
Formal Modeling and Verification of ICN-IoT
Middleware Architecture

Hongqin Zhang, Jiaqi Yin, Huibiao Zhu∗, Ningning Chen
Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China

Abstract—As a key technology of the Internet of Things (IoT),
middleware plays an important role in managing virtualized re-
sources and services. However, traditional Internet architectures
cannot ensure adequate data security and efficient data delivery
for IoT middlewares. Therefore, Information-Centric Networking
(ICN), a paradigm of the future network, is introduced into IoT
middlewares. Since ICN-IoT middleware is attracting more and
more attentions, its security is worth discussing.

In this paper, we adopt Communicating Sequential Processes
(CSP) to model the ICN-IoT middleware architecture. Five prop-
erties (deadlock freedom, data availability, action keys leakage,
device faking and user faking) of the model are verified by utiliz-
ing the model checker Process Analysis Toolkit (PAT). According
to the verification results, the model cannot guarantee the security
of data. To solve the problems, we encrypt messages with the
receiver’s public key, and improve the model by introducing
a method similar to the digital signature. The new verification
results demonstrate that our study can assure the security of the
ICN-IoT middleware architecture.

Index Terms—ICN, IoT Middleware, CSP, PAT, Modeling,
Verification

I. INTRODUCTION
The Internet of Things (IoT) [1] is an emerging paradigm,

which connects heterogeneous devices with the Internet. As
a crucial technology of IoT, IoT middleware [2] manages
the integration of devices and provide interested users IoT
services. The effectiveness of information retrieval and secu-
rity of the transmitted information are two key challenges of
IoT middlewares. To cope with the challenges, several IoT
middleware solutions have been proposed [3]–[5]. Park et
al. put forward a cloud-based middleware for self-adaptive
IoT collaboration services, which improved the feasibility and
performance of IoT systems [3]. Sicari et al. proposed a
quality-aware IoT architecture aiming to deal with the data
security and quality [4]. Shi et al. came up with an SDN-
like publish/subscribe middleware architecture [5]. It used
a machine learning method based on the eXtreme Gradient
Boosting (XGBoost) model to improve the efficiency of IoT
systems [5]. However, the above solutions cannot support the
effectiveness and security of IoT systems at the same time.
Hence, a solution called ICN-IoT middleware architecture [6]
was proposed by introducing Information-Centric Networking
(ICN) [7] into IoT. ICN identifies a network object by the name
instead of the IP address, which supports content-oriented
security and effectiveness [8]. Whereas, there are few works
on the verification of the ICN-IoT middleware architecture.
∗Corresponding author: hbzhu@sei.ecnu.edu.cn (H. Zhu).

In this paper, the ICN-IoT middleware architecture is for-
mally modeled using the process algebra CSP [9]. Model
checking tool PAT [10] is adopted to verify its functional and
security properties. The verification results demonstrate that
the architecture may cause action keys leakage and device
faking. Therefore, we improve the original architecture by
encrypting the messages with the receiver’s public key to
protect action keys, and introduce a method similar to digital
signature to avoid device faking. Then we verify the improved
architecture using PAT. The new verification results show that
our work can enhance the security of the architecture.

The rest of this paper is organized as follows. Section II
briefly introduces the ICN-IoT middleware architecture and
CSP. Section III is devoted to the modeling of the ICN-
IoT middleware architecture. In Section IV, we analyse the
verification results and give the improvement that can address
the vulnerabilities of the architecture. Finally, conclusions and
future work are given in Section V.

II. BACKGROUND

In this section, we give a brief description of the ICN-IoT
middleware architecture. After that, we introduce the syntax
of the process algebra CSP.

A. ICN-IoT Middleware Architecture

ICN-IoT middleware architecture is designed to build a uni-
fied IoT platform using ICN. The schema of the architecture
is illustrated in Fig. 1.

Fig. 1: ICN-IoT middleware architecture (simplified from [7])

The architecture involves five entities:
• Device: It collects data from the environment and pub-

lishes them to the aggregator.
• Aggregator: It deals with the data received from devices.

