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Abstract—Physical devices have been integrated with artificial
intelligence to create Cyber-Physical Systems (CPS). Multi-Agent
Systems (MAS) can provide pro-activity and autonomy using
agents, social organizations, and environment modeling by means
of artifacts. Usually, some works that use MAS for interfacing
physical environments employ agents accessing directly all the
available data of the environment, which could overload this
agent. This issue could be avoided if there were tools to facilitate
the integration of sensors and actuators as artifacts into the
physical environment. Therefore, the objective of this work is to
create physical artifacts capable of accessing hardware devices
from a physical environment to be used by agents in a MAS. As
the Oil & Gas industry demands robustness in its equipment and
an ability to do predictive maintenance, a case study including
MAS and CPS was developed and some tests were carried out
to validate the functioning of physical artifacts.

Index Terms—Physical Artifact, Physical environment, Oil &
Gas Industry

I. INTRODUCTION

In the last years, the agent approach has been switching
from simulated to physical applications where Multi-Agent
Systems (MAS) have been used to interact and control devices
working in dynamic environments [1] [2] [3] [4]. In general,
some approaches define four dimensions that guide a MAS
implementation: agency, environmental, organisational [5], and
interaction [6]. Agents interact in an environment according
to their implemented beliefs, desire, and intentions (BDI);
Artifacts provide operational functions and observable prop-
erties for agents, and they represent non-cognitive entities
situated in workspaces; organizational dimension models the
society notion and the collective norms of the agent’s behavior;
interaction dimension models the interaction between the three
dimensions (agent, environment, and organization). In parallel,
when connecting computing elements to physical elements,
such as embedded computers connected in a network, it main-
tains a system known as Cyber-Physical Systems (CPS) [7].

When considering physical environments, rarely they are
explored considering other dimensions aside from the agent
one. In an agent application in the oil domain, only the agency
dimension is considered [8]. The agent performance depends
directly on the amount of information that an environment
has to offer. There is an approach called ARGO that allows
agents to collect data directly from sensors and process them
as beliefs in their Belief-Desire-Intention (BDI) reasoning
cycle [9]. This process requires reading all the sensors during
every cycle execution even if the data are not necessary
for the agent, at that moment. Some filtering techniques are
available, but they can only be applied after the data has been
collected [10].

Initial laboratory experiments for BDI agents in a Web-of-
Cell context [11] and a proposed model of many resources
of the factory following the A&A [1] are works that consider
physical environments using the notion of artifacts. However,
both implementations are domain-specific. Artifact is a suit-
able notion for agents to interact with physical objects in a
CPS. When MAS employs artifacts, agents are able to access
the physical environment according to their need. It avoids
the agents to collect unnecessary data. However, traditional
agent-oriented programming languages do not provide direct
approaches to access physical environment and they are lim-
ited to a particular application domain.

Some initiatives, like the Predictive Maintenance Program
(PMP) reveal the importance of collecting data from sensors
in the environment to perform predictive maintenance [12].
This importance can also be seen in the Oil & Gas industry
because predictive maintenance can minimize economic and
environmental losses from poor preventive maintenance.

The objective of this work is to provide physical artifacts
for interfacing hardware devices from a physical environment
to be accessed by MAS in a CPS. In order to develop
theses Physical Artifacts, it will be created an extension of
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CArtAgO artifacts that communicates with microcontrollers
using serial interfaces. A case study will be presented in a
scenario considering a physical engine as an artifact in the
Oil & Gas field.

This paper is organized as follows: Section 2 presents the
theoretical background to understand the idea; Section 3 shows
the methodology used to implement Physical Artifacts, Cen-
tralized Layer, and the scenario of study; Section 4 presents
the related works and the Section 5 concludes this work.

II. THEORETICAL BACKGROUND

Multi-Agent technologies provide tools for distributed con-
trol, decentralization, adaptation, and openness. These char-
acteristics can be found in four MAS domains: (i) agent-
oriented programming languages, (ii) interaction languages
and protocols, (iii) environment frameworks, architectures and
infrastructure, and (iv) organizational systems. These perspec-
tives lead MAS to the four dimensions of development, such
as described by JaCaMo approach [13] and complementary
works [6]: organization, where rules and missions are defined
to ensure the society behavior; agent, where BDI agents
are implemented; and environmental, responsible to integrate
the external environment and agents using artifacts with
operational functions; integration, that represents program
languages responsible to ensure integration between agents,
artifacts and organization rules.

