
A Co-evolutionary Method Between Architecture
and Code

Tong Wang∗, Bixin Li†,Lingyuan Zhu†
∗School of Computer Science and Technology, Anhui University of Technology, Maanshan, China

†School of Computer Science and Engineering, Southeast University, Nanjing, China

Abstract—Code evolution and architecture evolution are re-
spectively related to functional requirements and non-functional
requirements. According to the type of requirements, architects
or developers evolve one of them. That causes the unevolved
one is inconsistent with the evolved one. To solve the problem
of inconsistency, we propose a co-evolutionary method to keep
the consistency between architecture and code. In our method,
two evolutional scenarios are considered, including co-evolving
code based on evolved architecture and co-evolving architecture
based on evolved code. In the former method, we first convert
architecture change to code change based on mapping rules, then
modify code to implement the corresponding code changes. In the
latter method, we first modify the file dependency graph based on
mapping rules, then recover architecture based on the modified
file dependency graph. We conduct our experiments with eight
open source projects, the experimental results indicate that our
method can keep the consistency in the two evolutional scenarios,
so that, our co-evolutionary method between architecture and
code is effective.

Index Terms—Software architecture, code source, co-evolution

I. INTRODUCTION

In the software life cycle, architects and developers fre-
quently evolve code and architecture to keep competitiveness
and vitality of software [1]. Code is the actual implementation
of software, so developers evolve it for meeting new functional
requirements, such as new functions, high performance, and
so on. Architecture is the high abstraction view of software,
so architects evolve it for meeting new non-functional require-
ments, such as testability, maintainability [2], and so on [3].

According to the content of new requirements, developers
and architects decide which one should be evolved. When
developers or architects evolve code or architecture, another
one is not consistent with the evolved one. The problem
of inconsistent may cause the unevolved one to mislead
developers and architects. To solve the problem, many co-
evolutionary methods are proposed.

There are mainly four types of evolutionary methods, ar-
chitecture recovery [4], code automatic generation [5], multi-
view software evolution approach [6], and information fusion
approach [7]. However, not all the above methods have taken
all evolution scenarios into consideration, resulting in the
limitation of effectiveness.

For resolving the above problems, we propose a co-
evolutionary method to keep the consistency between architec-
ture and code. The contributions of the paper are as follows:

DOI reference number: 10.18293/SEKE2020-151

• The method supports the two-way co-evolution, that is,
it supports co-evolving code base on evolved architecture
and co-evolving architecture base on evolved code.

• More types of co-evolutionary actions are taken into con-
sideration to improve the effectiveness of co-evolution.

• We implement our method on eight open source projects,
the experimental results indicate that our method can keep
the consistency between code and architecture effectively.

The paper is organized as follows. Section II introduces
the two-way co-evolutionary method. In Section III, we im-
plement our method on open source projects to analyze the
effectiveness of our method. Section IV introduces related
work. Section V draws the conclusion and introduces the
future work.

II. OUR METHOD

Code and architecture belong to different levels of granu-
larity. According to new requirements, one of architecture and
code will be evolved first. According to the type of the evolved
object, our method is divided into two parts, the method of
co-evolving code based on architecture and the method of co-
evolving architecture based on code.

A. A Co-evolutionary Method of Code based on Evolved
Architecture

Architecture is represented by CDG, and CDG consists of
component nodes and dependency edges between nodes, so
architecture changes are reflected by component node changes
and dependency edge changes [8]. Code changes determine
file changes and dependency changes, that is, code changes
are reflected by FDG. So the relation between architecture
and code can be converted to the relation between CDG and
FDG.

To locate which parts of FDG need to be co-evolved, we
propose mapping rules to convert CDG changes to FDG
changes, then modifying code to implement these FDG
changes.

Edge changes of CDG contain the following types: adding
an edge, deleting an edge, increasing the weight of the edge,
and reducing the weight of the edge.

Adding an edge indicates that some functions are invoked
by another component, which can avoid the duplication of
functions in multiple components. The corresponding code
change is adding a dependency between files contained in the
involved components.

Increasing the weight of the edge means that several func-
tions are enhanced, and the corresponding code change is to
increase the dependency intensity between the corresponding
file sets.

Adding an edge is a special situation of increasing the
weight of the edge, that is, the dependency intensity is
increased from 0.

Deleting an edge means the relation between components
is removed. The corresponding code change is deleting the
corresponding dependency between corresponding sets of files.

Reducing the weight of the edge indicates that several
functions should be reduced to avoid mutual influence. The
corresponding code change is to find the corresponding file
sets, then the dependency which has the lowest dependency
intensity is deleted.

