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José Ferdinandy Silva Chagas
Federal Rural University of Semi-Arid
Intelligent Software Engineering Group

ferdinandy@ufersa.edu.br

Luiz Antonio Pereira Silva
Federal University of Campina Grande

Intelligent Software Engineering Group
luizantonio@copin.ufcg.edu.br

Mirko Perkusich
Intelligent Software Engineering Group

mirko@virtus.ufcg.edu.br

Ademar França de Sousa Neto
Federal University of Campina Grande

Intelligent Software Engineering Group
ademar.sousa@virtus.ufcg.edu.br

Danyllo Albuquerque
Intelligent Software Engineering Group

danyllo.albuquerque@virtus.ufcg.edu.br
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Abstract—Intelligent Software Engineering (ISE) is currently
a hot topic in research. Besides being a promising field, it brings
many challenges. Therefore, there is a need for guidelines to help
researchers to build an ISE solution. The goal of this study is to
identify patterns in developing ISE solutions. For this purpose,
we analyzed 42 studies, using a thematic analysis approach,
to understand how they reused knowledge and applied it to
solve a SE task. As a result, we developed a thematic network
composed of the main concepts related to knowledge reuse for
ISE. Further, we identified that researchers use external and
internal knowledge sources, and mostly rely on structured data
to develop ISE solutions. Despite this, there are alternatives such
as eliciting data from humans and literature to identify metrics
or build knowledge-based systems. Overall, we concluded that
there many research opportunities to guide the construction of
ISE solutions.

I. INTRODUCTION

The processing power of modern computers increased con-
siderably, enabling Artificial Intelligence (AI) to reach streets,
houses, cities, and people daily [22], [18]. Hence, AI advances
bring new challenges and opportunities, such as automating
or supporting the execution of Software Engineering (SE)
tasks [27], [10]. On the other hand, bringing AI systems to
the market also brings challenges that can be addressed by ap-
plying SE. As a consequence, recently, the field denominated
as Intelligent Software Engineering (ISE) has emerged. ISE
is an ambidextrous field focusing on (i) applying intelligent
techniques to solve SE problems and (ii) using SE to improve
AI systems [53], [44]. In this paper, we focus only on (i),
which, itself, is not a very recent phenomenon dating back
to the 1980s [37]. As the definition for what is an intelligent
technique, we follow Perkusich et al. [44], in which this term
was defined as: “the exploration of data (from digital arti-
facts or domain experts) for knowledge discovery, reasoning,

learning, planning, natural language processing, perception or
supporting decision-making”.

In industry, companies such as Facebook and Amazon
have been applying intelligent techniques (i.e., search-based
algorithms) to solve SE problems [41]. In academia, it is
a hot topic [44]. For instance, researchers have proposed
the application of NLP to manage requirements [28] and
the use of natural-language-based chatbots to improve the
productivity of developers [25]. Moreover, through ML, the
researchers can use accessible software repositories, with a
lot of available data, to continuously learn and improve the
software reuse [50]. Perkusich et al. [44] performed a system-
atic literature review on ISE in the context of agile software
development and highlighted the following research themes:
Search-Based Software Engineering (SBSE) [19], machine
learning for SE [55], recommender systems for SE [15],
Bayesian networks for SE [35], software analytics [34], Big
Code [2] and decision analysis for SE [56]. Among the
SE problems that researchers are addressing with intelligent
techniques, we can list: Effort Estimation ([48], [51], [13],
[23]), Risk Management ([9]), Software Testing ([29], [24],
[42], [31]), Team Formation ([30], [7]), and Requirements
Engineering ([47], [26], [38], [46]).

Developing an ISE solution is a complex task because it de-
mands knowledge regarding the SE task at hand and intelligent
techniques, and, to the best of our knowledge, there are few
proposals of conceptual models or general guidelines to de-
velop ISE solutions. The literature presents guidelines for ISE
subfields such as data mining for software engineering [54],
[17], machine learning for software engineering [33], Search-
Based Software Engineering [20], and data-driven solutions
for agile projects [10]. It also presents guidelines for applying
intelligent techniques for general purposes, such as building
Bayesian networks [39], [32]. Despite having their value,



the existing studies focus on a specific intelligent technique.
The problem is that defining the intelligent technique should
not be the starting point of defining an ISE solution. The
solution designer only selects the intelligent technique to be
applied after evaluating the existing available knowledge (e.g.,
data stored in CASE tools or repositories) and the software
engineering problem to be tackled (e.g., estimate effort for a
given task). Therefore, to help in the early stages of building
an ISE solution, we argue that there is a need for general
guidelines.