In the Multi-Agent field, artifacts are Activity Theory and
Distributed Cognition-based computational devices existing in
environments and capable of performing a particular function
or service that agents can explore. Regarding the agent/artifact
relationship, there are two different types of external objectives
attached to an artifact: (i) use value, where external goals
head the artifact selection by agents; and (ii) use, which is
associated with agent’s internal goals [14]. Therefore, three
distinct aspects characterize the relationship between agents
and artifacts: agents can select, use, and construct/manipulate
artifacts, where the latter occurs when the artifact does not
exist and needs to be created.

Artifacts are composed of four elements [13]: User Interface
(UI), Operating Instructions (OI), Function, and Structure
and Behavior. User Interface (UI) is a set of operations that
agents can call to use the artifact; Operating Instructions (OI)
describe how the artifact should be used to access its func-
tionality; Function is the purpose of the artifact’s existence;
and Structure and Behavior are the internal characteristics of
artifacts that define how it is implemented [15].

For programming the environmental dimension for agents,
there is the CArtAgO framework, which is based on three
main pillars. The (i) Agent Body is the part of an agent where
artifacts represent some behaviors that it can access and control
but it is not part of their internal reasoning; (ii) Artifacts
are the components identified in a Workspace that agents or
any part of their body can interact with; A (iii) Workspace
is used to define the desktop topology. Artifacts and Agent
Bodies are stored in these Workspaces, where the relation
between them is established. Then, artifacts must be within

a specific Workspace so that agents can use. Consequently,
events generated by these artifacts can only be seen by agents
living in the same Workspace [16].

Using artifacts that are only accessible within their
workspaces may not represent the best approach to be em-
ployed in dynamic scenarios since it restricts agents that are
not originally from these workspaces to access the environ-
ment’s resources. In dynamic scenarios agents can come and
go freely and they can compete for each available component.
Moreover, the environment should be open for any entity
that intends to enter it. However, even CArtAgO, and other
languages and frameworks that consider the development of
artifacts do not provide a distributed and open characteristics
for environments.

III. METHODOLOGY

In CPS, the use of environmental objects by computational
entities is an essential factor that helps these entities to
adapt to environments with dynamic characteristics. Besides,
these environments are increasingly demanding automation,
pro-activity, and cognition. While the agents layer promotes
computational intelligence and the Organization layer pro-
motes social rules, the Artifacts layer encourages the mod-
eling of objects from the external environment. Although the
environment layer is ideal for representing objects from the
external MAS environment, there are approaches that still
transfer this responsibility to agents. Therefore, this work
presents a solution to apply MAS in physical, dynamic, and
intelligent environments using Physical Artifacts to connect
MAS artifacts to ATMEGA microcontrollers. A scenario will
be presented with instrumented engines in the Oil & Gas
industry with a focus on predictive maintenance implemented
in MAS with Physical Artifacts.

A. Oil & Gas Engine Scenario

When it comes to equipment maintenance, the natural
approach is prevention, which aims to replace defective com-
ponents or parts from time to time. However, this type of
maintenance can be costly from a financial and environmental
point of view. From an economic point of view, the periodic
replacement of a specific component can make the process
more expensive; from the environmental point of view, the
equipment may present failure situations before the replace-
ment period and cause accidents to the environment. On the
financial side, prediction is better than prevention because
predicting that the equipment’s life cycle will be longer than
usual can avoid spending on unnecessary maintenance. On
the environmental side, predicting that equipment is being
damaged can result in support before it is damaged. Following
this idea, the Oil & Gas industry benefits in the economic and
environmental fields with predictive maintenance.

The Strategic Petroleum Reserve (SPR) - that is an Oil
emergency fuel storage unit - is composed of several engines
that supply power to the pumps that move a large amount
of oil in the unit. As the SPR does not have a continuous
operation, the motors do not remain connected at all times,



which hinders the temporal precision that is necessary to carry
out preventive maintenance. Therefore, prediction techniques
on engines such as vibration analysis, thermography, and oil
analysis can be useful to reduce maintenance costs and prevent
accidents. In addition to sensors for analysis, the motors have
actuators that define their operation and can also be activated
intelligently to minimize the risk of equipment degradation.

As a motivation to use prediction as an approach, the
Predictive Maintenance Program (PMP) proposed in 1994
sets targets for reducing maintenance costs by 20% by the
third year of operation of this PMP [12]. With PMP, it
is possible to offer accuracy to equipment operators as to
when intervention should occur. In this case, expenses with
unnecessary maintenance and the risk of accidents would be
reduced.