Deleting an edge is a special situation of reducing the weight
of the edge, that is, the dependency intensity is reduced to 0.

According to the above analysis, edge changes are related
to dependency intensity. Here, we introduce the definition of
dependency point.

Dependency point: If file A has a dependency with file B,
and the dependency is caused by that statement a of file A
has a dependency with statement b of file B, then statement
a and statement b are the dependency points.

We use slice technology detect the direct and indirect effects
caused by dependency points. Program slicing is an important
technology to analyze programs [9]. The core concern is the
slice criterion which is usual a tuple <s,v>, herein, s means
the location and v means a variable or a set of variables that is
defined or used in s. The slice of a program about a criterion
is the set of statements that potentially have influenced on v
of s or be affected by v of s [10]. The dependency point as
the slice criterion, then we use slice technology to extract the
related statements.

Node changes of CDG contain the following types: adding
a component-node, deleting a component node, merging com-
ponent node, and splitting a component node.

Adding a component node indicates that the software needs
to be added new functions where the corresponding code
change is adding highly cohesive files. These highly cohesive
files refer to increase the set of relevant files rather than the
isolated and fragmented files. A new component indicates a
new function, however, we cannot get the detail of code based
on CDG, so it is implemented by adding a set of files, then
the code is developed based on the detail of functions.

Deleting a component node indicates that a function needs
to be deleted where the corresponding code change is deleting
all files contained in the involved component.

Merging component nodes represent integrating related
functions of the software, and the corresponding code change
is increasing the dependency intensity between the correspond-
ing sets of files. The higher dependency intensity indicates that
the two sets of files can be clustered into a new component.

Splitting a component node indicates that the functions of
the component need to be refined. The corresponding code

change is splitting the set of files contained in the involved
component into two sets.

This operation contains two steps, splitting a set of files
into two sets of files, then reducing the dependency intensity
between the two sets of files.

We split the set of files based on the loss function. The loss
function is a function that maps random events or their related
random variables to non-negative real numbers to represent
the “risk” or “loss” of the random event. The coupling and
cohesion are the important metrics for software, so we define
the loss function based on cohesion and coupling as shown in
Formula 1.

L(θ, f) = α ∗D(f) + β ∗ S(f) (1)

In Formula 1, L(θ, f) is the loss function, θ represents
architecture change, f indicates a splitting scheme, D(f)
shows the impact of the splitting scheme on cohesion, S(f)
remarks the influence of the splitting scheme on the coupling,
and α and β are the weights of cohesion and coupling.

Formula 1 is refined to Formula 2.

L(θ, f) = α ∗
∑
p∈N

Dp(fp) + β ∗
∑

p,q∈N

S(f)(fp ̸= fq) (2)

In Formula 2, N represents the files contained in the split
component. f indicates a splitting scheme for these files N .
p and q are two files of N , fp represents the set to which
the split file p belongs, and Dp(fp) shows the loss resulting
from splitting p by f , which is inversely proportional to the
cohesion of the divided set of files, and S(fp ̸= fp) remarks
the loss resulting from the different belonging of p and q,
which is proportional to the coupling of the new sets after
division.

The weight of the dependency edge is proportional to the
dependency intensity. When the dependency intensity is low,
the weight is low, that is, the related two files can be classified
into different sets to obtain the minimal overall loss. The
algorithm is shown in Algorithm 1.

B. A Co-evolutionary Method of Architecture based on E-
volved Code

Architecture is a high abstraction view of FDG, and FDG
reflects the attributes of files and the dependencies between
files. So, the impact of evolved code on architecture depends
on whether the evolved code changes the files or the depen-
dencies between files. When the evolved code does not change
files, architecture does not need to be evolved, otherwise,
architecture needs to be modified based on code change. In
this paper, we only need to consider the latter situation.

The method consists of three steps: (1) Obtaining code
change by using a change detection method; (2) Modifying
FDG based on code change; (3) Recovering architecture based
on the modified file dependency graph.