For simplicity, we use Agg to represent the aggregator.

DOI reference number: 10.18293/SEKE2021-003

• Local Service Gateway (LSG): It serves to connect the
local IoT system to the global one and handle the local
name assignment.

• ICN-IoT Server: It manages the subscriptions within the
IoT system, provides subscribers services and enforces
data access policies.

• User: The user interacts with the ICN-IoT server to get
the data for subscribed services.

The core functions supported by the architecture are: (i)
device discovery aiming to connect a new device with the
system and establish relationships between nodes; (ii) service
discovery meaning to subscribe to IoT services; (iii) naming
service denoting assigning persistent names to devices; (iv)
content delivery representing forwarding data to subscribers.
The related notations and descriptions are listed in TABLE I.

TABLE I: Notations and descriptions
Notation Description

pukx/prkx
Public/Private key of the device/user/intruder,
x ∈ {d, u, i}

akx
Action key of the device/user/intruder,
x ∈ {d, u, i}

cerx
Certificate of the device’s name/public key,
x ∈ {n, k}

Before publishing data, the device must finish device dis-
covery and naming service phases. Fig. 2 shows the actions.
• a1: A device sends an encrypted discovery request along

with cerk to the aggregator.
• a2: When receiving the request, the aggregator decrypts

it using pukd acquired from cerk, and then verifies the
device’s identity. If the device is legal, the aggregator
sends akd encrypted with prkd to the device.

• a3: The device obtains akd through decryption, and then
requests a name from the aggregator.

• a4: The aggregator sends a name request to the LSG
via a secure channel which can prevent intruders from
obtaining the request.

• a5: The LSG sends cern to the aggregator.
• a6: The aggregator encrypts cern using akd, and then

provides it to the device.
• a7: The device gets cern through decryption, and then

publishes the data encrypted with akd to the aggregator.
In order to improve the security, the device also sends
cern encrypted with prkd to the aggregator.

Before getting data, the user needs to pass user registration
and service discovery phases. The actions are given in Fig. 3.
• b1: A user initiates a registration request to the server.
• b2: When the request is received, the server sends a

temporary password to the user via a secure channel.
• b3: Once receiving the password, the user changes it first,

and then sends an action key request to the server.
• b4: The server assigns aku encrypted by prku to the user.
• b5: The user decrypts the message to get aku using puku,

and then sends the server a service request encrypted with
aku and prku.

Fig. 2: Overview of publishing data

Fig. 3: Overview of getting data

• b6: The server decrypts the service request through two
layers of decryption to verify the user’s identity. If the
user is honest, the server requests the corresponding data
from the LSG. If not, the service request is rejected.

• b7: The LSG requests the data from the aggregator.
• b8: The aggregator provides the data to the LSG.
• b9: The LSG forwards the received data to the server.
• b10: The server sends a message to the user who can

obtain the data by decrypting the message with aku.

B. CSP
Communicating Sequential Processes (CSP) is a process

algebra proposed by C. A. R. Hoare [?]. Here we briefly
introduce part of the CSP syntax used in this paper.

P,Q ::= Skip | a→ P | c?x→ P | c!v → P | P ;Q |
P ||Q | P�Q | P C bBQ | P [[a← b]]

• Skip means that a process terminates successfully.
• a → P indicates that a process performs action a first,

and then acts like process P .
• c?x → P represents that a process receives a message

via channel c and assigns the received message to x, and
then behaves like process P .

• c!v → P denotes that message v is sent through channel
c, and then process P is executed.

• P ;Q is the sequential execution of processes P and Q.
• P ||Q describes that processes P and Q run in parallel.
• P�Q stands for the general choice of processes P and

Q, and the selection is made by the environment.
• P C bBQ shows that if the condition b is true, process

P is executed, otherwise process Q is executed.
• P [[a ← b]] means renaming action. Event a in process

P is replaced by event b.

III. MODELING
In this section, we focus on the formal modeling of the

ICN-IoT middleware architecture.