B. The Physical Artifacts

A Physical Artifact is an extension of the standard MAS
Artifact capable of integrating with a physical Device in
the environment to collect its sensor data or send actuation
commands to actuators. For Physical Artifacts, a Device is an
object in the physical environment composed of a microcon-
troller with sensors or actuators. Besides, a Device must have
communication functions between the microcontroller and
another external computational entity to provide readings on its
sensors and receive commands for its actuators. Therefore, to
become a Physical Artifact, an object in the physical environ-
ment must assume the characteristics of a Device. In this case,
the Operation Functions of this Artifact can be implemented
to read the sensors and operate directly on the actuators of
this Device. For example, in the scenario of engines in the Oil
& Gas industry, it is necessary a microcontroller in them that
sends the data from the vibration sensors, thermography and
oil to this Artifact.

To create Physical Artifacts, the Artifacts implementation
of CArtAgO framework was employed. We chose CArtAgO
because it is used to create the environmental dimension of
the JaCaMo framework for Jason and because both CArtAgO
and Jason are widely used in the academia. In the hierarchical
structure of CArtAgO, the Physical Artifact is a child class of
the Artifact class. Therefore, physical artifacts can also imple-
ment Observable Properties and Operations. It is expected with
this integration to allow MAS integration with CPS without
overloading agents.

Once incorporated as CArtAgO Artifacts, Physical Artifacts
must be able to communicate with Devices in the physical
environment. For this, the serial interface Javino [17] was
employed, which is a library that implements a protocol
for exchanging messages between low-level hardware (mi-
crocontrollers) and high-level software (Java). The choice for
Javino is justified because it is a serial communication library
that handles error detection, unlike libraries based on serial
ports, such as RxTx and JavaComm. The messages exchanged
between hardware and software follow a format composed of
3 fields: 2 bytes of a pre-scope that is used to identify the
beginning of the message, 1 byte to represent the size of the

main content of the message, and finally, 256 bytes containing
the content of the message to be passed. The loss or collision
of information from the past message is verified through the
pre-scope field and the size field: the receiver validates the
content in the pre-scope; if the preamble is correct, the size
field helps to verify that the message arrived at the correct
size. If all verification is validated, the message is used;
otherwise, the message is discarded. Javino offers three modes
of operation: Send, Request, and Listen modes. The Send
mode provides simplex message transmission from software
to hardware; the Request mode offers half-duplex message
transmission (the hardware responds to the message sent); the
Listen mode allows the transmission of simplex messages
from hardware to software. Another factor that justifies the
choice of Javino is the possibility that it is designed to be
multi-platform and can be used in ATMEGA, PIC, or Intel
Families microcontrollers.

The use of Javino as a connection bridge must be analyzed
both on the side of the abstraction (Physical Artifact) and
the embedded hardware (Device). On the Physical Artifact
side, the Javino implementation class for high-level software
is added as an attribute to the PhysicalArtifact class and
instantiated directly in the constructor. All child classes of
PhysicalArtifact must define, via abstract method, the fol-
lowing values: Serial Port that will be used to connect the
artifact to the microcontroller (method String definePort()),
a Number of Attempts to send a message (method int
defineAttemptsAfterFailure()), and Timeout in milliseconds
between one attempt to send a message and another int
defineWaitTimeout()). In addition, the class PhysicalArtifact
has the implementation of the String read() method, which
performs reading from a physical device in Javino Listen
mode; and also has implementation of the void send (String
message) method, which sends messages in Send mode to the
microcontroller. Figure 1 shows the architecture of Physical
Artifacts in a MAS communicating with a physical environ-
ment.

Fig. 1. The architecture of a MAS integrated with a physical environment
showing only the Agent level and the Environment level. At the Environment
level, Standard Artifacts are together to Physical Artifacts that connects to a
Device in the physical environment using Javino middleware.



C. Engine Scenario Prototype

To represent the engine scenario in the Oil & Gas industry
and test the Physical Artifacts approach, a prototype of an
instrumented engine with a sensor was created and connected
to a MAS that will control it, as shown in the Figure 3. The
physical prototype consists of a fan to represent the motor
actuator, a temperature sensor, and LEDs that indicate the state
of operation of the motor. An Arduino Mega was used as
a microcontroller that contains all the sensors and actuators
of the prototype. Besides, Arduino Mega is responsible for
exchanging messages with MAS. This physical configuration
configures the physical prototype as a Device that can be used
by a Physical Artifact.

