
Multi-Granularity Code Smell Detection using Deep
Learning Method based on Abstract Syntax Tree

Weiwei Xu, Xiaofang Zhang
School of Computer Science and Technology

Soochow University
Suzhou, China

Email: xfzhang@suda.edu.cn

Abstract—Code smell refers to poor design that is perceived
to have a negative impact on readability and maintainability
during software evolution, and it implies the possibility of
refactoring. Therefore, the effective detection of code smell is
of great importance. Many approaches including metric-based,
heuristic-based, and machine learning approaches have been
proposed to detect code smells. However, all these methods
use manually selected features, which is highly subjective and
difficult to select the most appropriate features. Recently, deep
learning methods without extensive feature engineering have
been proposed. Nevertheless, these token-based approaches may
not achieve good results because they ignore many semantic
and structural information of source code. To this end, we
propose a novel deep learning approach based on abstract
syntax trees(ASTs) to detect multi-granularity code smells, which
captures the semantic and structural features of code fragments
from the ASTs. The experimental results on four types of smells
show that this approach achieves better results than the state-
of-the-art approaches for detecting code smells with different
granularities.

Index Terms—code smell, abstract syntax tree, deep learning

I. INTRODUCTION

Code smell refers to some bad designs in the code, which
often has a bad effect on the readability and maintainability of
the software. Furthermore, code smell suggests the possibility
of refactoring [1], so detecting code smells in a timely and
effective manner can be a guide for developers in refactoring.
Software engineering researchers have done a lot of research
on the definition, causes, and effects of code smell [2].

A number of approaches have been proposed to detect
different types of code smells in source code. Metric-based
[3] and heuristic-based [4] approaches are the traditional ways
to detect code smells. However, most of them have strong
limitations because they all rely on manually designed heuris-
tics to obtain final results from manually selected features.
Picking the most appropriate features and building heuristics
are very difficult, and computing the corresponding metrics for
the target source code is a considerable amount of work. In
recent years, many scholars have proposed to use machine
learning methods such as Support Vector Machine, Naive
Bayes and Logistic Regression to detect code smells. Although
machine learning methods avoid manually designed heuristics

DOI reference number: 10.18293/SEKE2021-014

[5], existing machine learning methods for detecting code
smells are still in need of further research and improvement
[6]. Machine learning methods require a collection of features
extracted from the source code, i.e., they still require external
tools to compute many metrics of source code.

Recently, Sharma et al. experimented with a deep learning
approach without extensive feature engineering to detect code
smells and verified the feasibility of the approach on several
smells [7]. Deep learning models can learn intrinsic features
during training to classify samples, but existing deep learning
methods have some limitations as follows.

• The deep learning models are token-based. The token-
based code representation may lose the rich semantic and
structural information in the source code.

• Existing methods focus only on code smells with small
granularity, lack of experimentation on code smells with
larger granularity.

• A universally well-performing deep learning model was
not found for different code smells.

To address these problems, we propose a novel abstract
syntax trees(ASTs) based code smell detection approach(AST-
CSD). The approach extracts the ASTs from the code frag-
ments and forms sequences of statement trees by splitting
the complete AST into several subtrees. First, we encode
the sequences of statement trees and then extract semantic
and structural features from the sequences using bi-directional
GRU [8] and maximum pooling. Final vector representations
of code fragments can be obtained after that. At last, the
final detection result is derived through several fully-connected
layers. We apply the AST-based approach to 500 high-quality
Java projects from GitHub. Better results are achieved than the
state-of-the-art deep learning models, not only on one type of
small-grained code smells but also on three types of larger-
grained code smells.

The main contributions of this paper are as follows.

• We propose a deep learning approach based on ASTs to
detect code smells. To the best of our knowledge, we are
the first to conduct research on code smell detection using
deep learning methods based on ASTs.

• In addition to smells with small granularity, we focus on
detection of code smells with larger granularity, bridging

Github Java Project

Smell

Detection

Code Fragments

Abstract Syntax
Tree

Statement Tree
Sequence

ASTNN

Result

Smell Report

CodeSplit

Parse

Split

a. Data preprocessing b. Decomposition of ASTs c. Training of ASTNN

Fig. 1. Overview of AST-CSD

the gap of previous work and enabling detection of multi-
granularity code smells.

