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Abstract—Collaborative Filtering (CF) is a prevalent technique
in recommender systems. Substantial research focuses on learning
the embedding of users and items via exploiting past user-item
interactions. Recent years have witnessed the boom of Graph
Convolutional Networks (GCNs) on CF. Performing graph con-
volution iteratively, GCN-based models concatenate/average/sum
all outputs from different graph convolution layers to generate
the embeddings of users and items. Although the previous
methods have been proven effective, the pooling operations in
the previous methods fail to consider the outputs from different
graph convolution layers have different weights and the weights
are related to sequential dependencies from precursor nodes. To
resolve the aforementioned problems, in this work, we present
a new model, Recurrent Neural Graph Collaborative Filtering
(RNGCF), which proposes a sequential dependency construction
module to adaptively generate the embeddings. Specifically, the
module applies a gated recurrent unit (GRU) to learn the
sequential dependencies from precursor nodes and an adaptive
gated unit (AGU) to adaptively construct the embeddings based
on the sequential dependencies. Extensive experiments on three
benchmark datasets show that our model outperforms state-of-
the-art models consistently. Our implementation is available in
PyTorch 1.

Keywords—Collaborative Filtering, Graph Convolutional Net-
work, Recurrent Neural Network, Recommender System

I. INTRODUCTION

To alleviate information overload on the web, recommender
systems have been widely applied to many online services
such as E-commerce and advertising [1], [2]. The goal of
recommender systems is to predict whether a user will interact
with an item, e.g., click, rate, purchase. As an effective solu-
tion, CF achieves the prediction via exploiting past user-item
interactions. In CF, substantial research focuses on learning the
embeddings of users and items to predict a user’s preference
for an item based on the similarity of the embeddings [2],
[3]. As many user-item interaction data show graph structures,
GCNs [4], [5] have been widely applied to CF [6], [7]. In
GCNs, one graph convolution layer aggregates the features
from nodes that are one hop away in the graph. This implies
that the output of the k-th graph convolution layer aggregates
the features from nodes that are k hops away in the graph [8].
Performing graph convolution iteratively, existing GCN-based
works on CF concatenate/average/sum the all outputs from
different graph convolution layers to generate the embeddings
of users and items for combining all features from different
hops [6], [7], [9].

1https://github.com/Book1996/RNGCF
DOI reference number: 10.18293/SEKE2021-015
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Fig. 1. An example of the paths rooted at u1. Nodes in different color circles
belong to different hops.

Although the previous methods have been proven effective,
the pooling operations in the previous methods fail to consider
the outputs from different graph convolution layers have
different weights and the weights are related to the sequential
dependencies from precursor nodes. In a user-item interaction
graph, the explanations behind a progressive path unveil the
nodes from different hops have different roles in reflecting the
preference of users. For example, a bipartite user-item graph
is denoted as Figure 1 left, where the edges between user
u and item i are observed interactions. Examining the paths
rooted at u1 as Figure 1 right, as discuss in papers [6], [10],
the first-hop path u1 → {i1, i2, i3} shows u1’s preference is
related to the features of i1, i2 and i3; the second-hop path
u1 → {i1, i2, i3} → {u2, u3} shows the behavioral similarity
between u1 and {u2, u3}, because u2 and u3 have interacted
with the items that u1 also has interacted with; the third-hop
path u1 → {i1, i2, i3} → {u2, u3} → {i4, i5} shows u1 may
be interesting in i4 and i5, since u1’s similar users {u2, u3}
have consumed i4 and i5. This example shows the neighbor
nodes from different hops have different roles in reflecting
the preference of u1. Furthermore, the roles of the nodes are
related to the precursor nodes. In other words, the features of
the nodes that are different hops away would have different
weights to generate the embedding of u1. Ignoring this fact, the
existing works have several limitations: 1) Without adaptively
constructing the embeddings could lead to the suboptimal
representations of nodes; 2) Suppose there are two paths, the
two paths are composed of the same nodes. But the orders of
the nodes in the two paths are different. The average operations
in the existing works may confuse the two paths to make the
embeddings excessively similar.