A. Sets, Messages and Channels

Before we investigate the formal model, we introduce some
preparatory notations including sets, messages and channels.

First, we describe the related sets in this model. Entity set
denotes entities including devices, aggregators, LSGs, ICN-
IoT servers and users. Req set involves the request messages of
entities. Key set represents all the keys including public key set
Puk, private key set Prk and symmetric key set Smk. Data
set contains the data published by devices. Con set means
other message contents involving certificate set Cer, feedback
message set Ack and password set Pwd.

Besides, we define the encryption function E and decryption
function D to model the messages:

E(k, m); D(k, E(k, m)); D(k−1, E(k,m))

Function E(k,m) means that we encrypt the message m
using k. D(k,E(k,m)) denotes that we use a symmetric key
k to decrypt the message which is encrypted by k. D(k−1,
E(k,m)) indicates that we use the corresponding decryption
key k−1 to decrypt the message encrypted by k.

Based on the sets and functions defined above, we abstract
and classify the messages as follows:

MSGreq = {msgreq.a.b.req,msgreq.a.b.E(k1, req).cer,

msgreq.a.b.E(k2, E(k3, req)) | a, b ∈ Entity,

k1, k2, k3 ∈ Key, req ∈ Req, cer ∈ Cer}
MSGkey = {msgkey.a.b.E(k1, k2) | a, b ∈ Entity,

k1 ∈ Prk, k2 ∈ Smk}
MSGcon = {msgcon.a.b.p,msgcon.a.b.E(k, c) |

a, b ∈ Entity, p, c ∈ Con, k ∈ Key}
MSGdata = {msgdata.a.b.E(k1, d),

msgdata.a.b.E(k2, c).E(k3, d) | a, b ∈ Entity,

d ∈ Data, k1, k2, k3 ∈ Key, c ∈ Cer}
MSG = MSGreq ∪MSGkey ∪MSGcon ∪MSGdata

MSGreq represents the set of request messages. MSGkey

means the set of messages containing action keys encrypted by
private keys. MSGcon set involves messages containing name
certificates, feedback messages and passwords. MSGdata is
composed of messages containing the data published by de-
vices. MSG consists of all the messages in the model.

Then we give the definitions of communication channels:
• Channels between devices, aggregators, LSGs, ICN-IoT

servers and users described by COM PATH:
ComDA,ComAL,ComSL,ComUS

• Channels for intruders to intercept or fake the transmitted
messages denoted by INTRUDER PATH:

FakeAD,FakeDA,FakeSU, FakeUS

The declaration of channels is shown as follows:

Channel COM PATH, INTRUDER PATH : MSG

Fig. 4: Communication in the Model

B. Overall Modeling

In this section, we give the whole model of the ICN-
IoT middleware architecture. System0 represents the system
consisting only of legal entities. In order to simulate the real
environment, we consider behavior of intruders. System de-
notes the system which introduces the attacks from intruders.

System0 =df Device‖Agg‖LSG‖Server‖User

System =df System0[|INTRUDER PATH|]Intruder

Device, Agg, LSG, Server and User are processes de-
scribing the behavior of devices, aggregators, LSGs, ICN-
IoT servers and users respectively. Besides, Intruder process
represents the actions of intruders such as intercepting and
faking the messages transmitted among legal entities. The
channels between processes are shown in Fig. 4.

C. Device Modeling

We formalize the process Device0 to describe the behavior
of the device without intruders as below:

Device0

=df ComDA!msgreq.D.A.E(prkd, req).cerk →
ComDA?msgkey.A.D.E(prkd, akd)→

ComDA!msgreq.D.A.reqName→
ComDA?msgcon.A.D.E(akd, cern)→
 ComDA!msgdata.D.A.E(prkd, cern).

