
A Novel Text Classification Approach based on
Meta-path Similarities and Graph Neural Networks

Huan Wang, Jiang Li*, Qing Zhou*, Liang Ge
College of Computer Science, Chongqing University, Chongqing, China

{whuan, lijfrank, tzhou, geliang}@cqu.edu.cn
*Corresponding authors: Jiang Li (lijfrank@cqu.edu.cn) and Qing Zhou (tzhou@cqu.edu.cn)

Abstract—With the rise of neural networks, studies on text
classification have transitioned from traditional methods to deep
learning, especially to graph neural networks on text graphs
constructed from corpora. In this paper, we model the com-
plex instances and rich interactions in text classification as
a heterogeneous graph. Nevertheless, due to the overlook of
indirect relations between documents, graph neural networks
have not been fully exploited for the heterogeneous text graph
with different types of nodes and links. Consequently, we propose
a Meta-Path-based Text Graph Neural Network (MPTGNN) for
text classification. Specifically, we first construct a heterogeneous
text graph from corpora; we then transform the text graph into
several homogeneous weighted graphs via some pre-defined meta-
paths; we also propose a Two-stage Multi-graph Information
Fusion method (TMIF) for document representation. Empirical
results on multiple benchmark datasets have proved that our pro-
posed method outperforms state-of-the-art graph-based methods
like Text GCN.

Keywords—heterogeneous graph, text classification, natural
language processing, graph neural networks, meta-path.

I. INTRODUCTION

Natural Language Processing (NLP) is a significant research
direction in the field of computer science and artificial in-
telligence, in which text classification is one of crucial and
classical tasks. The purpose of text classification is to annotate
a given text sequence with one (or multiple) class label(s)
describing its textual content [1]. Traditional text classification
methods rely heavily on feature engineering and have stringent
requirements on the input text data. Recently, neural network
models have been exploited for text classification such as
Convolutional Neural Networks (CNNs) [2] and Recurrent
Neural Networks (RNNs) [3]. In order to increase the represen-
tation flexibility of such models, the attention mechanism has
been introduced as a component of text classification model.
Although these methods are effective, they cannot directly
process graph-structured data, which leads to the loss of link
information in a corpus.

Graph Neural Networks (GNNs), as deep learning tech-
niques for graph-structured data, have shown superior per-
formance and have attracted widespread attention [4]. For
text classification based on GNNs, researchers need to first
construct a graph from the text corpus. Zhang et al. [5]
improved Defferrard et al.’s [6] work by applying word
co-occurrence and document-word relations. However, this

DOI reference number: 10.18293/SEKE2021-006

method ignores the document-document relationships and fails
to capture semantic information in the heterogeneous network.
The constructed text graph is usually a heterogeneous graph
containing different types of vertices and links. Such text het-
erogeneous graphs integrate complex objects and rich semantic
information, and are not fully considered in general GNNs,
e.g., Graph Convolutional Network (GCN) [7] and Simplifying
Graph Convolutional Network (SGC) [8] are only suitable for
homogeneous graphs.

Taking into account the limitations of existing solutions,
we hold the opinion that it is of critical importance to
propose a method that can be used to heterogeneous text
graph classification. In this work, we propose a novel text
classification method based on meta-path similarities and
graph neural networks, which is equipped with the following
steps to effectively tackle the challenge of heterogeneous text
graph classification: 1) we construct a heterogeneous text
graph, which integrates rich semantic relations and structural
information from the text corpus; 2) we transform the text
graph into several homogeneous weighted-graphs based on
some pre-defined meta-paths, where the edge weights de-
pend on the document similarities of each meta-path; and
3) we propose a Two-stage Multi-graph Information Fusion
method (TMIF) for document representation, which contains
node-level and semantic-level aggregation. In the node-level
aggregation, the graph convolution network is employed to
integrate the neighboring document representations by weight;
in the semantic level aggregation, the attention mechanism is
adopted to fuse the document representations from different
homogeneous graphs by weight.