To address the aforementioned problems, we propose a
new GCN-based model, Recurrent Neural Graph Collaborative
Filtering (RNGCF). RNGCF inputs a user’s ID and a candidate
item’s ID and apply GCNs to output the user’s preference for
the candidate item. Different from GCN-based previous meth-
ods, we propose a sequential dependency construction module
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Fig. 2. An illustration of RNGCF model architecture. Arrowed lines present the flow of information. Orange presents user u, and blue presents item i.

to adaptive construct the embeddings of users and items. The
construction module applies a GRU [11] to learn the sequential
dependencies from precursor nodes and an adaptive gated
unit (AGU) to adaptive construct the embeddings of users
and items based on the sequential dependencies. We perform
extensive experiments on three standard large real-world CF
datasets, and the results clearly show our model can achieve
better performance than state-of-the-art methods. To justify the
designs in our model, we further conduct ablation studies on
RNGCF. The results show each component of RNGCF has
contributions to performance. To summarize, this work makes
the following main contributions:

• We point out it is important to adaptively construct the
embeddings of users and items based on the sequential
dependencies from precursor nodes for our task.

• We propose a new GCN-based model RNGCF, which
applies a gated recurrent unit (GRU) and an adaptive
gated unit (AGU) to adaptively construct the embeddings
of users and items based on the sequential dependencies.

• We demonstrate our model can achieve state-of-the-art
results by extensive experiments on three standard large
real-world CF datasets.

II. RELATED WORK

A. Model-based CF Methods

Collaborative Filtering (CF) is a prevalent technique in mod-
ern recommender systems. Among the various CF methods,
item-based methods estimate a user’s preference for an item
via measuring the item’s similarities with the items in her/his
interaction history [12]. User-based methods estimate a user’s
preference for an item via finding similar users to the current
user and then recommend the items in her/his similar users’
interaction history. Other research focuses on learning the em-
bedding of users and items by reconstructing historical user-
item interactions. For example, Matrix Factorization (MF) [13]
reconstructs historical user-item interactions via conducting
inner product between the embeddings of users and items.
BPR-MF [3] presented a pairwise ranking loss to optimize
MF. NCF [14] pointed out that the inner product in MF had
an inherent limitation and replaced the inner product with a
multiple-layer perceptron (MLP). Another type of CF method
does not project the IDs of each user as embedding vectors,

the methods consider historical items of a given user as the
embedding of the user [15], [16]. For example, SVD++ [15]
regarded the weighted average of the embeddings of historical
items as the embedding of users. With the development of
attention mechanism, ACF [16] proposed to adaptive learn the
weight of each historical item. We focus on how to learn the
embedding parameters of users and items.

B. Graph-based CF Methods

Recent years have witnessed the boom of Graph Convo-
lutional Networks (GCNs) [4], [5], [17]–[19]. As many real-
world datasets in recommender systems show graph structures,
researchers attempt to adopt GCNs for recommendation [1],
[7], [20]. For example, Graph Convolutional Matrix Comple-
tion (GCMC) [21] proposed a graph auto-encoder framework
to resolve matrix completion tasks. PinSage [1] combined ran-
dom walk and graph convolution to handle recommendation
tasks with billions of items and hundreds of millions of users.
HOP-Rec [22] introduced confidence weighting parameters
to incorporate graph convolution and random walk. NGCF
[6] devised a new graph convolution layer to encode more
collaborative signals into the embeddings of users and items.
LightGCN [7] proved that the feature transformation and
the nonlinear activation in NGCF [6] were useless in the
recommendation task that only uses the IDs of users and
items. NGAT4rec [9] employed a novel neighbor-aware graph
attention layer that assigned different attention coefficients
to the different neighbors of a given node. Although the
previous methods have been proven effective, the pooling
operations in the previous methods fail to consider the out-
puts from different graph convolution layers have different
weights. Our GCN-based method applies a GRU and an AGU
to adaptively construct the embeddings of users and items.
There are other approaches that combine GCNs and recurrent
architectures on different domains. For example, Evolving
Graph Convolutional Networks (EGCN) [23] used a GRU
to capture the dynamism of the graph sequence. For traffic
prediction, Temporal Graph Convolutional Network (T-GCN)
[24] adopted GCN to capture spatial dependence and GRU to
capture temporal dependence.