The engine designed in the prototype has the following
operations: turn on, off, block use, unlock use. In particular,
the blocking operation is used by operators when the engine
is in an abnormal condition and should not be operated. In
this prototype, the motor has three possible states: Ready
to be Operated, represented in the first lower frame of the
Figure 3, where the prototype is turned off and unlocked;
On, represented in the second lower frame of the Figure 3
(represented by the connection of two of the three LEDs);
Blocked, represented in the third lower frame of the Figure 3,
where the motor is blocked for use (indicated by the red led).

On the Arduino side, the Javino library is imported and
used as a support in sending and receiving messages to the
Physical Artifact. The Arduino was programmed to send data
from the temperature sensor whenever a message arrives from
the Artifact that requests it. In addition, the Arduino operates
the engine whenever the Physical Artifact requests one of the
available forms of operation.

On the MAS side, the Motor Artifact described in Figure 2
was created that extend a Physical Artifact. In this Motor
Artifact, operations are implemented to read the temperature
sensor, turn on, off, lock, and unlock the motor. In addition,
an Agent Manager was created in MAS to control operations.
For this, this Agent creates the Artifact Motor and starts a
basic cycle of activities to test all the operations provided by
Artifact. In the upper left corner of Figure 3, the running agent
log is displayed.

When modeling the class diagram in Figure 2, a repre-
sentation of the engine for the system with the respective
registration information can be seen. Besides, a model of
sensors and sensor measurements was created to record the
data in a MySQL database. With this, an application was
developed to allow monitoring at the level of the engine
operator so that it can visually diagnose the engine situation.
In the upper right corner of the Figure 4, is showed a graph
with temperature measurements of the environment where the
prototype is located. These measures is in degrees Celsius unit
and are provided by the Physical Artifact that reads the engine.
The variation in the graph can be analyzed by an operator in
the field of work and serve as a variable in the generation of a
prediction diagnosis, for example, associating that the increase
in temperature crossed with other data, means loss of engine

life.

Fig. 2. Class diagram of the model made to represent the Engine scenario.

Fig. 3. Engine scenario in the Oil & Gas industry in execution: Agent
Manager performing control and monitoring of the Physical Artifact, and
prototype of the engine connected to the MAS.

D. Experimental Evaluation

From the elaborated scenario, tests were done to validate the
functioning of Physical Artifacts in the physical environment.
For this, the requirements of the framework were raised to
support the experiments: (i) the Physical Artifact must be able



Fig. 4. An application that displays a line graph with temperature measure-
ments of the environment in which the prototype is based on time, in degrees
Celsius, provided by the Physical Artifact. The X-axis is expressed in hours,
minutes, and seconds. The temperature measurement is an example, which
could be replaced by measurements from other sensors.

TABLE I
THE CASE STUDY DESIGN

Design Description
Objective Analyze the functioning of the MAS Physical Artifact in

a physical setting.
Case The Physical Artifact will be connected to an oil and gas

engine that must be monitored and controlled to perform
predictive maintenance.

Questions Is the Physical Artifact capable of sending and receiv-
ing information through Javino? Do physical Artifacts
respond to agents’ requests in up to one second? Do
Physical Artifacts stay running for a minimum of 24
hours?

Method Observation method with a low degree of researcher
interaction.

to send and receive information using Javino; (ii) the Physical
Artifact must be able to respond to agents’ requests within one
second, which is considered acceptable within the high-level
programming field; (iii) the Physical Artifact must be able to
function in a 24-hour period in the worst case.

Based on these premises, routine tests were carried out,
where the agent requested the operations to start, stop, restart,
lock, and unlock the engine. At each operation, the agent
requests data from sensors ten times. It was concluded that
the commands from the Artifact work normally. In addition, a
throughput test was carried out between the agent’s command
and the execution of the Artifact, and it was observed that the
waiting time is below one second. Finally, the Agent Manager
was kept in operation for 24 hours, where it was observed
that the Artifact continues to respond with a failure rate of
0%. Table I shows the case study analysis of this scenario and
Table II shows the results from tests.