To address this need, we analyzed 42 studies, identified
by Perkusich et al. [44], that applied intelligent techniques
to several SE tasks to identify patterns and provide a holistic
view on how to develop ISE solutions from the perspectives
of Knowledge Management (KM) and reuse-driven software
engineering.

This paper synthesizes our findings by presenting a thematic
network and the identified patterns on how the applied intel-
ligent techniques relates to the reused knowledge. Further, it
discusses the implications for research and practice. The rest
of the paper is structured as follows. Section II presents the
applied methodology to perform the thematic analysis. Sec-
tion III describes the conceptual model. Section IV discusses
the model development challenges, application, and impact.
Section V lists main threats to validity. Finally, Section VI
presents our final remarks, emphasizing the research contribu-
tion and limitations, and suggesting future works.

II. RESEARCH METHODOLOGY

The goal of this study is to identify patterns in developing
ISE solutions. For this purpose, we model the problem of
developing ISE solutions from the perspective of knowledge-
reuse, in which we assume that an intelligent technique reuses
data, information, or knowledge, which might be available
through digital artifacts or domain experts, to solve SE prob-
lems. Given this, we defined the following research questions:

• RQ1 - How is knowledge reused in the context of ISE?
• RQ2 - What is the relationship between the type of reused

knowledge and the applied intelligent technique?
RQ1 focuses on classifying existing ISE solutions in terms

of the type of knowledge sources used and, if the case, what
are the knowledge transformation techniques employed by
researchers to feed intelligent technique algorithms.

RQ2 focuses on identifying patterns between the type of
reused knowledge and the applied intelligent techniques. The
answer to this research question might indicate trends, which
might serve as guide researchers and practitioners interested
in developing ISE solutions.

To answer the research questions, we employed a thematic
analysis approach following the guideline proposed by Cruzes
and Dyba [8]. The guideline proposes five research steps: (i)
data extraction, (ii) code data, (iii) translate codes into themes,
(iv) create a model of higher-order themes, and (v) assess the
trustworthiness of the synthesis.

As the data source for the first step (i), we used a subset of
the studies reported by Perkusich et al. [44], which identified
intelligent techniques applied to agile software development.

Despite restricting the scope to agile, Perkusich et al. [44]
report ISE solutions for diverse SE tasks such as effort
estimation, requirements prioritization, and risk management;
and using digital artifacts and humans expertise as knowledge
sources. Therefore, we judged that analyzing the ISE solutions
reported by Perkusich et al. [44] as being sufficient, given the
scope of this study.

To assure that our results are based only on high-quality
studies, guaranteeing the trustworthiness of the synthesis (step
v), we filtered the 104 papers following the quality scoring
performed by Perkusich et al. [44]. Perkusich et al. [44] used
the instrument proposed by Dyba and Dingoyr [11] to assess
the quality of the studies. We present the quality criteria in
what follows.

1) Is the paper based on research (or is it merely a “lessons
learned” report based on expert opinion)?

2) Is there a clear statement of the aims of the research?
3) Is there an adequate description of the research context?
4) Was the research design appropriate to address the aims

of the research?
5) Was the recruitment strategy appropriate to the aims of

the research?
6) Was there a control group with which to compare

treatments?
7) Was the data collected in a way that addressed the

research issue?
8) Was the data analysis sufficiently rigorous?
9) Has the relationship between the researcher and partic-

ipants been considered to an adequate degree?
10) Is there a clear statement of findings?
11) Is the study of value for research or practice?
For each quality criteria, Perkusich et al. [44] rated the

studies using a boolean scale in which “1” means “yes” and
“0” means “no”. Therefore, the quality score ranges in the
interval [0, 11], which is composed only of Integer numbers.
We only evaluated studies with a quality score equal to
seven or higher, resulting in 42 studies. The complete list of
evaluated study is made available here1.