Our proposed model named MPTGNN can flexibly utilize
the rich interactive and semantic information in heterogeneous
graph due to the consideration of meta-path. The overall
model can be optimized via backpropagation in an end-to-end
fashion. Our main contributions in this paper are as follows:
• We propose a Meta-Path-based Text Graph Neural Net-

work (MPTGNN) for text classification, the complex
heterogeneous text graph is converted into multiple ho-
mogeneous weighted graphs. In addition, the homoge-
neous graphs based on meta-path contain rich structural
information and semantic relations.

• A Two-stage Multi-graph Information Fusion method
(TMIF) is proposed for document representation, in
which multiple weighted homogeneous graphs are used

as inputs of GCN to obtain multiple document represen-
tations, and an attention mechanism is employed to fuse
multiple document representations by weight in semantic-
level aggregation.

• Results on several benchmark datasets have demonstrated
that our proposed method is of effectiveness and out-
performs state-of-the-art graph-based approach for text
classification. It promotes the development of text classi-
fication method based on graph model.

II. RELATED WORK

A. Text Classification

Traditional text classification studies mainly focus on fea-
ture engineering and classification algorithm [9]. For feature
engineering, the most commonly used methods are one-hot
encoding, TF-IDF and word2vec. Some recent studies [10],
[11] convert texts into graphics and extract path-based features
for classification. For classification algorithm, the frequently
used methods are K-Nearest Neighbor, Naive Bayes, Support
Vector Machines and so on. Although these traditional tech-
niques have succeeded in carefully edited and formal texts,
they perform worse for general texts.

The research of text classification based on deep learning
revolves around word embedding model and deep neural
network. Several recent studies [1], [12] have shown that the
success of text classification based on deep learning depends
largely on the effectiveness of word embedding. Some authors
aggregate unsupervised word embeddings as document embed-
dings [13], while others jointly learn word, document and label
embeddings [14]. For deep neural networks, the most repre-
sentative models are Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs). Kim et al. [15] uses
a single-layer CNN for sentence-level classification tasks to
achieve promising results. Conneau et al. [16] verify the pos-
sibility of character-level CNN to complete text classification
tasks. Zhang et al. [17] use LSTM, a specific type of RNN,
to learn text representation. Nevertheless, these methods rely
heavily on the amount of training data and are insufficient to
capture complex semantic information due to the overlook of
the relations among documents or words.

Yao at al. [5] take inspiration from the recent developments
of GNNs to propose a method termed Text GCN for text
classification. They turn text classification problem into a node
classification problem, which captures high order neighbor-
hoods information. The work of Text GCN mainly includes
two parts: 1) they regard words and documents as nodes and
construct a large graph from an entire corpus; and 2) they put
this graph as input into GCN to train a model. According to
Text GCN, its adjacency matrix A is defined as follows:

Aij =


PMI(i, j) i, j are words, PMI(i, j) >0
TF − IDFij i is document, j is word
1 i = j

0 otherwise

(1)

where Aij represents the weight of edge between node i and
node j. They employed point-wise mutual information (PMI)
to calculate the weights between two word nodes, and treated
term frequency-inverse document frequency (TF-IDF) as the
weight of the edge between a document node and a word node.
They actually constructed a heterogeneous graph, but simply
fed it into the GCN as a homogeneous graph. Therefore,
Text GCN may cause inaccurate classification accuracy due
to missing rich semantic and structural information.