IV. RELATED WORKS

Physical environments have been demanding computational
systems more proactive, autonomous, and adaptable to solve

TABLE II
EXPERIMENTAL EVALUATION RESULTS

Test Description Result
The connection between
Physical Artifact and
Microcontroller

Percentage of success (%)
when exchanging data with the
microcontroller

100%

Physical Artifact Re-
sponses to the Agent

Maximum time (milliseconds)
that an Agent takes to receive
data from the Artifact

1000ms

Physical Artifact execu-
tion time

Checks whether the Physical
Artifact remains running for
24 hours

Yes

increasingly complex problems. The community has been
developing some works using MAS in industry as an attempt
to increase pro-activity and autonomy in the production chain.
There is a work in the Oil & Gas industry which uses
BDI agents to filter alarms that are generated by different
conditions [8]. This filtering considers that an operator is
not able to observe a broad set of alarms and act on them.
Besides, excessive alarms can hide an important occurrence,
and therefore there must be an intelligent system capable of
filtering this data. For this, an alarm management system was
developed using agents able of reading sensors and act on
devices. However, agents were programmed directly connected
to environments — in case of agents responsible for only one
sensor or only one actuator — without using the notion of
artifacts. As a result, agents could face bottlenecks in their
reasoning due to the need to be continuously collecting data
without necessarily using it.

ARGO [9] is a customized Jason agent’s architecture that
allows interactions with physical devices such as sensors and
actuators. For this, a serial interface between microcontrollers
and Java programming language was developed to collect all
data from the environment to be added to the agent’s belief
base. The generated data flow overloads ARGO agents and
filtering techniques [10] can be employed to select which
perceptions the agent has to focus on. However, the sensors
and actuators are available only for a specific MAS and they
are not shareable. Besides, ARGO may experience a decrease
in computational performance as the amount of information
to be perceived increases. Both works could benefit from
an approach that exposes sensors and actuators as shareable
resources in the IoT.

Given the overload on the agents and aiming to take ad-
vantage of the MAS environmental modeling resources, some
works developed solutions applied to physical environments.
In the energy sector, a Web-of-Cell (WoC) approach [11] uses
MAS to help design and test distributed solutions. For this, the
Jason framework is used to develop BDI agents; environment
modeling is done using the CArtAgO framework, which allows
creating a bridge between the agent layer and the environment
layer. The communication between the modeled environment
and the physical environment was done by the communica-
tion infrastructure of the intelligent and configurable network
laboratory (SYSLAB). However, this communication bridge is



strongly linked to the SYSLAB structure, which still does not
help in the mission to facilitate implementations with MAS
that involve environmental modeling.

MAS heterogeneity has been increasingly required in chal-
lenges that integrate CPS with environmental resources. In
the Industry 4.0 concept, equipment and sensors must be
integrated into the same system using the most diverse com-
munication protocols. Camel Artifact [1] is a component
that uses Java-based message routing and mediation tech-
nology (Apache Camel) in artifacts. A CamelArtifact makes
it possible to transform physical devices into Artifacts in a
more generic way than the WoC approach because several
communication protocols can be used to create the bridge
between the physical and the computational environment. For
this, routing is done that directs the messages from a device
to the specific artifact. However, although this work does not
depend on a particular protocol of communication between
physical devices and MAS, there is still a strong dependence
on Apache Camel technology that guarantees message routing.
Perhaps, an approach that integrates artifacts with microcon-
trollers can offer even more heterogeneity because it will allow
configurations of these devices more directly and at a low
level. If these artifacts were shareable between different MAS,
the collected data would become resources of the environment
that agents from any MAS could exploit.

V. FINAL CONSIDERATIONS

Normally, MAS applications using physical environments
for CPS overloads agents with data coming from sensors and
actuators. Besides, when they are not overloaded, the connec-
tions to these kind of artefacts are bounded to the provided
solution. Based on that, this work presented an extension of
CArtAgO for providing Physical Artifacts without generating
overload to agents using a serial interface for communicating
with heterogeneous microcontrollers.

In order to create Physical Artifacts, several technologies
were employed such as Jason and CArtAgO frameworks,
the Serial Interface Javino, and microcontrollers. CArtAgO’s
Artifact was extended to allow Javino to interact with sensors
and actuators connected to microcontrollers. The proposed
extension was tested in an engine scenario for Oil & Gas
domain. The results showed that our approach is suitable for
designing CPS using MAS and Physical Artifacts.

A future issue to be considered is that the fact that artifacts
to be accessible only within their workspaces can make it
challenging to implement in dynamic scenarios because this
restricts agents that are not from this MAS. If artifacts could
be accessed by agents from another MAS, it could be possible
to create a multi-purpose layer of physical artifacts to be
consumed by different agents. As future works, we intend to
create a shareable layer of artifacts to be used along with the
Internet of Things. Agents from different MAS, or any other
technology, could compete for Physical Artifacts. Besides, we
will extend the scenario of motors for Oil & Gas to allow a
middle layer capable of managing plans and rules for some
situations when using those motors.
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