E(akd, d)→ ComDA?msgcon.A.D.suc
→ Device0


C(D(akd, E(akd, cern)))B (fail→ Device0)


C(D(pukd, E(prkd, akd)))B (fail→ Device0)


reqName denotes the device’s name request. d means the

collected data. First, the device initiates a discovery request
req signed with prkd to the aggregator and then receives an
action key akd. Then, the device sends the request reqName
to the aggregator, and obtains the name certificate cern. After
acquiring akd and cern, the device publishes the data d
encrypted with akd to the aggregator. In order to improve the
confidentiality and integrity of the system, the message for
publishing data also contains cern encrypted with prkd. The
above actions correspond to a1− a7 in Fig. 2.

Now we consider the attacks from intruders. The process
Device with intruders is formalized via renaming as follows:

Device =dfDevice0[[

ComDA!{|ComDA|} ← ComDA!{|ComDA|},
ComDA!{|ComDA|} ← FakeDA!{|ComDA|},
ComDA?{|ComDA|} ← ComDA?{|ComDA|},
ComDA?{|ComDA|} ← FakeAD?{|ComDA|}]]

{|ComDA|} means the set of all communication over
the channel ComDA. The first two lines mean that when-
ever Device0 transmits a message on the channel ComDA,
Device can transmit the same message on channel FakeDA
or ComDA. The same is true for the last two lines.

D. Aggregator Modeling
The formal model of the aggregator abbreviated as Agg0

without intruders is shown below:
Agg0

=df ComDA?msgreq.D.A.E(prkd, req).cerk →

ComDA!msgkey.A.D.E(prkd, akd)→
ComDA?msgreq.D.A.reqName→
ComAL!msgreq.A.L.reqDname→
ComAL?msgcon.L.A.cern →
ComDA!msgcon.A.D.E(akd, cern)→
ComDA?msgdata.D.A.E(prkd, cern).E(akd, d)→
 ComDA!msgcon.A.D.suc→

ComAL?msgreq.L.A.reqData→
ComAL!msgdata.A.L.E(akd, d)→ Agg0


C(D(pukd, E(prkd, cern))) ∧D(akd, E(akd, d))B
(fail→ Agg0)


C(D(pukd, E(prkd, req)))B (fail→ Agg0)


When receiving the device’s discovery request, the aggre-

gator verifies its identity using the signature signed by prkd.
If the device is legal, the aggregator allows the device to
join the system and assigns akd to it. Once the collected
data are received from the device, the aggregator first verifies
the authenticity of the device using the name certificate cern
signed by prkd. If the device is honest, the aggregator sends a
positive feedback message suc to the device. The actions on
the channel ComDA mean a1 − a3 and a6 − a7 in Fig. 2.
When receiving the LSG’s data request, the aggregator sends
the requested data to the LSG via the channel ComAL. The
actions on the channel ComAL represent a4 − a5 in Fig. 2
and b7− b8 in Fig. 3.

The model of Agg with intruders can be drawn via renaming
similar to the process Device, we omit the details here.

E. User Modeling
The model of User0 without intruders is given as below:

User0

=df ComUS!msgreq.U.S.reqReg →
ComUS?msgcon.S.U.pwd→ modifyPwd→
ComUS!msgreq.U.S.reqKey →
ComUS?msgkey.S.U.E(prku, aku)→
ComUS!msgreq.U.S.E(aku, E(prku, reqS))→(

ComUS?msgdata.S.U.E(aku, d)→ User0
C(D(aku, E(aku, d)))B (fail→ User0)

)
C(D(puku, E(prku, aku)))B (fail→ User0)



modifyPwd is a function to change the password. First,
the user sends a registration request reqReg to the server and
receives a temporary password. After the user changes the
password using modifyPwd, it sends an action key request
reqKey to the server. When receiving aku, the user sends the
service request reqS encrypted by aku and signed with prku
to subscribe to interested services. Finally, the user obtains the
data for subscribed services through decryption. These actions
denote b1− b5 and b10 in Fig. 3.

The model of User with intruders can also be acquired by
renaming, we leave out the details here.