B. Graph Neural Networks

Recently, Graph Neural Networks (GNNs) have achieved
success in processing graph-structured data, which has cer-
tificated its virtue on modeling behaviors in networks [18].
Li et al. [19] presented a propagation model that incorporates
gated recurrent units to propagate information across all nodes.
Kipf et al. [7] proposed a spectral approach, called Graph
Convolutional Network (GCN), which designs a graph neural
network model via a localized first-order approximation of
spectral graph convolutions. GCN is a multi-layer neural
network, which directly operates on a homogeneous graph and
obtains the node’s embedding vector by learning its neigh-
borhood information. More formally, consider an undirected
graph G = (V, E), where V and E are sets of nodes and edges,
respectively. Let X ∈ Rn×m be a matrix containing node
features xv ∈ Rm. The layer-wise propagation rule for GCN
is as follows:

H(l+1) = σ(ÂH(l)W (l)) (2)

where Â = D̃−
1
2 ÃD̃−

1
2 is the symmetric normalized adja-

cency matrix, Ã = A + I , D̃ii =
∑

j Ãij , and W (l) is
a layer-specific trainable weight matrix, and σ(·) denotes an
activation function. H(l) ∈ Rn×m is the hidden representation
matrix for nodes in the l-th layer. Initially, H(0) = X .

Wu et al. [8] presented a simple linear model, named Simpli-
fying Graph Convolutional Network (SGC), which repeatedly
eliminates the nonlinearity between GCN layers and folds the
resulting function into a linear transformation. These graph
neural networks can only be applied to homogeneous graphs,
and cannot fully deal with heterogeneous graphs containing
various types of nodes and links.

C. Meta-path

A meta-path P is defined as a path in the form of O1
R1−−→

O2
R2−−→ . . .

Rl−1−−−→ Ol (abbreviated as O1O2 . . . Ol), which
describes a composite relation R = R1 ◦ R2 ◦ . . . ◦ Rl−1

between the pair of types O1 and Ol. The commuting matrix
is defined by Sun et al. [20] to compute the frequencies of all
the paths related to a meta-path. Given a graph G = (V, E),
a commuting matrix MP for a metapath P = (O1O2 . . . Ol)
is defined as MP = AO1O2

AO2O3
. . .AOl−1Ol

, where AOiOj

is the adjacency matrix between types Oi and Oj . MP(i, j)
represents the number of path instances between objects xi
and yj .

Given a user-specified meta-path P = (O1O2 . . . Ol), we
should calculate the similarity of a pair of objects x ∈ O1 and

y ∈ Ol. There are several straightforward similarity measures:
path count, random walk or pair-wise random walk. These
measures, however, are biased towards highly visible objects or
highly concentrated objects, so they cannot capture equivalent
semantics [20]. According to Sun et al., PathSim between two
objects of the same type x and y is suitable and defined as
follows:

s(x, y) =
2× |{px y : px y ∈ P}|

|{px x : px x ∈ P}|+ |{py y : py y ∈ P}|
(3)

where px y is a path instance between x and y.

III. METHODOLOGY

A. Overall Framework

In order to make full use of the rich interactive information
between objects in the text graph, we propose a Meta-Path-
based Text Graph Neural Network (MPTGNN) to learn the
structural feature representation of documents. The method
proposed in this paper converts a heterogeneous text graph into
multiple homogeneous graphs through meta-path, which can
flexibly capture the rich structural and semantic information
in Heterogeneous Information Network (HIN). The entire
framework of our proposed method is shown in Figure 1.
The method mainly includes four steps: 1) we construct a
heterogeneous text graph from corpora, which contains various
types of nodes and links; 2) based on several pre-defined
meta-paths, we transform the text graph into several homo-
geneous weighted-graphs, where the edge weights depend on
the document similarities from each meta-path; 3) we propose
a Two-stage Multi-graph Information Fusion method (TMIF)
for document representation; and 4) we apply a multi-layer
perceptron for text classification.

1

4

2

5

3

1

4

2

5
3

1

4

2

5
3

… … …

GCN

… … …

GCN

…
…

Semantic
Attention

…

MLP

Classifier

(a) Heterogeneous text graph (b) Homogeneous weighted-graphs (c) Two-stage multi-graph information fusion (d) Text classification

Fig. 1. The framework of this method. (a) Constructing a heterogeneous
text graph containing document-nodes (green circular) and word-nodes (gray
circular). (b) Transforming heterogeneous text graph into various homo-
geneous weighted-graphs. (c) Two-stage Multi-graph Information Fusion
(TMIF) considers both of node-level and semantic-level aggregation. (d) A
multi-layer perceptron for text classification.