After having identified the 42 studies to be used as our data
source, one researcher analyzed them and extracted publication
details (e.g., title and year), the applied intelligent technique,
SE task, level of automation [12] and segments of text relevant
given our research questions. Afterward (step ii), each segment
of text was analyzed and labeled by a researcher, generating
a set of codes. We used an integrated approach, in which
we defined a “start list” of codes based on our expertise
in the field, but we remained open for new concepts that
could become apparent. Another researcher checked the coded
segments to avoid researcher bias.

Examples of codes defined a priori are the type of knowl-
edge source (i.e., tacit, explicit, or both), and type of data (i.e.,
structured, non-structured, both). Conversely, as an example
of a code that became apparent during data analysis was
techniques to “transform” unstructured data into structured
data such as text mining, ontology, and qualitative analysis.
We discuss these concepts in Section III.

1https://bit.ly/2Q596MK
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Fig. 1. ISE Knowledge Reuse thematic network

To define and structure the themes (steps iii and iv), the
researchers analyzed the codes during workshops. At the
end of this process, we developed a thematic network [3],
organizing the concepts related to knowledge reuse for ISE.
Afterward, we used the identified themes to classify the studies
and analyze our research questions.

III. THEMATIC NETWORK

This section discusses the thematic network, shown in
Figure 1, that resulted from analyzing the 42 papers from
Perkusich et al. [44], as discussed in Section II. The thematic
network focuses on structuring the concepts related to knowl-
edge reuse in the context of ISE. Therefore, the Global Theme
(represented as a rectangle in Figure 1) encompasses the ISE
solutions reuses knowledge.

During our analysis, two middle-order themes (represented
by ellipsis in Figure 1) emerged: Knowledge Source and
Knowledge Transformation. Every ISE solution, in some way
or another, uses knowledge for a SE task. The Knowledge
Source theme represents the possible types of sources in which
the solution designer or algorithm might collect the necessary
knowledge. We further refined this theme by identifying the
themes Type and Location.

The theme Type refers to the two possible types of knowl-
edge described in classical KM literature: Tacit or Explicit.
Tacit knowledge refers to knowledge that is only stored in the
minds of stakeholders (e.g., programmers, software engineers,
and project managers). Explicit knowledge refers to knowledge
that is codified and stored in digital (or physical) artifacts.
There are two types of explicit knowledge, Structured and
Unstructured. We defined that structured data refers to data
high-organized and easily processed by a machine (e.g., rela-
tional database search). Conversely, unstructured data cannot
be processed using conventional tools. In our context, mostly,

unstructured data refers to text (e.g., requirements, system
logs, and source code) but could include audio and video,
for instance.

The Location theme characterizes where the necessary
knowledge might be found. For this theme, we identified two
options: External and Internal. An external source refers to
sources that are external to a given organization, such as a
repository and the literature. Many researchers in data-driven
ISE use repositories such as GitHub [16] for data mining, but
the literature is an important source of knowledge for ISE. For
instance, Hearty et al. [21], Perkusich et al. [45] and Freire et
al. [14] identified features for their proposed models, partially,
based on information collected from the scientific and grey
literature.

Internal sources refer to knowledge that is available within
an organization. It is the case for data produced during the
Software Development Lifecycle, Project Management, and
Knowledge Management activities. Given this, it is vital to
notice that there are cases in which the necessary data is
not readily available to solve de SE task at hand. In these
cases, the ISE designer must develop tools to collect such
data and integrate it them existing processes followed by
the organization or evaluate the possibility of transforming
existing knowledge into usable data for intelligent techniques,
which is discussed in what follows.

The Knowledge Transformation theme refers to transform-
ing knowledge that is available, but not ready to be used for
ISE. It is the case when we have unstructured or tacit knowl-
edge that we wish to use. In the case of unstructured data, it is
necessary to transform it into structured. We identified such as
text mining (e.g., Natural Language Processing) [28], the use
of software metrics [36], qualitative analysis (e.g., coding) [49]
and ontology [6] for this purpose. In the case of having tacit
knowledge, it must be transformed into explicit. This process



Fig. 2. Frequencies of Themes.

might transform tacit knowledge structured or unstructured. In
the latter case, it is necessary to transform it into structured.
For instance, Perkusich et al. [43] elicited knowledge from
46 Scrum experts through the Delphi method and an online
survey to construct a Bayesian network for assessing Scrum
projects.