F. Server Modeling
We give the model of process Server0 to describe the

behavior of the ICN-IoT server without intruders as follows:
Server0

=df ComUS?msgreq.U.S.reqReg →
ComUS!msgcon.S.U.pwd→
ComUS?msgreq.U.S.reqKey →
ComUS!msgkey.S.U.E(prku, aku)→
ComUS?msgreq.U.S.E(aku, E(prku, reqS))→
ComSL!msgreq.S.L.E(aku, req data)→
ComSL?msgdata.L.S.E(aku, d)→(

ComUS!msgdata.S.U.E(aku, d)→ Server0
C(D(aku, E(aku, d)))B (fail→ Server0)

)
C(D(aku, puku, E(aku, E(prku, reqS))))B
(fail→ Server0)


pwd is the temporary password sent to the user. req data is

the data request sent to the LSG. When the server receives the
encrypted service request reqS, it checks if the user is legal
using the signature signed by prku. If the user is legal, the
server allows its service request, and then requests the corre-
sponding data from the LSG. Otherwise, the service request is
rejected by the server. After receiving the message containing
requested data, the server first decrypts the message, and then
sends the data encrypted with aku to the user. The actions on
channel ComUS correspond to b1−b5 and b10 in Fig. 3. The
actions on channel ComSL denote b6 and b9 in Fig. 3. The
model of Server considering intruders can be formalized via
renaming as well, the details are omitted here. Similarly, we
can define the model of process LSG.

G. Intruder Modeling
In order to better simulate the ICN-IoT middleware architec-

ture in the real environment, we model the Intruder process
which can intercept and fake messages among honest entities.

Firstly, we define the set of facts that the intruder can learn.
Fact =df Entity ∪ Puk ∪ Cer ∪ {E(k, d) | k ∈ Key,

d ∈ Data} ∪MSG ∪ {puki, prki}
Through the known facts, the intruder can deduce new facts.

The symbol F 7→ f means that the intruder can deduce a fact
f from the fact set F .

{k, c} 7→ E(k, c)

{k−1, E(k, c)} 7→ c, {sk,E(sk, c)} 7→ c

F 7→ f ∧ F ⊆ F ′ =⇒ F ′ 7→ f

The first rule means encryption. The second and third rules
denote the decryption in asymmetric and symmetric encryption
forms respectively. The last rule shows that if the fact f can
be derived from a fact set F , and F is a subset of F ′, then
the intruder can also deduce f from the larger set F ′.

Moreover, we use a function Info(m) to imply the facts
that the intruder can learn through intercepted messages.

Info(msgreq.a.b.E(k1, req).c) =df {a, b, E(k1, req), c}
Info(msgkey.a.b.E(k1, k2)) =df {a, b, E(k1, k2)}
Info(msgcon.a.b.E(k1, con)) =df {a, b, E(k1, con)}
Info(msgdata.a.b.E(k1, d)) =df {a, b, E(k1, d)}

Besides, we introduce a channel DEDUCE for the intruder
to deduce new facts. Its definition is given as below:

Channel DEDUCE : Fact.P (Fact)

Then the process Intruder0 can be modeled as follows:

Intruder0(F)

=df �m∈MSGFake.m→ Intruder0(F ∪ Info(m))

��f∈Fact,f /∈F,F 7→fInit{kl = false} → Deduce.f.F

→

 (
kl = true→ Intruder0(F ∪ {f})

)
C(f == akd) ∨ (f == aku)B(

kl = false→ Intruder0(F ∪ {f})
)


When intercepting a message m, the intruder adds Info(m)
to its knowledge. If the intruder can decrypt m, it can falsify
m and send m to the original receiver. If the receiver does not
recognize that the message has been modified, it means that the
intruder successfully fakes as the original sender. Furthermore,
the intruder can deduce new facts from its knowledge via
the channel DEDUCE and add them to its knowledge. If
the intruder successfully deduces action keys of the entities,
action keys leakage occurs. Now we give the formal model of
Intruder, including its initial knowledge IK.

Intruder =df Intruder0(IK)

where, IK =df Entity ∪ Puk ∪ {prki}

IV. VERIFICATION AND IMPROVEMENT

In this section, we analyse the verification results of the
architecture. Based on the verification results and the analysis
of attacks, we improve the original model and give the new
verification results of the improved model.