• For different code smells, we conduct extensive experi-
ments to find out the parameter configuration that makes
the model perform best.

The rest of this paper is organized as follows. Section II
introduces the background; Our AST-CSD approach is intro-
duced in Section III; Section IV describes the experimental
setup and results are in Section V; The conclusion of this
paper and the future work are presented in Section VI.

II. BACKGROUND

A. Code Smell

Fowler and Beck first introduced the notion of code smell
[1] and defined it as “certain structures in the code that
suggest (or sometimes scream) for refactoring.” Code smell
affects the readability and maintainability of programs and has
an impact on the software development and evolution process.

Code smells can be divided into implementation [1], design
[9] and architecture [10] smells in the order of size according
to their granularity or scope [7]. Implementation Smells have
the smallest granularity and scope, and they usually occur on
methods. Design Smells, which are in the middle granularity,
typically occur at the class level. Architecture smells have the
greatest granularity, often involving multiple components, and
their impact is at the system level.

B. Abstract Syntax Tree

An abstract syntax tree (AST) is a tree representation of
the abstract syntactic structure of source code written in a
programming language [11]. The abstract syntax tree clearly
describes the structure of the source code. In many existing
studies, source code is parsed into abstract syntax trees to
produce code representations that capture the semantic rela-
tionships between different code elements [12], [13]. Code
representation based on abstract syntax trees is now being
used for code clone detection [11], defect prediction [14],
auto program repair [15], and other problems. In metric-based
code smell detection methods, abstract syntax trees may also
be used to compute a set of source code metrics [7], [16].

However, these methods do not take advantage of the rich
semantic and structural information in the abstract syntax trees.

C. Motivation

Existing deep learning methods for code smell detection are
token-based. The token-based code representation approaches
treat code fragments as natural language texts. Although
code fragments have some similarity with natural language
texts, code fragments should not be treated simply as natural
language texts because there is rich structural information in
code fragments [17]. For example, two statements located
closely to each other, one outside the loop body and one inside
the loop body, are semantically disjoint. But the token-based
approach does not reflect this disjoint relationship well.

Recent work has demonstrated the superiority of an AST-
based approach to code representation over a token-based
approach [17], [18]. Intuitively, the rich semantic and struc-
tural information in AST will help us in smell detection. For
example, when we detect the code smells such as complex
method, there are three adjacent loop statements in the method,
and the token-based method does not clearly show whether the
three loop statements are nested or not. By contrast in AST,
we can determine by observing whether the three statements
are at the same depth of the tree. Whether the loop statements
are nested or not obviously is critical to judge the complexity
of the method. Therefore, we believe that more semantic and
structural information in the AST-based code representation
approach is of great help in code smell detection.

III. APPROACH

This section introduces the method we use to detect code
smells. Figure 1 gives an overview of our method.

A. Data preprocessing

We first use the CodeSplit1 to split all the projects down-
loaded from Github into class-level and method-level code
fragments. Then we use Designite [19] to find out the smells
contained in the source code and generate smell reports. Based
on the smell report, we divide the code fragments that have

1https://github.com/tushartushar/CodeSplitJava

Method
Declarat ion

modifiers protected

finalize

body Try
Statement

catches

block

CatchClause

Statement
Expression

CatchClause
Parameter

IOExcept ion

e

Method
Invocat ion flush

...

Fig. 2. The process of splitting a complete abstract syntax tree into statement trees

Fig. 3. The structure of ASTNN

been split up to corresponding granularity into two categories,
one containing smells and one without.

B. Decomposition of ASTs

We use Javalang2 to parse the code fragment and get the
AST of it, and then we store the AST with its corresponding
label. Figure 2 shows the decomposition of an AST, the left
side of the figure shows the code fragment of a method, and the
right side shows its complete abstract syntax tree. According
to the method of Jian Zhang et al. [17], we split the each
statement like Try statement into two parts which has a header
and a body containing a lot of statements. The statement trees
are marked with dashed lines in Figure 2, and the red node is

2https://github.com/c2nes/javalang

the root node of the statement tree. By preorder traversal, we
obtain a sequence of statement trees. We store the sequences of
statement trees and their corresponding labels of whether they
contain the smell, which are later used to train the ASTNN
model.