III. METHOD

In this section, we introduce the architecture of our model
in detail as shown in Figure 2, which includes an embedding
layer, stacked graph convolution layers, a sequential depen-
dency construction module.

A. Problem Formulation

In many real-world recommendation scenarios, user implicit
data (e.g., click, rate, purchase) are more common than explicit
data (e.g., ratings). Following previous GCNs based models
[6], [7], we focus on implicit data. Suppose we have N users,
M items and an user-item interaction graph G. Based on G, we
can define R ∈ {0, 1}N×M as an implicit feedback interaction
matrix. Entry Rui in the interaction matrix R indicates whether
user u interacted item i, which can be defined as follow:

Rui =

{
1 if (u,i) interaction is observed
0 otherwise

(1)

Typically, most of the entries in the interaction matrix R are
unobserved (0). Based on the interaction matrix R, the aim of
our task is to predict preference scores for unobserved entries
in R.

B. Embedding Layer

Following most of recommender models [3], [25], [26], we
create an embedding table Eo ∈ R(M+N)×d to project the IDs
of N users and M items into initial vector representations,
where d denotes the embedding size:

E0 = [e0u1
, e0u2

, ..., e0uN−1
, e0uN︸ ︷︷ ︸

user′s embedding

, e0i1 , e
0
i2 , ..., e

0
iM−1

, e0iM ]︸ ︷︷ ︸
item′s embedding

. (2)

We represent the initial embeddings of user u and item i by
e0u ∈ Rd and e0i ∈ Rd, respectively. It is worth noting that
these embeddings serve as the initial states for user u and
item i, but are not embeddings that are used to predict. Thus,
the superscript of the embeddings is 0.

C. Graph Convolutional Layer

Following the prior works [7], [10], we remove the two most
common designs in GCNs: the feature transformation and the
non-linear activate function. The stacked graph convolution
layer in RNGCF is defined as:

eku =
1

|Nu|+ 1
e(k−1)
u +

∑
j∈Nu

1√
(|Nu|+ 1)(|Nj |+ 1)

e
(k−1)
j ,

eki =
1

|Ni|+ 1
e
(k−1)
i +

∑
j∈Ni

1√
(|Ni|+ 1)(|Nj |+ 1)

e
(k−1)
j ,

(3)

where Nu denotes the set of items that are interacted by user u,
Ni denotes the set of users that interact with item i. eku ∈ Rd and
eki ∈ Rd respectively represent the new embeddings of user u and
item i after k graph convolutional layers.

D. Sequential Dependency Construction Module

1) Gated Recurrent Unit: After K graph convolutional layers,
we can get two sequences Su = {e1u, ..., eKu }, Si = {e1i , ..., eKi } for
user u and item i, respectively. At present, the most widely used neu-
ral network models for processing sequence are the recurrent neural
networks (RNNs) and Transformer [27]. Compared with LSTM [28]
and Transformer [27], the GRU [11] has a relatively simple structure.
Since LightGCN has proved that excessive parameters and nonlinear
structures have no positive effect on the effectiveness of GCN based
models on our task. Thus, we choose GRU to exploit the sequential
dependencies in Su and Si:

cu = GRU(e1u, ..., e
K
u ),

ci = GRU(e1i , ..., e
K
i ),

(4)