A. Properties Verification

System() means the model with intruders. We use Linear
Temporal Logic (LTL) formulas to verify its properties.
Property 1: Deadlock Freedom

#assert System() deadlockfree;

The architecture should not run into a deadlock state. We
verify this property by means of a primitive in PAT.
Property 2: Data Availability

#define Data Availability data success == true;

#assert System() reaches Data Availability;

The property means that a legal user should get the required
data. The assertion is used to check the property.

Property 3: Action Keys Leakage

#define ActionKeys Leak Success kl == true;

#assert System() | = []! ActionKeys Leak Success;

As a vital part of the architecture, the leakage of action
keys will cause a bad effect. We define a Boolean variable
kl to check if the intruder can get the action keys, using the
“always” operator [] in LTL.
Property 4: Device Faking

#define Device Fake Success device fake == true;

#assert System() | = []! Device Fake Success;

The property means that the intruder can pretend to be a
legal device without being recognized. We adopt a Boolean
variable device fake for the verification in PAT.
Property 5: User Faking

#define User Fake Success user fake == true;

#assert System() | = []! User Fake Success;

The architecture should prevent intruders from subscribing
to the services. If the intruder can fake as a legal user to
obtain the data, many security issues may appear. We define
a Boolean variable user fake to verify the property.

Fig. 5: Verification results of the model

B. Verification Results

The verification results are shown in Fig. 5:
• Property 1 is valid. It indicates that the proposed archi-

tecture will never get stuck in a deadlock situation.
• Property 2 is valid, which shows that the data can be

transmitted to the legal user who subscribes to the service.
• Property 3 is invalid. It illustrates that the architecture

can cause action keys leakage.
• Property 4 is invalid. It means that the intruder can

pretend to be a legal device to publish fake data.
• Property 5 is valid, which represents that the intruder

cannot disguise as a legal user successfully.

C. Attack Analysis

In this section, we discuss the reasons for the above insecure
results. When the aggregator assigns akd to a device, it uses
prkd to encrypt the message. Once getting pukd, the intruder
can use it to decrypt the message to acquire akd. Moreover,
the intruder can tamper with the collected data and fake as
the device to publish modified data. An example that leads to
Device Faking and the leakage of akd is given as follows:

A1. D −→ I : D.A.E(prkd, req).cerk

A2. I −→ A : D.A.E(prkd, req).cerk

A3. A −→ I : A.D.E(prkd, akd)

A4. I −→ D : A.D.E(prkd, akd)

A5. D −→ I : D.A.reqName

A6. I −→ A : D.A.reqName

A7. A −→ I : A.D.E(akd, cern)

A8. I −→ D : A.D.E(akd, cern)

A9. D −→ I : D.A.E(prkd, cern).E(akd, d)

A10. I −→ A : D.A.E(prkd, cern).E(akd, fakeD)

• A1: The device sends a request to the aggregator.
• A2: The intruder eavesdrops on the request and gets cerk.

Since the certificate is issued by CA and every entity has
its public key, the intruder can decrypt cerk to get pukd
using the public key of CA.

• A3: The aggregator uses prkd to encrypt akd and sends
the message to the device.

• A4: The intruder intercepts the message and decrypts it
to get akd using the acquired pukd. At this point, the
leakage of akd occurs.

• A5 − A8: The device requests for a name and receives
cern, during which the intruder intercepts the activities.

• A9: The device publishes collected data to the aggregator.
• A10: The intruder intercepts the message and gets the

data using akd. Then it disguises as the legal device to
send modified data fakeD along with the original cern
to the aggregator without being recognized.

Similarly, the intruder can get aku using puku. Hence, the
model cannot ensure the security of action keys and data.