B. PathSim-based Homogeneous Weighted-graphs

As proposed method by Yao et al. [5], we build a single het-
erogeneous text graph G = (V, E ,A,X) for the corpus based
on word co-occurrence and document word relations, where
V, E ,A and X denote node-set, edge-set, adjacency matrix
and feature-set, respectively. The set of nodes V contains all

documents D and unique words W , i.e., V = D∪W . The set
of edges E includes two major types of relations, which are
word-word edges and document-word edges. Aij represents
the weight of node i and node j in the heterogeneous text
graph.

In our work, we introduce meta-path similarities to trans-
form a heterogeneous text graph into several homogeneous
weighted-graphs. In a heterogeneous information graph, two
objects can be connected through different paths. For example,
in the text graph we established, two documents can be
connected through the meta-path of document → word →
document(DWD), or through the meta-path of document→
word → word → document(DWWD). Therefore, we
can capture the relationship between documents, which is
helpful to fully capture the rich semantic information in the
original heterogeneous graph. We use meta-path similarities
to represent the weights of document-document connections
to construct a new adjacency matrix. Since the meta-paths in
the text graph we established are all symmetrical, we adopt
PathSim to capture the subtlety of peer-to-peer similarities.
Given a symmetric meta-path P , PathSim between two objects
xi and xj from the same type can be calculated as:

SP(i, j) =
2MP(i, j)

MP(i, i) +MP(j, j)
(4)

where MP is the commuting matrix for the meta-path P ,
MP(i, i) and MP(j, j) are the visibility for xi and xj in the
network given the meta-path.

The adjacency matrix A can be divided into ADW , AWD
and AWW , where ADW is the adjacency matrix between type
D (documents) and type W (words). We define a commuting
matrix MP for each meta-path in the text graph:

MP=(DWD) = ADWAWD (5a)
MP=(DWWD) = ADWAWWAWD (5b)

where commuting matrix MP=(DWD) is a weight matrix, each
element denotes the sum of the weights of pair-documents with
the co-owned words.

For the purpose of the reduction in time and space resources,
we utilize top-k similarity search for an object xi ∈ O1 is to
find sorted k objects in the same type, such that SP(xi, xj) ≥
SP(xi, x̄j), for any x̄j not in the returning list and xj in the
returning list. The top-k similarity search is shown as follows:

SP = ranki(SP(xi, ·), k) (6)

where rank(SP(xi, ·), k) is a ranking operation, which keeps
k-largest values for the object xi in SP(xi, ·) and assigns 0 to
the rest. We can convert the heterogeneous text graph to sev-
eral homogeneous weighted-graphs via meta-path similarity,
obtaining SP=(DWD) and SP=(DWWD) for all the document
nodes.

C. Two-stage Multi-graph Information Fusion
We propose a Two-stage Multi-graph Information Fusion

method (TMIF) for document representation, including node-
level aggregation and semantic-level aggregation. The node-
level aggregation integrates the influence from neighboring

document representations via graph convolutional network,
while the semantic-level aggregation integrates the influence
from different homogeneous graphs through the attention
mechanism.

1) Node-level Aggregation: For node-level aggregation, we
perform the weighted integration of neighboring document
representations based on weighted graph convolutional net-
work, which can fully extract the interactive information of
objects in the text graph. Considering the node-level aggrega-
tion in our homogeneous weighted-graphs, a single-layer GCN
based on different meta-paths can be described as follows:

HP = ŜPXWP (7)

where ŜP = D−
1
2SPD

− 1
2 is the symmetric normalized

similarity matrix based on meta path P , and WP is the node-
level trainable weight matrix based on the meta-path P . X is
the feature matrix for all the document nodes.