We regard cu ∈ Rd and ci ∈ Rd as the sequential dependencies in
Su and Si, respectively. GRU: RK×d → Rd

2) Adaptive Gated Unit: In order to fully consider the sequence
dependence and the original graph convolution output, we propose an
adaptive gated unit (AGU) to adaptive construct the final embeddings
of users and items based on the sequential dependencies, which can
be defined as:

efu = σ(Wcu + b)⊗ eKu + eKu ,

efi = σ(Wci + b)⊗ eKi + eKi .
(5)

where W ∈ Rd×d, b ∈ Rd are learnable parameters. ⊗ is the
element-wise product. σ is Sigmoid function.

E. Message and Node Dropout

Following the prior works [6], [21], we adopt two dropout tech-
niques in RNGCF: message dropout and node dropout. Specifically,
we apply the node dropout to randomly drop out some observed
interactions. We apply the message dropout to drop out elements in
Equation 4 and 5, which are updated as:

cu = GRU(Dropout(e1u, ..., e
K
u )),

ci = GRU(Dropout(e1i , ..., e
K
i )),

efu = Dropout(σ(Wcu + b)⊗ eKu ) + eKu ,

efi = Dropout(σ(Wci + b)⊗ eKi ) + eKi .

(6)

F. Model Prediction

The model prediction is defined as the inner product of the final
embeddings of user u and item i.

ŷui = (efi )
T efu, (7)

where ŷui is used as the ranking score for recommendation.

G. Model Training

As most of previous methods [7], [9], we employ Bayesian Per-
sonalized Ranking (BPR) loss [3] to optimize RNGCF. The objective
function can be defined as:

LBPR = −
N∑

u=1

∑
i∈Nu

∑
j /∈Nu

lnσ (ŷui − ŷuj) + λ||E0||2, (8)

where Nu denotes the set of items that user u interacted with. λ
controls the L2 regularization strength to prevent overfitting. σ is
Sigmoid function.
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Fig. 3. Training curves of LightGCN and RNGCF, which are evaluated by training loss and testing recall@20 per 10 epochs on Yelp2018 and Amazon-Book.

Table I. Statistics of experimented data.

Dataset User# Item# Interaction# Density

Gowalla 29,858 40,981 1,027,370 0.00084
Yelp2018 31,668 38,048 1,561,406 0.00130
Amazon-Book 52,643 91,599 2,984,108 0.00062

IV. EXPERIMENTS

A. Experimental Settings
1) Baselines: NGCF [6] has shown to outperform several meth-

ods including GC-MC [21], PinSage [1], NeuMF [14], and HOP-Rec
[22]. As the comparison is done on the same datasets under the same
evaluation protocols, we do not further compare with these methods.
To verify the effectiveness of our approach, we compare it with the
following baselines:
• MF [3]: Matrix Factorization (MF) directly embedded user/item

IDs as vectored representations and modeled user-item interac-
tion with inner product.

• NGCF [6]: NGCF adopted three GCN layers on the user-item
interaction graph to encode more neighbors’ information into
the embeddings of users and items.

• LightGCN [7]: LightGCN proved nonlinear transformation
contributed little to the performance of NGCF.

• DGCF [10]: DGCF disentangled the representations of users
and items at the granularity of user intents since a user generally
had multiple intents to adopt certain items.

• NIA-GCN [2]: NIA-GCN proposed a cross-depth ensemble
layer to preserve the relational information in neighborhood.

• NGAT4rec [9]: NGAT4rec generated the embeddings of neigh-
bors according to the corresponding attention coefficients.

2) Dataset Description: To keep the comparison fair, we
conduct experiments on three benchmark datasets: Gowalla, Yelp2018
and Amazon-Book. The three datasets are exactly as same as the
LightGCN [7] and DGCF [10] paper used. For each dataset, 80%
of historical interactions of each user are selected to constitute the
training set, and the remaining historical interactions are treated as
the test set. Yelp2018 is about local businesses like restaurants and
bars. Amazon-Book is about the businesses like books. Gowalla con-
tains user-venue check-in information from a location-based social
network. The statistics of datasets are summarized in Table I.