We propose mapping rules from code change to FDG, then
according to code change, we modify FDG based on mapping
rules. Code changes can be divided into two types: edge
changes and node changes. The following types of changes

Algorithm 1 The algorithm of calculating the approximate
optimal solution of loss function
Input:

let CDG be the component dependency graph
let FDG be the file dependency graph
let req be the code change

Output:
let result be the divided set of files

1: Function partition(CDG,FDG, req)
2: node← findNode(CDG, req.comp)
3: k ← req.comp
4: /*Construct the local dependency graph named ldg formed by the files contained in

the split components */
5: ldg ← findLocalDG(FDG,node.files)
6: /* Combine the outgoing and incoming edges of nodes in the graph named ldg to

form an undirected dependency graph*/
7: udg ← transfer(ldg)
8: result← preclassify(udg, k)
9: /*add label nodes according the pre-classification result*/

10: addLabelNodes(udg, s1, s2, ..., sk, result)
11: curNum← 0
12: while curNum < k do
13: /* Renaming two label nodes with the largest weight by S and T respectively*/
14: < S, T >← renameLabelNodeWithLargestWeight(udg, s1, s2, ..., sk)
15: cutEdges← mincut(udg,< S, T >)
16: < n|n ∈ S, n|n ∈ S >← restorePartition(udg, cutEdegs)
17: if n|n ∈ S then
18: recordPartion(newComps, result)
19: return newComps
20: else
21: removeNode(udg, n|n ∈ S)
22: addPartition(newComps, n|n ∈ S)
23: curNum = curNum + 1
24: end if
25: end while
26: return newComps
27: Procedure mincut(udg,< S, T >)
28: cutEdges← Ø
29: maxflow ← 0
30: while findAugPath(S, T) = true do
31: maxflow ← maxflow + maxFlowByDfs(S, T)
32: end while
33: cutEdges← findCutEdgeByBfs(S, T)
34: return cutEdges
35: Procedure preclassify(udg, k)
36: /* The sum of weight of edge of each node is calculated */
37: Emap← calWeight(udg)
38: /* The first k nodes with the maximum weight are selected as central node */
39: centers← findKthNode(map)
40: disArray ← Ø
41: curNum← 0
42: while curNum < k do
43: < center, node, dis > = calDis(udg, centers)
44: curNum+ = < center, node, dis >.size
45: disArray = disArray ∪< node, center, dis >
46: end while
47: result← Ø
48: for each node ∈ udg.nodes do
49: /* The sum of weight of edges belongs to the node is calculated as totalW*/
50: totalW = calWeight(udg, node)
51: disMap← Ø
52: for each center ∈ centers do
53: dis← findDisWithNodesBelongCenter(disarray, center, node)
54: disMap← disMap∪ < center, totalW − dis >
55: end for
56: /*Find the target center with the minimum distance*/
57: targetCenter ← findTargetCenter(disMap)
58: result← result∪ < node, center >
59: end for
60: return result

are related to nodes. In this paper, we use a multiple-level
change detection method to extract changed code [11].

Adding a file corresponds to adding a file node in FDG. The
statements belong to the added file are the slice criteria, and
we obtain which files have dependencies with the new file,
then we add related dependency edges between the added file
node with other file nodes.

Deleting a file corresponds to deleting a file node from FDG,
and its related edges are deleted.

The following types of changes are related to edges.
Increasing dependency intensity between files corresponds

to increasing the weight of the edge, and the weight of the
edge is assigned based on the dependency intensity.

Adding a dependency between files corresponds to adding
an edge between two file nodes.

Reducing dependency intensity between files corresponds to
reducing the weight of the edge, and the weight of the edge
is assigned based on the dependency intensity.

Deleting a dependency between files corresponds to deleting
a dependency edge between two file nodes.

After modifying FDG, we use cluster methods to obtain
new architecture based on modified FDG. In this paper,
we adopted a cohesive hierarchical clustering method [12].
This clustering method initially treats each file in the file
dependency graph as a cluster, and then continuously merges
the clusters with a small distance between clusters, and updates
the distances between the new clusters and other clusters. The
algorithm is shown in Algorithm 2. Finally, we obtain new
architecture based on the evolved code by implementing the
above algorithm.

III. EXPERIMENTS AND EVALUATION

A. Experiment Setup

In the section, we conduct experiments to evaluate the
effectiveness of our method. We conduct our method with
eight open source programs to answer the following research
questions.

RQ1: is the co-evolutionary method of code based on
evolved architecture effective?

RQ2: is the co-evolutionary method of architecture based
on evolved code effective?

We randomly selected eight open source projects as the
experimental cases, and these projects contain Java projects,
C projects, and C++ projects. The information about these
projects is listed in Table I.