C. Training of ASTNN

We use the ASTNN model proposed in [17] and Figure
3 shows the structure of it. The model includes three parts:
encoding statement trees, representing statement sequences
and classification.

1) Encoding Statement Trees: To obtain vector representa-
tions of statements, we use an RvNN-based statement encoder.
There are many syntactic symbols in ASTs, and we obtain
all the symbols in ASTs as a corpus by traversing ASTs in
preorder. Then we use the word2vec [20] to learn unsupervised
vectors of the symbols. Given a statement tree t, let n denote
a non-leaf node and let C denote the number of its children
nodes. In the beginning, the lexical vector of node n can be
obtained by:

vn =We
>xn (1)

where We ∈ R|V |×d is the pre-trained embedding parameters
with the vocabulary size V and the embedding dimension of
symbols d, vn is the embedding of symbol n and xn is its one-
hot representation. Then the vector representation of node n
can be calculated using the following equation:

h = σ(Wn
>vn +

∑
i∈[1,C]

hi + bn) (2)

where Wn ∈ Rd×k is the weight matrix and k is the encoding
dimension, hi is the hidden state of its each child, bn is a
bias term, σ is the activation function, for which we use
identify function in the method, and h is the latest hidden state.
We can recursively compute the vector representations of all
nodes in the statement tree t. Finally, we obtain the vector
representation of the entire statement tree t by maximum
pooling sampling:

et = [max(hi1),max(hi2), ...,max(hik)], i = 1, ...N (3)

where N is the number of nodes in t.

2) Representing the Sequence of Statement Trees: In the
previous procedure, we can get vector representations of
all statement trees, so for each AST, we have a sequence
of statement tree vectors. Using this sequence of statement
tree vectors, we then use bi-directional GRU [8] to capture
the naturalness of statements. Finally, we sample the most
important features of these states by means of the max pooling.
At this point, we obtain a vector representation of the code
fragment.

3) Classification: After obtaining the vector representations
of the code fragments, we feed them into a neural network
consisting of several fully connected layers and classify them
into two classes, one containing smells and one without.

IV. EXPERIMENTAL SETTINGS

A. Projects and datasets

We choose to use the same dataset, 500 high-quality Java
projects covering a variety of functions from Github, as used
in [7]. Since implementation smells and design smells occur
at the method level and class level, respectively, and a class
usually contains many methods, if the same number of projects
are used for both types of smells in the experiment, the former
will have a much larger sample size. Consequently, for the im-
plementation smells with small granularity(i.e., method level),
we select 100 projects randomly from 500 projects, while for
smells with large granularity, we use all 500 projects. For
samples with different granularity, we process them separately:
removing duplicate samples and deleting overlong samples
with the length over one standard deviation away from the
mean. The goal of this procedure is to keep the training set
within a reasonable range and avoid wasting memory and
processing resources.

We divide all samples into three parts, 70% as the training
set, 10% as the validation set, and 20% as the test set. To
reduce the impact of the extreme imbalance, we balance the
positive and negative samples in the training set. The number
of both positive and negative samples in the training set is
limited to 5000, and if there are more negative samples than
positive samples, the number of negative samples is reduced
to the same as the positive samples. Table I shows the number
of positive and negative samples used in our experiment.

TABLE I
NUMBER OF POSITIVE(P) AND NEGATIVE(N) SAMPLES

Training Set Validation Set Test set

Smell P N P N P N

Insufficient Modularization(IM) 5000 5000 927 14170 1857 27341
Deficient Encapsulation(DE) 5000 5000 1824 13273 3651 26547

Feature Envy(FE) 1230 1230 175 14922 353 29845
Empty Catch Block(ECB) 359 359 51 4708 103 9418

B. Selection of code smells

To further explore the effectiveness of deep learning meth-
ods in detecting smells with different granularity, in addition
to implementation smells, our experiments focus on the design

TABLE II
VALUES OF HYPER-PARAMETERS FOR CNN MODELS

Hyper-parameter Values

Number of repetitions of the set of hidden unit(N) {1, 2, 3}
Filters in convolution layer(F) {8, 16, 32, 64}
Kernel size in convolution layer(K) {5, 7, 11}
Pooling window size in max pooling layer(W) {2, 3, 4, 5}

TABLE III
VALUES OF HYPER-PARAMETERS FOR RNN MODEL

Hyper-parameter Values

Number of repetitions of the set of hidden unit(N) {1, 2, 3}
Embedding dimensions(E) {16, 32}
LSTM units(U) {32, 64, 128}

smells with larger granularity which are more difficult to
detect.