IV. DISCUSSION

This section discusses the research questions (see Sec-
tions IV-A and IV-B) presented in Section II and the implica-
tions for research and practice (see Section IV-C).

A. ISE Knowledge Reuse
We used the thematic network presented in Figure 1 to

classify the studies and identify the trends on knowledge reuse
for ISE. Figure 2 presents the frequencies for each theme,
as they were extracted from the studies. In what follows,
we discuss each of the results for each of the basic themes
(represented as rectangles with rounded borders in Figure 1
presented in the thematic network.

For the theme Location, 36 (86%) studies used some form
of external knowledge source, while 42 (95%) used internal
sources. Regarding the studies that relied on external sources,
19 studies used data from a repository and 16, from the
scientific literature. Regarding the studies that relied on inter-
nal sources, 13 studies collected data from artifacts produced
during the Software Development Lifecycle, 26 from artifacts
produced by the Project Management Process, and only 1

from Knowledge Management Processes. The collected data
indicates that researchers when developing ISE solutions, look
for wherever places necessary to find data. Despite this, care
should be taken when deploying ISE solutions in practice,
because having different data sources raises the complexity in
operating and maintaining them.

For the theme Type, 16 studies used tacit knowledge in
the development cycle of the ISE solution, mostly (89%)
eliciting it from ten or fewer experts. For the development
cycle, we included a potential evaluation of the developed ISE
solution by humans. Therefore, we considered that studies that
developed expert systems such as Perkusich et al. [45], Odzaly
et al. [40] and data-driven studies that evaluated their solution
with humans (e.g., Chaves-González et al. [4]) equally. The
reasoning applied is that either way, the tacit knowledge of
humans was used to develop the ISE solution. It is essential to
notice that we did consider here human knowledge regarding
the intelligent technique itself (e.g., knowledge to define the
fitness function of a genetic algorithm), but only related to the
SE task at hand.

Further, 35 (83%) used only structured data, while 7 (17%)
used both types of data (i.e., structured and unstructured). For
instance, Hearty et al. [21] used only structured data (i.e.,
metrics and rules in the form of probability functions) to
build a Bayesian network to predict the velocity of an XP
team. Conversely, Lucassen et al. [28] presents a tool that uses
metrics (i.e., structured data) as indicators of a well-written
user story and processes user stories (i.e., unstructured data),
calculating a quality score for them.

Regarding the theme Knowledge Transformation, we ob-
served that the most popular form to transform tacit knowledge
to explicit is in the form of questionnaires such as done by
Perkusich et al. [43]. Further, regarding the transformation of
unstructured to structured data, we observed that the most
popular procedure is to use software metrics (28 studies).
For instance, Abouelela and Benedicenti [1] define a set of
metrics and use them to build a Bayesian network to predict
the velocity and delivered quality of an XP team. A few
studies used Qualitative Analysis (3) and Text mining (2). For
instance, Lucassen et al. [28] process text from user stories
using Natural Language Processing algorithms. Therefore, we
identify a pattern, in the evaluated studies, to use software
metrics as the preferred means for knowledge transformation.

B. Relationship between type of reused knowledge and applied
intelligent technique

We triangulated the results of our classification (see Sec-
tion IV-B with the data collected by Perkusich et al. [44]
regarding the types of intelligent techniques applied by the
studies. As presented in Figure 2, 18 studies focus on, nec-
essarily, data-driven solutions, this is the case for Search and
Optimization and Machine learning. The remaining intelligent
techniques might be applied as a result of eliciting expert
knowledge or exploring digital artifacts. For instance, it is
the case for Bayesian networks, which can be constructed
solely based on expert knowledge, available data, or both.
Therefore, as expected, if there is enough structured data,
any of the intelligent techniques presented by Perkusich et



al. [44] might be used. Unfortunately, in practice, most of the
artifacts produced by the software development process are
unstructured; the case for requirements, test cases, source code,
and system logs. In these cases, researchers have used tools to
process unstructured data extracting metrics (e.g., Chidamber
and Kemerer metrics [5]) from it automatically or processing
them using text mining algorithms.