3) Evaluation Metrics: To evaluate recommendation, we use
the same protocols as previous methods [7], [10]: Recall@20 and
NDCG@20. In the testing phase, we rank all items for a user and
evaluate whether the score of the historical items is higher than all
unobserved items’.

4) Parameter Settings: We implement our RNGCF model in
PyTorch. We optimize RNGCF with Adam and use the default
learning rate of 0.001. The default mini-batch size is 8192. We test
the number of graph convolutional layers in the range of 1 to 4, and
satisfactory performance can be achieved when the number of graph

Table II. Overview performance comparison. Bold scores are the best and
underlined scores are the second best.

Dataset Gowalla Yelp2018 Amazon

Method Recall NDCG Recall NDCG Recall NDCG

MF 0.1388 0.1291 0.0533 0.0423 0.0350 0.0249
NGCF 0.1629 0.1355 0.0579 0.0477 0.0347 0.0281
NIA-GCN 0.1726 0.1358 0.0599 0.0491 0.0369 0.0287
LightGCN 0.1860 0.1554 0.0660 0.0521 0.0435 0.0328
DGCF 0.1865 0.1562 0.0670 0.0534 0.0440 0.0335
NGAT4rec 0.1855 0.1534 0.0675 0.0554 0.0457 0.0358
RNGCF 0.1944 0.1628 0.0707 0.0582 0.0570 0.0442
%Impro. 5.53% 4.22% 4.74% 5.05% 24.72% 23.46%
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Fig. 4. Similarity of the embeddings.

convolutional layers equals 3. The dropout rate is 0.3. Typically, 500
epochs are sufficient for RNGCF. For all methods, the embedding
size d is searched in {16, 32, 64, 128}, in most cases, the optimal
value is 128. The learning rate is searched in {0.005, 0.001, 0.0005,
0.0001}. The coefficient λ of L2 regularization term is tuned in
{10−4, 10−5, 10−6, 10−7, 10−8}, in most cases the optimal value is
10−5.

B. Performance Comparison

Table II shows the best performance of all methods on three
datasets. And Figure 3 shows the training curves of RNGCF and
LightGCN, which are evaluated by training loss and testing Re-
call@20 per 10 epochs on Yelp2018 and Amazon-Book (results
on Gowalla show similar trends which are omitted for space). Our
method RNGCF achieves significant improvements over all methods
across three datasets. In particular, RNGCF’s relative improvements
over the strongest baselines w.r.t. Recall@20 are 5.53%, 4.76%, and
24.72% in Gowalla, Yelp2018, and Amazon-Book, respectively. This
demonstrates the high effectiveness of our model. Across the three
datasets, we find that the improvements on Amazon-Book are much
more than that on the others. Compared with other datasets, Amazon-
Book is the sparsest dataset. This suggests that RNGCF may be more
suitable for sparse datasets.



Table III. Performance of RNGCF w.r.t different lengths of sequential
dependencies. Bold scores are the best.

Dataset Gowalla Yelp2018 Amazon

Length Recall NDCG Recall NDCG Recall NDCG

0 0.1850 0.1535 0.0670 0.0557 0.0501 0.0386
1 0.1913 0.1589 0.0688 0.0563 0.0555 0.0423
2 0.1923 0.1604 0.0695 0.0571 0.0562 0.0435
3(default) 0.1944 0.1625 0.0707 0.0582 0.0575 0.0442

Table IV. Performance of RNGCF w.r.t different orders of sequential
dependencies. Bold scores are the best.