We choose Insufficient Modularization (IM, i.e., the class
has not been completely decomposed), Deficient Encapsu-
lation (DE, i.e., the declared accessibility of one or more
members of the class is more permissive than actually re-
quired), Feature Envy (FE, i.e., the class has a method that
uses methods and data of other classes more than using its own
ones and seems more interested in a class other than the one
it actually is in). We select these design smells because they
are representative due to their high frequency of occurrence
in the 500 projects.

What’s more, we choose Empty Catch Block (ECB, i.e., a
catch block of an exception is empty), which is an implemen-
tation smell. This smell was also chosen in the experiments of
Sharma et al. [7], and we use it to verify that our model also
has a good performance on small-grained smells.

C. Baseline setting

In this paper, we select the following three baseline methods
proposed by Sharma et al. [7] as comparative methods to
estimate the performance of our proposed method:

1) CNN-1D Model: In this model, each input instance
is represented by a 1D array of tokens. The model extract
features through convolution, batch normalization, and max
pooling layers. Finally, the fully-connected layers are used to
make predictions about whether a given instance belongs to
the positive or negative class.

2) CNN-2D Model: The CNN-2D model is similar to the
CNN-1D model, except that each input instance of CNN-2D
model is a 2D array of tokens, which delineates the source
code statement by statement.

3) RNN Model: The RNN model has the same input as
CNN-1D, but unlike CNN-1D, RNN captures features using
an embedding layer and a LSTM layer.

We obtain the hyper-parameters configurations for the base-
line methods according to [7]. Tables II and III show the values
of the hyper-parameters for the CNN and RNN models. All
combinations of hyper-parameters are performed to confirm
the best configuration of baseline methods.

TABLE IV
VALUES OF HYPER-PARAMETERS FOR AST-CSD

Hyper-parameter Values

Number of fully-connected layers(FC) {1, 2, 3, 4}
Embedding and encoding dimensions(EE) {64, 128, 256, 512}
Dimensions of hidden states in GRU(H) {50, 75, 100, 125}

TABLE V
PERFORMANCE OF AST-CSD ON THE OPTIMAL CONFIGURATION

Performance Configuration

Smells P R F-measure FC EE H

IM 0.65 0.92 0.76 2 64 75
DE 0.95 0.95 0.95 2 128 125
FE 0.11 0.53 0.17 2 256 75

ECB 0.26 0.84 0.40 4 512 50

D. Evaluation

Due to the extremely unbalanced distribution of positive
and negative samples in real projects, we avoid comparing
the accuracy of each model because if a model predicts all
samples as negative, it will still have high accuracy. We choose
precision, recall and F−measure as the evaluation metrics.
They are difined as follows:

precision =
True Positive

True Positive+ False Positive
(4)

recall =
True Positive

True Positive+ False Negative
(5)

F −measure = 2× precision× recall
precision+ recall

(6)

V. EXPERIMENTAL RESULTS

In this section, we mainly focus on answering the following
research questions:

RQ1: How does the AST-based approach perform under
different configurations for multi-granularity code smells?

RQ2: Is the AST-based approach better than the token-
based approaches in detecting code smells with different
granularities?

RQ3: Is the AST-based approach significantly superior?

A. RQ1:How does the AST-based approach perform under
different configurations for multi-granularity code smells?

Table IV shows the values of the different hyper-parameters
for our approach. We perform 64 combinations of hyper-
parameters to get the best configuration of our approach.

Table V lists the performance of our AST-based approach
AST-CSD on the optimal configuration. From the table, we
can easily see that the AST-based approach does not perform
equally on the four types of smells, and the combination of
hyper-parameters that make the approach perform optimally
for different smells also varies.

Figure 4 shows the violin plot of performance of the
approach under all configurations for four smells. Among the
four smells, the AST-based method has good performance in

Fig. 4. Violin plot of F-measure exhibit by AST-CSD

detecting Deficient Encapsulation and Insufficient Modulariza-
tion smell. However, this AST-based method did not perform
very well in detecting Feature Envy smell. We believe this is
somewhat related to the extremely unbalanced ratio of positive
and negative samples for this smell, which reaches a ratio
of 353:29845 in the test set. For Empty Catch Block smell,
which is an implementation smell, it can be seen from Figure
3 that different hyper-parameters have a greater impact on the
performance.