2) Semantic-level Aggregation: Through node-level aggre-
gation, we can get the node embedding of each type of meta-
path, which can only denote the document representation of
specific semantics. In order to learn node embedding which
has more rich semantic information, we use an attention
mechanism to automatically learn the importance of different
meta-paths and fuse the document representations by weight
in the semantic-level aggregation. With the learned weights
as coefficients, we can fuse all the semantic-specific node
embeddings to obtain the final embedding Z as follows:

Z =
∑
P∈Ψ

αPHP (8)

where αP represents the learned weight vector under the meta-
path P for all the node embeddings, and Ψ is the set of
meta-path types. Z is the final representation matrix for all
the document nodes.

To learn the importance of node representation in each
meta-path, we perform nonlinear transformation and employ
a semantic-level attention vector µ. The importance of node
representation in each meta-path is calculated as follows:

eP = µTσ(WhP + b) (9)

where W is the weight matrix, b is the bias vector, and µ is
the semantic-level attention vector. hP , a column from HT

P ,
is a learned node embedding from the node-level aggregation.
For the meaningful comparison, all the above parameters are
shared for the semantic-specific node embeddings in all meta-
paths.

After obtaining the importance of node representation in
each meta-path, we normalize them through a softmax func-
tion. The weight of node representation in the meta-path P ,
denoted as αP , is calculated as follows:

αP =
exp(eP)∑
P̄∈Ψ exp(eP̄)

(10)

where Ψ is the set of meta-path types, and αP can be
interpreted as the contribution of the meta-path P for the
learned node embedding.

For document classification tasks, we first feed the final
representation matrix to a log softmax layer; then we exploit
the negative log likelihood loss over training data with the L2-
norm. The details are defined as follows:

V = log softmax(Z(l)) (11a)

L = −
∑

i∈Dtrain

Vim + η‖Θ‖2 (11b)

where Z(l) denotes the l-th layer document embedding. Dtrain

is the set of document node indices for training, Vim is the
predicted value, Θ denotes other learnable parameters in the
model, and η is regularization factor.

IV. DATA AND EXPERIMENT

A. Datasets and Baselines

We conduct extensive experiments on 5 benchmark text
datasets including MR, Ohsumed, R8, R52 and AGNews. The
statistics for preprocessed datasets are summarized in Table I.

TABLE I
STATISTICS OF TEXT BENCHMARK DATASETS.

Dataset #Documents #Train #Test #Words #Classes Average Length
MR 10,662 7,108 3,554 18,764 2 20.39
Ohsumed 7,400 3,357 4,043 14,157 23 135.82
R8 7,674 5,485 2,189 7,688 8 65.72
R52 9,100 6,532 2,568 8,892 52 69.82
AGNews 6,000 4,000 2,000 9,402 4 7.62

• MR: A movie review dataset for binary sentiment clas-
sification, in which each movie review contains only one
sentence [21]. The corpus has 5,331 positive and 5,331
negative reviews.

• Ohsumed: It is a bibliographic database of important
medical literature maintained by the National Library of
Medicine, which is from the MEDLINE database. We
divide training set and test set according to text GCN.

• R8 and R52: They are two subsets of the Reuters 21578
dataset, which is a collection of documents that appeared
on Reuters newswire in 1987.

• AGNews: We randomly selected 6,000 pieces of news
from AGNews, evenly distributed into 4 classes. The ratio
of training set and test set is 2:1.

In order to evaluate our method comprehensively, we com-
pare it with the following methods. Text GCN and SGC are
graph-based techniques.
• CNN: CNN [2] with and without pre-trained word em-

beddings, named CNN-rand and CNN-pretrain, respec-
tively.

• LSTM: LSTM [3] with and without pre-trained word
embeddings, named LSTM-rand and LSTM-pretrain, re-
spectively.