Dataset Gowalla Yelp2018 Amazon

Order Recall NDCG Recall NDCG Recall NDCG

Default 0.1944 0.1625 0.0707 0.0582 0.0575 0.0442
Reverse 0.1900 0.1589 0.0683 0.0551 0.0513 0.0395
Rand-1 0.1913 0.1597 0.0681 0.0533 0.0501 0.0388
Rand-2 0.1918 0.1602 0.0682 0.0553 0.0515 0.0397

C. Impact of Sequential Dependencies
1) Analysis of Embedding Similarity: As we analyze in

Section I, the average operation in LightGCN [7] may confuse the
orders of high-order paths, which may make the embeddings of
nodes excessive similar. To verify this, we define the average cosine
similarity of the embeddings of interconnected nodes:

1

|R+|
∑

(u,i)∈R+

(
eue

T
i

||eu|| × ||ei||
), (9)

where R+ is a set of the observed interactions. Figure 4 shows the
similarity of embeddings learned by three models (MF, LightGCN,
and RNGCF). The similarity of embeddings learned by LightGCN
is higher than that of MF. This indicates graph convolution makes
the embeddings more similar, which is consistent with LightGCN’s
finding. The similarity of embeddings learned by RNGCF is lower
than that of LightGCN, but the performance of RNGCF does not
decrease. This demonstrates that the average operation may make
embeddings excessive similar.

2) Impact of Sequential Dependencies on Prediction: To
discuss the impacts of sequential dependencies on prediction, we
feed different variants of the outputs from different graph convolution
layers into GRU. Table III and Table IV show the impacts of the
length and the order of the outputs. Note that we sample two kinds
of outputs in random order to alleviate the impacts of accidental
factors. As the length of the outputs increases from 0 to 3, the
performance on the three datasets increases. This indicates complete
sequential dependencies are important to prediction. Shuffling the
outputs achieves worse results. This indicates correct sequential
dependencies can lead to good performance.

D. Ablation Studies
We perform ablation studies on RNGCF to show how the compo-

nents of RNGCF affect performance. Table V shows the results of
RNGCF and its variants on three datasets.
• Remove Dropout: We conduct RNGCF without Dropout on

three datasets. We find that the performance on three datasets
is significantly worse. The results show that the dropout can
effectively regularize our model to achieve better performance.

• Remove GRU: RNGCF without GRU achieves poor results on
three datasets. GRU is used to exploit the sequential dependen-
cies in multi-hop paths. The results may indicate the importance
of the sequential dependencies.

Table V. Performance of RNGCF and its variants. Bold scores are the best
and underlined scores are the second best.

Dataset Gowalla Yelp2018 Amazon-Book

Method Recall NDCG Recall NDCG Recall NDCG

RNGCF 0.1944 0.1628 0.0707 0.0582 0.0570 0.0442
Remove GRU 0.1850 0.1535 0.0688 0.0565 0.0501 0.0386
Remove Dropout 0.1841 0.1507 0.0673 0.0544 0.0541 0.0426
Remove AGU 0.1563 0.1252 0.0526 0.0433 0.0409 0.0323
Transformer 0.1894 0.1580 0.0690 0.0564 0.0546 0.0423
LSTM 0.1874 0.1562 0.0689 0.0563 0.0487 0.0377

0.025

0.035

0.045

0.055

0.065

16 32 64 128

R
ec

al
l@

20
 

Dimention

Recall@20 on AMAZON

MF

LightGCN

DGCF

RNGCF

0.045

0.055

0.065

0.075

0.085

16 32 64 128

R
ec

al
l@

20
 

Dimention

Recall@20 on Yelp2018

MF

LightGCN

DGCF

RNGCF

Fig. 5. Performance of NGAT4rec, LightGCN and RNGCF w.r.t different
dimensions on Yelp and Amazon-Book. w.r.t different dimension.

• Remove AGU: We propose a AGU to adaptively construct
the embeddings of users and items based on the sequential
dependencies. Without AGU, RNGCF achieves poor results on
all datasets. This demonstrates that directly taking the output of
GRU as the final embeddings can not get better results.