In the cases of not having enough data, there are two
alternatives: (i) elicit data from humans or literature to identify
metrics or (ii) build knowledge-based systems. For the first
case, after identifying the metrics that are crucial to solve the
SE task at hand, it is necessary to develop tools to, ideally,
collect them automatically during software development or
project management activities. Given that the necessary data is
available, a data-driven intelligent technology such as Machine
Learning can be used to infer new knowledge or make predic-
tions, for instance. The second option is to extract knowledge
from experts and develop, for instance, an expert system using
a Bayesian network or a Rules-based system (e.g., production
rules). In this case, ideally, it is necessary to develop a tool
that collects the input automatically or from humans to infer
whatever is necessary (e.g., estimate effort for a given task).

C. Implications for research and practice

This study has several implications for research and prac-
tice. For research, we have mapped how knowledge is used
for ISE solutions and identified patterns on how the type of
reused knowledge relates to the applied intelligent technique.
The reported information might guide researchers to develop
ISE solutions having a more holistic view of their development
process. Despite this, the analyzed studies focus on supporting
decision-making, not having a high level of automation, using
the classification described in Feldt et al. [12]. Therefore, we
believe that there is a need to further refine the presented
thematic network by analyzing studies with higher levels of
automation. Further, there is a need for more studies to define
guidelines for researchers in building ISE solutions, through
the form of checklists, catalogs, taxonomies or reference mod-
els; especially, focusing on the early stages of developing an
ISE solution, which, usually, relies on evaluating the available
knowledge to solve the SE task at hand.

Also, this study showed that researchers, when building
ISE solutions, rely on publicly available repositories. The
implications for this point are twofold: first, it demonstrates
the importance of having data available to build ISE solutions,
and second, to be able to validate and compare ISE solutions
focusing on the same SE task.

For practitioners, this study shows how knowledge is reused
by ISE solutions and can be an inspiration for them to use
tools and participate in research that helps to make explicit
knowledge available. As a consequence, better ISE tools can
be developed that can, potentially, make them more efficient.

V. THREATS TO VALIDITY

This section discusses this study’s threats to validity follow-
ing the classification proposed by Wohlin et al. [52]: construct,
internal, conclusion, and external validity.

• Construct validity: we analyzed the studies following a
thematic analysis approach, in which multiple researchers
participated to avoid bias. Despite this, it is possible that
the resulting thematic network (Figure 1) and extracted
data (Figure 2) are not representative of the are due to
subjective bias.

• Internal validity: to assure credibility in our find-
ings, multiple researchers checked the extracted coding,
themes, and the data presented in Figure 2.

• Conclusion validity: since we classified the study to
identify patterns using the developed thematic network,
there is the risk that, since there is a threat to the
construct validity of the thematic network, it influenced
the extracted data and, consequently, our conclusions
regarding the relationship between concepts.

• External validity: Moreover, since the analyzed studies
focus on supporting decision-making, they do not repre-
sent all types of ISE solutions. Therefore, the constructed
thematic network might not be representative of ISE
solutions with higher levels of automation. Despite this,
we believe that including ISE solutions with higher levels
of automation might identify more basic terms for high
granular, but would not have impact middle-order themes,
since they follow from classic KM concepts.

VI. CONCLUSION

In this study, we explored patterns in developing ISE solu-
tions, focusing on knowledge reuse by analyzing 42 papers. As
a result, we developed a thematic network that relates the main
concepts in this topic. Further, we identified that researchers
use external and internal knowledge sources, and mostly rely
on structured data to develop ISE solutions. Despite this,
we showed alternatives, such as eliciting data from humans
and literature to identify metrics and build knowledge-based
systems (e.g., expert systems) when structured data is not
readily available to be used for solving a SE task.

The main limitation of the study is only having evaluated
ISE solutions that focus on supporting decision-making. Fur-
ther, the study also identifies several opportunities for future
work, including refining the thematic network by analyzing
ISE solutions with higher levels of automation and defining
guidelines for researchers to build ISE solutions, especially,
giving instructions on the early-stages process of an ISE
solution conceptualization.
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