TABLE I
THE INFORMATION ABOUT EXPERIMENTAL CASES

Project Evolution process Language LOC

Apns 0.1.5→0.2.0 Java 3K
La4j 0.5.0→0.5.5 Java 9K
AssertJ 3.2.0→3.3.0 Java 19K
GoogleMock 1.5.0→1.6.0 C++ 16K
Filezilla 3.30.0→3.31.0 C++ 128K
Lua 5.0.0→5.0.1 C 11K
Libev 1.3.2→1.4.8 C 25K
Bash 4.4.12→ 4.4.18 C 103K

Algorithm 2 The hierarchical clustering algorithm
Input:

Let fg be the file dependency graph after evolution
Let reqs be the code change requirements
Let compLocsb be the collection of the lines of code for every components
Let locb be the total lines of code before evolution

Output:
Let cg be the component graph after evolution

1: Function clustering(fg, reqs, compLocsb, locb)
2: cg ← clone(fg)
3: nb ← size(compLocsb)
4: /* Calculate the number of components before evolution*/
5: loca ← locb
6: /* Calculate the expected number of components after evolution as stop condition*/
7: stopc← generateStopCondition(cg, reqs, compLocsb, locb, nb)
8: na ← nb

9: while na > stopc do
10: /*Find the edge with min distance from component diagram*/
11: < src, dest >← findMinDPair(cg)
12: merge(cg,< src, dest >)
13: na ← na − 1
14: end while
15: return cg
16: Procedure generateStopCondition(cg, reqs, compLocsb, locb, nb)
17: averageb ← locb/nb

18: for each req ∈ reqs do
19: if reqinstanceofAddComp then
20: loca← loca + averageb
21: else
22: if reqinstanceofRemoveComp then
23: loca ← loca − compLocb.get(req.comp)
24: end if
25: end if
26: end for
27: if loca ̸= locb then
28: stopc← loca/averageb
29: end if
30: return stopc
31: merge(cg,< src, dest >)
32: /* Find the node whose id is src from component graph remove the graph*/
33: nodeSrc← findNode(cg, src)
34: nodeDest← findNode(cg, dest)
35: inEdgeSrc← findInEdges(cg, src)
36: outEdgeSrc← findOutEdges(cg, src)
37: inEdgeDest← findInEdges(cg, dest)
38: outEdgeDest← findOutEdges(cg, dest)
39: nodeSrc.name← nodeSrc.name + nodeDest.name
40: inEdgeSrc← inEdgeSrc ∪ EdgeDest
41: outEdgeSrc← outEdgeSrc ∪ EdgeDest
42: cg ← cg − nodeDest
43: /*Remove the cluster named nodeDest from component graph*/

In our experiments, we take actual history versions as
experimental cases. Vb and Va are two software versions before
and after evolution. The actual code and actual architecture
of Vb are respectively denoted in Vb c and Vb a. Similarly,
the actual code and actual architecture of Va are respectively
denoted in Va c and Va a.

B. Results and Evaluation

RQ1: Is the co-evolutionary method of code based on
evolved architecture effective?

We conduct the following two experiments to analyze
the effectiveness of our method: (1) Is the co-evolved code
consistency with the actual architecture after evolution? (2)
Is the co-evolutionary content of co-evolved code consistency
with the actual code changes?

The first experiment is that, we analyze the consistency
between the actual code Va c with the co-evolved code which
is obtained by using our method base on Va a.

Code and architecture belong to different granularity levels,
and they cannot be compared directly. We measure the effec-

tiveness of our method based on architectural similarity. The
details of the experiments are as follows:

• Co-evolving code by using our method to obtain the new
FDG.

• Recovering architecture based on the new FDG to obtain
the new architecture.

• Calculating the architectural similarity between the actual
architecture and the new architecture.

We use component similarity to assess the similarity be-
tween the actual architecture and the new architecture. It is
calculated as Formula 3.

ComSimilarity(Ci, Cj) =
|Fi ∩ Fj |
|Fi ∪ Fj |

(3)

In Formula 3, ComSimilarity(Ci, Cj) is the component
similarity between the ith component Ci and the jth com-
ponent Cj , Fi is the set of files which belongs to the ith
component, and |X| is the number of elements of the set X .
Architecture similarity is the average value of all components
similarity.

The component similarity and the architecture similarity are
shown in Table II.