B. RQ2: Is the AST-based approach better than the token-
based approaches in detecting code smells with different
granularities?

We first perform parameter search for the baseline methods
to find the combination of hyper-parameters that has the best
performance. Table VI shows the hyper-parameters of the three
token-based methods when they achieve the best performance.

TABLE VI
PERFORMANCE OF THE TOKEN-BASED APPROACHES ON THE OPTIMAL

CONFIGURATION

Performance Configuration

Smells P R F-measure N F K W E U

CNN-1D

IM 0.71 0.80 0.75 3 64 7 4 - -
DE 0.36 0.57 0.43 3 32 5 4 - -
FE 0.05 0.23 0.07 3 64 7 4 - -

ECB 0.24 0.66 0.34 3 32 5 4 - -

CNN-2D

IM 0.54 0.81 0.64 2 8 5 2 - -
DE 0.16 0.43 0.23 3 16 5 4 - -
FE 0.03 0.43 0.06 3 16 7 2 - -

ECB 0.09 0.66 0.15 2 64 7 2 - -

RNN

IM 0.40 0.76 0.50 1 - - - 32 64
DE 0.57 0.79 0.65 2 - - - 32 32
FE 0.03 0.67 0.05 3 - - - 32 128

ECB 0.08 0.65 0.13 3 - - - 16 32

After getting the optimal configurations of each method, we
repeat the training and testing of each approach on the optimal
configuration for 30 times. Figure 5 shows the average per-
formance of the AST-based approach compared to the token-
based approaches on the four smells. As shown in Figure 5,

(a) IM (b) DE

(c) FE (d) ECB

Fig. 5. The performance of token-based and AST-based approaches on four
code smells

the AST-based approach achieves better results than the token-
based approaches on all three smells with large granularity. In
addition, the AST-based approach also obtains better results
for smell Empty Catch Block with small granularity.

C. RQ3: Is the AST-based approach significantly superior?

To further analyze the performance of AST-based approach
and baseline approaches, Wilcoxon signed-rank test and Cliff’s
delta test are conducted. If p−value of Wilcoxon signed-rank
test is less than 0.05, the two matched samples are significantly
different. Cliff’s delta test can be used as a complementary
analysis to Wilcoxon signed-rank test, and Cliff’s delta test can
measure the effective level of difference between the two sets
of observation data. Table VII shows Cliff’s delta values(|δ|)
and the corresponding effective levels.

We use the Win/Tie/Loss indicator to compare the perfor-
mance of different methods. Specifically, if the AST-based
method outperforms a baseline method with the p− value of
Wilcoxon signed-rank test less than 0.05 and the Cliff’s delta
value greater than or equal to 0.147, the difference between
these two methods is statistical significant, in which case we
consider AST-CSD to win. Conversely, if the baseline model is
better than the AST-based method and the difference between
them is significant, we consider AST-CSD to lose. In other
cases, we consider them to be tied. What’s more, ‘+’ or ‘-
’ before the effective level is to represent the positive or
negative Cliff’s delta values. ‘+’ means the AST-based method
is superior.

As shown in Table VIII, our AST-based method significantly
outperforms other token-based methods in detecting all four
smells with different granularities.

VI. THREATS TO VALIDITY

A. Internal validity

One of the main factors affecting internal validity is the
experimental environment. We use the Designite tool to detect
smells, which is used to generate labels for the training data,

TABLE VII
MAPPINGS BETWEEN CLIFF’S DELTA VALUES AND THEIR EFFECTIVE

LEVELS

Cliff’s delta Effective levels

|δ| < 0.147 Negligible
0.147 ≤ |δ| < 0.33 Small
0.33 ≤ |δ| < 0.474 Medium
0.474 ≤ |δ| Large

TABLE VIII
WIN/TIE/LOSS INDICATORS ON F −measure VALUES OF TOKEN-BASED

METHODS AND AST-CSD

Smells
AST-CSD AST-CSD AST-CSD

vs vs vs
CNN-1D CNN-2D RNN

IM <0.05(+Medium) <0.05(+Large) <0.05(+Large)
DE <0.05(+Large) <0.05(+Large) <0.05(+Large)
FE <0.05(+Large) <0.05(+Large) <0.05(+Large)

ECB <0.05(+Medium) <0.05(+Large) <0.05(+Large)

Win/Tie/Loss 4/0/0 4/0/0 4/0/0

and view its results as ground truth. Since it is widely used in
related work [7], [19], we think it is reliable to use the tool to
detect code smells. In addition, the code is carefully reviewed
and tested to ensure that the code we used to build the model
was error-free.