• fastText: FastText [22] is a simple and efficient approach
for representation learning, which treats the average of

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://disi.unitn.it/moschitti/corpora.htm
https://www.cs.umb.edu/∼smimarog/textmining/datasets/
http://www.di.unipi.it/∼gulli/AG corpus of news articles.html

TABLE II
TEST ACCURACIES (%) OF DIFFERENT METHODS ON BENCHMARK DATASETS. WE RUN EACH MODEL FOR 10 TIMES AND RECORD ITS MEAN ±

STANDARD DEVIATION. THE BEST RESULTS ARE IN BOLD, AND THE SECOND-BEST RESULTS ARE UNDERLINED.

Model MR Ohsumed R8 R52 AGNews
CNN-rand 72.11 ± 0.70 51.85 ± 1.72 96.27 ± 0.24 92.00 ± 0.51 57.66 ± 0.98
CNN-pretrain 75.96 ± 0.32 68.60 ± 0.39 97.10 ± 0.09 93.57 ± 0.20 76.72 ± 0.65
LSTM-rand 70.05 ± 0.77 31.68 ± 1.27 93.77 ± 0.51 88.20 ± 0.60 60.71 ± 0.90
LSTM-pretrain 75.00 ± 0.50 45.55 ± 2.01 95.90 ± 0.85 88.62 ± 1.81 72.00 ± 1.19
fastText-pretrain 76.00 ± 1.36 58.16 ± 0.78 96.23 ± 0.31 90.50 ± 0.31 76.85 ± 0.68
fastText-pretrain
-bigrams 73.22 ± 0.56 46.60 ± 0.88 94.98 ± 0.28 88.70 ± 0.79 62.39 ± 0.95

Text GCN 76.62 ± 0.13 68.26 ± 0.30 97.18 ± 0.09 93.68 ± 0.09 76.52 ± 0.14
SGC 76.91 ± 0.02 69.50 ± 0.02 96.39 ± 0.04 94.17 ± 0.05 70.05 ± 0.00
MPTGNN 77.23 ± 0.33 69.63 ± 0.45 97.13 ± 0.11 93.81 ± 0.29 77.60 ± 0.30

word/n-grams embeddings as document representations,
then feeds document representations into a linear classi-
fier.

• Text GCN: Text GCN [5] builds a graph for the corpus
based on word co-occurrence and document word rela-
tions, then applies GCN for text classification.

• SGC: SGC [8] is a simple linear model by simplifying
the graph convolutional network. We apply SGC with the
text graph established by Text GCN for text classification.

B. Experimental Settings

In the construction of heterogeneous text graph part, we set
the window size as 20. In the meta-path similarities part, we
set k = rate×#Documents for the top-k similarity search,
where the rate is 0.4 for MR and R52, the rate is 0.45 for
Ohsumed, and the rate is 0.55 for R8 and AGNews. In the
node-level aggregation part, we set the hidden dimension as 64
and the dropout rate as 0.5. In the semantic-level aggregation
part, we set the dimension of the semantic-level attention
vector µ to 64, and the dropout rate as 0.1. Furthermore, we
set the layer number l of MPTGNN as 1, set the regularization
factor η = 1e−5, use Adam algorithm with learning rate 0.03
to train MPTGNN up to 500 epochs, and stop training if the
validation loss does not decrease for 10 consecutive epochs.
For baseline methods using pre-trained word embeddings, we
use 300-dimensional Google’s word2vec word embeddings.

C. Experimental Results and Analysis

The node classification accuracies of different methods on
benchmark datasets are shown in Table II. We can see that
our method termed MPTGNN outperforms all the baselines on
MR, Ohsumed and AGNews. Our method achieves the second-
best results in the other two datasets i.e., R8 and R52, and its
performance is very close to the best model.

Whether using randomly initialized word embeddings or
pre-trained word embeddings, CNN performs much better than
LSTM on MR, Ohsumed, R8, and R52. FastText-pretrain with-
out bigrams performs well, outperforming CNN and LSTM on
MR and AGNews, and even achieves the second-best result for
AGNews. Text GCN based on graph neural network is a little

https://code.google.com/archive/p/word2vec/

better than CNN-pretrain on MR, R8, and R52, getting the
best result for R8. The simplified neural network model SGC
performs slightly better than Text GCN on MR, Ohsumed, and
R52, achieving the best result for R52.