D. Improved Model and Verification

In order to address the above issues, we improve the model
by using a method similar to the digital signature. When
distributing the action key, we use the receiver’s public key
to encrypt the message. Furthermore, we introduce a method
similar to digital signature for the aggregator to authenticate
the device. That is to say, the device needs to sign with its
private key when publishing the collected data. Therefore, the
intruder can neither get the action keys nor fake as a legal
device since it does not know prkd or prku. We modify the
message definitions of the model. MSGkey and MSGdata are
replaced by the following MSGkey1 and MSGdata1.

MSGkey1 = {msgkey1.a.b.E(k1, k2) | a, b ∈ Entity,

k1 ∈ Puk, k2 ∈ Smk}
MSGdata1 = {msgdata1.a.b.E(k,E(k1, d).c),

msgdata1.a.b.E(k, d) | a, b ∈ Entity, k ∈ Smk,

k1 ∈ Prk, d ∈ Data, c ∈ Cer}

Then we formalize the improved processes of Device1,
Agg1, LSG1, Server1 and User1 using the new message
definitions. The improved model is given as follows:

System1 =df Device1‖Agg1‖LSG1‖Server1‖User1

System =df System1[|INTRUDER PATH|]Intruder

The verification results are shown in Fig. 6. Property 3 and
Property 4 are valid. It means that Action Keys Leakage
and Device Faking problems are solved now.

Fig. 6: Verification results of the improved model

V. CONCLUSION AND FUTURE WORK

ICN-IoT middleware architecture is constructed by applying
ICN into IoT. In this paper, we formalized the architecture
using CSP. Feeding the model into PAT, we verified the func-
tional and security properties of the model including deadlock
freedom, data availability, action keys leakage, device faking
and user faking. The verification results show that action keys
leakage and device faking may occur once intruders appear.
Thus, we improved the model by encrypting messages with
the receiver’s public key. Moreover, we introduced a method
similar to digital signature to the model. The new verification
results indicate that the improved model can prevent intruders
from invading the architecture. In the future, we will focus on
more security issues of IoT systems. Formal methods will be
used to verify other security properties of IoT systems.
Acknowledgements. This work was partly supported by National
Key Research and Development Program of China (Grant No.
2018YFB2101300), National Natural Science Foundation of China
(Grant No. 61872145, 62032024), Shanghai Collaborative Innovation
Center of Trustworthy Software for Internet of Things (Grant No.
ZF1213).

REFERENCES

[1] Tewari A, Gupta B B. Security, privacy and trust of different layers
in Internet-of-Things (IoTs) framework. Future generation computer
systems, 2020, 108: 909-920.

[2] Ayoade G, El-Ghamry A, Karande V, et al. Secure data processing for
IoT middleware systems. The Journal of Supercomputing, 2019, 75(8):
4684-4709.

[3] Park S, Park S. A Cloud-based Middleware for Self-Adaptive IoT-
Collaboration Services. Sensors, 2019, 19(20): 4559.

[4] Sicari S, Rizzardi A, Miorandi D, et al. A secure and quality-aware
prototypical architecture for the Internet of Things. Information Systems,
2016, 58: 43-55.

[5] Shi Y, Zhang Y, Jacobsen H A, et al. Using machine learning to provide
reliable differentiated services for IoT in SDN-like Publish/Subscribe
middleware. Sensors, 2019, 19(6): 1449.

[6] Sicari S, Rizzardi A, Grieco L A, et al. A secure ICN-IoT architecture.
2017 IEEE international conference on communications workshops (ICC
workshops). IEEE, 2017: 259-264.

[7] Mars D, Gammar S M, Lahmadi A, et al. Using information centric
networking in internet of things: a survey. Wireless Personal Commu-
nications, 2019, 105(1): 87-103.

[8] Arshad S, Azam M A, Rehmani M H, et al. Recent advances in
information-centric networking-based Internet of Things (ICN-IoT).
IEEE Internet of Things Journal, 2018, 6(2): 2128-2158.

[9] Hoare C A R. Communicating sequential processes. Communications
of the ACM, 1978, 21(8): 666-677.

[10] PAT, Pat: Process Analysis Toolkit(2019), http://pat.comp.nus.edu.sg.