B. External validity

External validity refers to the validity of generalization of
research results. In this study, we use 500 open source Java
projects. Experiments on other datasets (non-Java projects or
industrial projects) will help to further validate our approach.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a new deep learning method based
on ASTs to detect code smells. We exploit the rich semantic
and structural information in the AST to generate the final
feature representations of code fragments. Experiments on
smells with different granularities show that our method is
significantly better than state-of-the-art deep learning methods
in terms of F −measure.

As future work, smells with greater granularity, i. e., ar-
chitectural smells, need to be considered. When using deep
learning methods to detect smells with greater granularity,
how to use the numerous components involved in architectural
smells as input is a question worth investigating. What’s
more, it is of great value to extend our approach to other
programming languages, such as Python and C++.

ACKNOWLEDGMENT

This work is partially supported by the National Natural Sci-
ence Foundation of China(61772263, 61772014, 61872177),
Collaborative Innovation Center of Novel Software Technol-
ogy and Industrialization, Undergraduate Training Program
for Innovation and Entrepreneurship of Soochow Univer-
sity(202010285141H), and the Priority Academic Program
Development of Jiangsu Higher Education Institutions.

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[2] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158–173, 2018.

[3] M. Salehie, S. Li, and L. Tahvildari, “A metric-based heuristic frame-
work to detect object-oriented design flaws,” in 14th IEEE International
Conference on Program Comprehension (ICPC’06). IEEE, 2006, pp.
159–168.

[4] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[5] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep learning based
code smell detection,” IEEE transactions on Software Engineering(Early
Access), 2019.

[6] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lu-
cia, “Detecting code smells using machine learning techniques: are we
there yet?” in 2018 ieee 25th international conference on software
analysis, evolution and reengineering. IEEE, 2018, pp. 612–621.

[7] T. Sharma, V. Efstathiou, P. Louridas, and D. Spinellis, “On the
feasibility of transfer-learning code smells using deep learning,” arXiv
preprint arXiv:1904.03031, 2019.

[8] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[9] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
software design smells: managing technical debt. Morgan Kaufmann,
2014.

[10] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic, “Identifying ar-
chitectural bad smells,” in 2009 13th European Conference on Software
Maintenance and Reengineering. IEEE, 2009, pp. 255–258.

[11] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone
detection with syntax and semantics fusion learning,” in Proceedings of
the 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2020, pp. 516–527.

[12] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” Proceedings of the ACM on Pro-
gramming Languages, vol. 3, no. POPL, pp. 1–29, 2019.

[13] H. Wei and M. Li, “Supervised deep features for software functional
clone detection by exploiting lexical and syntactical information in
source code.” in IJCAI, 2017, pp. 3034–3040.

[14] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A. Ghose, T. Kim,
and C.-J. Kim, “A deep tree-based model for software defect prediction,”
arXiv preprint arXiv:1802.00921, 2018.

[15] Y. Li, S. Wang, and T. N. Nguyen, “Improving automated program
repair using two-layer tree-based neural networks,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering:
Companion Proceedings, 2020, pp. 316–317.

[16] P. Singh, S. Singh, and J. Kaur, “Tool for generating code metrics for
c# source code using abstract syntax tree technique,” ACM SIGSOFT
Software Engineering Notes, vol. 38, no. 5, pp. 1–6, 2013.

[17] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 2019, pp. 783–794.

[18] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30,
no. 1, 2016.

[19] T. Sharma, P. Mishra, and R. Tiwari, “Designite: A software design
quality assessment tool,” in Proceedings of the 1st International Work-
shop on Bringing Architectural Design Thinking into Developers’ Daily
Activities, 2016, pp. 1–4.

[20] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