Our method outperforms all the methods on a lot of datasets,
which showcases the effectiveness of our proposed method.
The reasons why MPTGNN works well include that 1) we
propose a method based on meta-path similarity to effectively
capture the indirect relationships between documents; 2) the
homogeneous weighted-graphs we constructed contains rich
interactive and semantic information; 3) the top-k similarity
search can select the top-k document nodes with the largest
edge weight with the current node, which can reduce the noise;
and 4) the attention mechanism can be helpful for weighted
fusion of multiple document representations based on different
meta-paths.

D. Ablation Study

1) Effect of the meta-path similarities: To test the effec-
tiveness of the meta-path similarities, we compare MPTGNN
with its simplified version, i.e, the meta-path similarities
are removed and only GNN is applied. As shown in Table
III, MPTGNN performs better than GNN, demonstrating the
importance of meta-path similarities for our method.

TABLE III
TEST ACCURACIES (%) OF MPTGNN AND ITS SIMPLIFIED VERSION,

GNN. WE RUN EACH MODEL FOR 10 TIMES AND REPORT ITS MEAN ±
STANDARD DEVIATION.

Model MR Ohsumed R8 R52 AGNews
GNN 76.95 ± 0.61 69.30 ± 0.61 97.01 ± 0.30 93.13 ± 0.73 77.25 ± 0.29
MPTGNN 77.23 ± 0.33 69.63 ± 0.45 97.13 ± 0.11 93.81 ± 0.29 77.60 ± 0.30

2) Effect of the attention mechanism: In order to test the
validity of attention mechanism in the semantic-level aggrega-
tion part, we compare our model with some variants. As shown
in Table IV, we compare MPTGNN with two variant models.
In the semantic-level aggregation part, the concatenation and
average instead of attention mechanism in MPTGNN con
and MPTGNN ave are considered respectively. We can no-
tice that MPTGNN performs better than MPTGNN con and
MPTGNN ave on most datasets, demonstrating the effective-

0.7500

0.7550

0.7600

0.7650

0.7700

0.7750

0.7800

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
cc

u
ra

cy

Rate

0.6700

0.6750

0.6800

0.6850

0.6900

0.6950

0.7000

0.7050

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
cc

u
ra

cy

Rate

Fig. 2. Test accuracies with different rates. The left subgraph is the result of MR, and the right subgraph is the result of Ohsumed.

ness of attention mechanism in the semantic-level aggregation
part.

TABLE IV
TEST ACCURACIES (%) OF MPTGNN AND ITS VARIANTS. WE RUN EACH
MODEL FOR 10 TIMES AND REPORT ITS MEAN ± STANDARD DEVIATION.

Model MR Ohsumed R8 R52 AGNews
MPTGNN con 76.91 ± 0.27 69.28 ± 0.52 96.87 ± 0.16 93.58 ±0.24 77.89 ± 0.30
MPTGNN ave 76.99 ± 0.28 68.94 ± 0.52 96.78 ± 0.17 93.51 ± 0.15 78.03 ± 0.33
MPTGNN 77.23 ± 0.33 69.63 ± 0.45 97.13 ± 0.11 93.81 ± 0.29 77.60 ± 0.30

3) Effect of the top-k similarity search: Test accuracies
with different rates (k = rate×#Documents) for the top-k
similarity search on MR and Ohsumed are shown in Figure
2. The test accuracy affected by the rate is fluctuating, and
the rate that is too close to 0 or 1 does not result in the best
test accuracy. The test accuracy of MR reaches the best result
when the rate is 0.4. For Ohsumed, the test accuracy reaches
the best result when the rate is 0.45.