• Other Common Aggregation Functions: We conduct RNGCF
with other common aggregation functions instead of GRU on
three datasets to demonstrate the effectiveness of GRU, such as
Transformer [27] and LSTM [28]. Other common aggregation
functions achieve worse performance on three datasets than
GRU. This demonstrates the effectiveness of GRU. Compared
with LSTM and Transformer, the GRU has a relatively simple
structure but gets better performance. This may indicate exces-
sive parameters in model are not suitable for our tasks.

E. Hyper-parameter Studies
1) Study on dimension of embeddings: We conduct a dimen-

sion study on MF, LightGCN, RNGCF, NGAT4rec on Yelp2018, and
Amazon-Book. The results of the experiments are shown in Figure
5. As the dimension increases from 16 to 128, the performance
of all models increases. The five methods all apply dot product to
compute the relevance of items and users. But the limitations of dot
product function are well documented in the literature [14]. Thus the
results may indicate that the limitations of dot product function will
become weaker as the dimension increases. RNGCF outperforms all
models on all dimensions, which more forcefully indicates RNGCF
is effective.

2) Study on number of feature aggregation layers: Table
VI shows the performance at different layers (from 1 to 3) and the
percentage of relative improvement on each metric. As the number
of feature aggregation layers increases from 1 to 3, the performance
of all models increases. RNGCF outperforms all models on all
dimensions. In particular, RNGCF’s relative improvements over the
strongest baselines w.r.t. Recall@20 are the largest when the number
of layers reaches 3.

V. CONCLUSION
In this work, we propose a new framework named RNGCF.

RNGCF takes a user’s ID and a candidate item’s ID as inputs and
apply GCNs to output the user’s preference for the candidate item.



Table VI. Performance comparison of LightGCN, DGCF,NGAT and our
model w.r.t. number of layers.

Datasets Gowalla Yelp2018 Amazon-Book

Layer# Method Recall NDCG Recall NDCG Recall NDCG

1 Layer

LightGCN 0.1755 0.1315 0.0631 0.0515 0.0384 0.0298
DGCF 0.1794 0.1521 0.0640 0.0522 0.0399 0.0308
NGAT4rec 0.1715 0.1298 0.0613 0.0504 0.0347 0.0281
RNGCF 0.1849 0.1554 0.0660 0.0532 0.0445 0.0337
Improv. (3.11%) 2.21% 3.13% (2.02%) (11.55%) (9.73%)

2 Layers

LightGCN 0.1777 0.1524 0.0622 0.0504 0.0411 0.0315
DGCF 0.1834 0.1560 0.0653 0.0532 0.0422 0.0324
NGAT4rec 0.1757 0.1514 0.0656 0.0540 0.0434 0.0339
RNGCF 0.1887 0.1593 0.0675 0.0551 0.0483 0.0371
Improv. (2.90%) (2.16% ) (3.23%) (2.12%) (11.38%) (9.52%)

3 Layers

LightGCN 0.1860 0.1554 0.0660 0.0521 0.0435 0.0328
DGCF 0.1865 0.1562 0.0670 0.0534 0.0440 0.0335
NGAT4rec 0.1855 0.1534 0.0675 0.0554 0.0457 0.0358
RNGCF 0.1944 0.1628 0.0707 0.0582 0.0570 0.0442
Improv. 5.53% 4.22% 4.74% 5.05% 24.72% 23.46%

Different from GCN-based previous methods on our task, we design
an adaptive unit to adaptively construct the embeddings of users and
items based on the sequential dependencies. Extensive experiments
on three benchmark datasets show that our model outperforms state-
of-the-art models consistently and each component of RNGCF is
effective. In particular, RNGCF’s relative improvements over the
strongest baselines w.r.t. Recall@20 are 5.53%, 4.76%, and 24.72%
in Gowalla, Yelp2018, and Amazon-Book, respectively. In future
work, we will study how to exploit auxiliary information such as
item knowledge graphs, social networks, and multimedia content for
our task.
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