with the
macOS Catalina and Intel Core i7 with 2.6Ghz CPU and 16GB
RAM. The verification result of these security protocols are
shown in Table.II. The source code of translator AnB2Murphi
can be accessed at [16].

TABLE II: VERIFICATION RESULTS

Protocols Unsatisfied Time (sec.) Memory

NeedhamSchroder
secrecy(Nb) 0.10

56
weakB 0.15

Lowe′s NeedhamSchroder no error 0.10 58

Diffie–Hellman secrecy(Na) 0.10 64

Otway–Rees no error 2.13 117

CCITT X.509(1)

secrecy(Ya) 0.21
53weakB 0.84

weakA 0.84

CCITT X.509(1c) no error 0.45 69

Woo and Lam Pi secrecy(Nb) 0.10 69

Andrew Secure RPC secrecy(Kab) 2.77 54

EAPTLS authentication
secrecy(prekey) 1.21

1700
weakC 151.55

VI. CONCLUSION AND FUTURE WORK

In this paper, we have implemented an automatic translator
AnB2Murphi to bridge the gap between high-level Alice&Bob
specifications and low-level Murphi model checker, which
can help verify the security protocol described in the A&B
specifications. We design a scheme to translate the actions of
regular principals into strand space, which can well describe
the communication relationship between principals and the
state transition of themselves. Based on Dolev-Yao model,

we construct the deduction rules for intruders, which can
help simulate the possible attacks in insecure networks. The
translator is implemented in Ocaml/Menhir, which is a simple
but powerful parser generator for the Ocaml programming
language. AnB2Murphi has been successfully applied to several
typical security protocols. The results of verification are
consistent with those already proved.

For the weakness of the current work, we would like to
point out that the A&B specifications of a protocol are intuitive.
Because Murphi is a model checker, it is good at examine
multiple runs of protocol, and give us the counterexample trace
when the protocol does not satisfy the specification. But it
bothers us to specify the actual parameters in the environment
of A&B specifications. We will fix this question by integrating
machine learning into the work.

ACKNOWLEDGEMENTS

This work is supported by National Key Research and Devel-
opment Program (2020AAA0107800), Shanghai Science and
Technology Commission Program under Grant 20511106002,
Grant 61672503 from National Science Foundation in China.

REFERENCES

[1] B. Blanchet, B. Smyth, V. Cheval, and M. Sylvestre, “Proverif 2.00:
automatic cryptographic protocol verifier, user manual and tutorial,”
Version from, pp. 05–16, 2018.

[2] S. Escobar, C. Meadows, and J. Meseguer, “Maude-npa: Cryptographic
protocol analysis modulo equational properties,” in Foundations of
Security Analysis and Design V. Springer, 2009, pp. 1–50.

[3] D. L. Dill, “The mur φ verification system,” in International Conference
on Computer Aided Verification. Springer, 1996, pp. 390–393.

[4] C. Caleiro, L. Vigano, and D. Basin, “On the semantics of alice&bob
specifications of security protocols,” Theoretical Computer Science, vol.
367, no. 1-2, pp. 88–122, 2006.

[5] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198–208, 1983.

[6] V. Cortier and S. Kremer, Formal Models and Techniques for Analyzing
Security Protocols. IOS Press, 2011, vol. 5.

[7] S. Mödersheim, “Algebraic properties in alice and bob notation,” in 2009
International Conference on Availability, Reliability and Security. IEEE,
2009, pp. 433–440.

[8] M. Bugliesi, S. Calzavara, S. Mödersheim, and P. Modesti, “Security
protocol specification and verification with anbx,” Journal of Information
Security and Applications, vol. 30, pp. 46–63, 2016.

[9] O. Almousa, S. Mödersheim, and L. Viganò, “Alice and bob: Reconciling
formal models and implementation,” in Programming Languages with
Applications to Biology and Security. Springer, 2015, pp. 66–85.

[10] M. Keller and P. D. D. Basin, “Converting alice&bob protocol specifi-
cations to tamarin,” Ph.D. dissertation, Bachelor’s thesis, ETH Zurich,
2014. Available at http://www. infsec. ethz . . . , 2014.

[11] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover for
the symbolic analysis of security protocols,” in International Conference
on Computer Aided Verification. Springer, 2013, pp. 696–701.

[12] J. C. Mitchell, M. Mitchell, and U. Stern, “Automated analysis of
cryptographic protocols using mur/spl phi,” in Proceedings. 1997 IEEE
Symposium on Security and Privacy (Cat. No. 97CB36097). IEEE,
1997, pp. 141–151.

[13] R. M. Needham and M. D. Schroeder, “Using encryption for authenti-
cation in large networks of computers,” Communications of the ACM,
vol. 21, no. 12, pp. 993–999, 1978.

[14] F. J. T. Fábrega, J. C. Herzog, and J. D. Guttman, “Strand spaces: Proving
security protocols correct,” Journal of computer security, vol. 7, no. 2/3,
pp. 191–230, 1999.

[15] security protocols open repository, http://www.lsv.ens-cachan.fr/spore.
[16] AnB2Murphi, https://github.com/AnB2Murphi/AnB2Murphi.