V. CONCLUSION

In this paper, we propose a Meta-Path-based Text Graph
Neural Network (MPTGNN) for text classification. The pro-
posed method can effectively capture the structural and se-
mantic information in heterogeneous text network. The meta-
path similarities are regarded as the weights of document-
document connections. We also apply a Two-stage Multi-graph
Information Fusion method (TMIF) to learn the embedding of
each document. The attention mechanism can be productive
for weighted fusion of multiple document representations
based on different meta-paths. Experiments on public datasets
demonstrate that our proposed method can improve the perfor-
mance of text classifiers. In our future work, we will consider
integrating external knowledge into heterogeneous text graph,
such as text topics and knowledge graphs.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation Project of CQ CSTC (No. cstc2020jcyj-
msxmX0554).

REFERENCES

[1] G. Wang, C. Li, W. Wang, Y. Zhang, D. Shen, X. Zhang, R. Henao, and
L. Carin, “Joint embedding of words and labels for text classification,”
arXiv: Computation and Language, 2018.

[2] K. Shimura, J. Li, and F. Fukumoto, “Hft-cnn: Learning hierarchical
category structure for multi-label short text categorization,” pp. 811–
816, 2018.

[3] D. Wang, J. Gong, and Y. Song, “W-rnn: News text classification based
on a weighted rnn.” arXiv: Information Retrieval, 2019.

[4] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchezgonzalez, V. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner
et al., “Relational inductive biases, deep learning, and graph networks,”
arXiv: Learning, 2018.

[5] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification,” vol. 33, no. 01, pp. 7370–7377, 2019.

[6] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” pp. 3844–3852,
2016.

[7] T. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv: Learning, 2016.

[8] F. Wu, T. Zhang, A. Souza, C. Fifty, T. Yu, and K. Q. Weinberger,
“Simplifying graph convolutional networks,” arXiv: Learning, 2019.

[9] F. Sebastiani, “Machine learning in automated text categorisation: a
survey,” ACM Computing Surveys, 1999.

[10] F. Rousseau, E. Kiagias, and M. Vazirgiannis, “Text categorization as a
graph classification problem,” vol. 1, pp. 1702–1712, 2015.

[11] K. Skianis, F. Rousseau, and M. Vazirgiannis, “Regularizing text cate-
gorization with clusters of words,” pp. 1827–1837, 2016.

[12] J. Bian, B. Gao, and T. Liu, “Knowledge-powered deep learning for
word embedding,” pp. 132–148, 2014.

[13] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents,” arXiv: Computation and Language, 2014.

[14] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding through
large-scale heterogeneous text networks,” pp. 1165–1174, 2015.

[15] Y. Kim, “Convolutional neural networks for sentence classification,” pp.
1746–1751, 2014.

[16] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep
convolutional networks for text classification,” vol. 1, pp. 1107–1116,
2017.

[17] Y. Zhang, Q. Liu, and L. Song, “Sentence-state lstm for text represen-
tation,” vol. 1, pp. 317–327, 2018.

[18] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” arXiv:
Learning, 2018.

[19] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel, “Gated graph
sequence neural networks,” arXiv: Learning, 2016.

[20] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks,” vol. 4,
no. 11, pp. 992–1003, 2011.

[21] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales,” in Proceedings of
the 43rd Annual Meeting of the Association for Computational Linguis-
tics (ACL’05). Ann Arbor, Michigan: Association for Computational
Linguistics, Jun. 2005, pp. 115–124.

[22] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” vol. 2, pp. 427–431, 2017.

	Introduction
	Related Work
	Text Classification
	Graph Neural Networks
	Meta-path

	Methodology
	Overall Framework
	PathSim-based Homogeneous Weighted-graphs
	Two-stage Multi-graph Information Fusion
	Node-level Aggregation
	Semantic-level Aggregation

	Data and Experiment
	Datasets and Baselines
	Experimental Settings
	Experimental Results and Analysis
	Ablation Study
	Effect of the meta-path similarities
	Effect of the attention mechanism
	Effect of the top-k similarity search

	Conclusion
	References