TABLE II
THE COMPONENT SIMILARITY AND THE ARCHITECTURE SIMILARITY

Project Actual New Component Architecture
component componet similarity similarity

La4j data1 decomposition 0.563

0.836
data2 matrix/source 0.619
operation operation 1
linear linear 1
matrixOperation matrixOperation 1

Filezilla interface1 interface#85 1

0.978

interface2 interface\setting 1
interface#1 interface#86 0.882
engine engine 0.961
putty putty 1
dbus dbus 1
interface#2 interface#5 1

Bash readline1 readline#13 1

0.977

readline2 termcap 1
[ROOT]#1 [ROOT]#32 0.931
[ROOT] [ROOT]#29 0.885
support suppport 1
examples\loadables examples\loadables 1
lib\sh lib\sh 1
lib\intl lib\intl 1

Libev libcork1 libcork\config 1

0.703

libcork2 libcork#50 1
libipset libipset 0.625
\ libipset\map 0
\ libipset\set 0
libcork#1 libcork#52 1
libev#47 libcork#52 1
libev libev#47 1

GoogleMock gmock1 gmock#10 1

1gmock2 gmock#15 1
src src 1
internal internal 1

Bash readline1 readline#13 1

0.977

readline2 termcap 1
[ROOT]#1 [ROOT]#32 0.931
[ROOT] [ROOT]#29 0.885
support suppport 1
examples\loadables examples\loadables 1
lib\sh lib\sh 1
lib\intl lib\intl 1

TABLE III
THE CO-EVOLUTIONARY CONTENT OF CODE AND THE ACTUAL CODE CHANGES IN LIBEV PROJECT

Architecture change The co-evolutionary content of code Actual code changes

Adding component named libipset Adding highly cohesive files Adding two directories named libipset\include\ipset and libipset
Adding method invocation depen-
dencies between the two compo-
nents named src and libipset

Adding method invocation dependencies between the files
contained in the two components named src and libipset

Adding method invocation dependencies between src\acl.c and li-
bipset\include\ipset\ipset.h.

Increasing include reference de-
pendencies between the two com-
ponents named src and libev

Increasing include reference dependencies between the files
contained in the two components named src and libve

1) Adding include reference dependencies between src\tunnel.h and
libev\ev.h. 2) Adding include reference dependencies between sr-
c\udprelay.h and libev\ev.h.

Splitting the component core into
core#1 and core#2

Splitting the files contained in the component named core
into two parts and reducing the dependencies between the
two parts.

1) Reducing dependencies between org.assertj.core.api and
org.assertj.core.condition. 2) Reducing dependencies between
org.assertj.core.api and org.assertj.core.util.

As Table II shows that, the average architecture similarity is
0.899. The similarity indicates that our method can co-evolve
architecture based on evolved code effectively.

Here, we take Libev as an example to show the cor-
responding relations between the co-evolutionary content of
code and the actual code change, the corresponding relations
are shown in Table III.

According to Table III, the co-evolutionary content of code
is consistent with the actual code change, so our method is
effective for co-evolving code.

RQ2: Is the co-evolutionary method of architecture
based on evolved code effective?

The co-evolutionary change method of architecture based
on evolved code aims at keeping the consistency between ar-
chitecture and the evolved code. We evaluate the effectiveness
of the method by analyzing the consistency between the co-
evolved architecture and the actual architecture change.

We conduct the following two experiments: (1) Is the co-
evolved architecture consistency with the actual architecture
after evolution? (2) Are the details of co-evolved architecture
consistency with the actual architecture changes?

The experiment is performed in the following steps:
• Obtaining the actual code change by using the change

detection method.
• Obtaining the co-evolved architecture by using our

method.
• Obtaining the actual architecture change by comparing

CDG before and after evolution.
• Analyzing the consistency between the co-evolved archi-

tecture and the actual architecture change.
The co-evolved architecture and the actual architecture

changes are about CDG, and the graph consists of the compo-
nent and the dependency edges between components, that is if
the co-evolved architecture is consistent with actual changes,
the number of changed nodes and changed edges of them are
the same. We summarize the number of changed nodes and
the number of changed edges of each project to analyze the
consistency, and the information is shown in Table IV.

Table IV shows statistical information about the number of
changed nodes and dependency edges. As the table shows that
the number of co-evolved objects is equal to the number of
actual changes, that is, our method can co-evolve architecture
which is consistent with the actual architecture changes. So

TABLE IV
THE NUMBER OF CHANGED NODES AND CHANGED EDGES.

Type La4j AssertJ Lua Libev Apns

Node Adding 2 23 4 2 6
Deleting 29 0 2 4 2

Co-evolved

Edge

Adding 30 231 10 124 15
objects Deleting 274 10 2 0 5

Increasing 3 44 9 8 13
Reducing 3 6 5 3 2

Node Adding 2 23 4 2 6
Deleting 29 0 2 4 2

Actual

Edge

Adding 30 231 10 124 15
change Deleting 274 10 2 0 5

Increasing 3 44 9 8 13
Reducing 3 6 5 3 2

the co-evolutionary method of architecture based on evolved
code is effective.

In the second experiment, we further analyze the detail
between actual architecture.

Here, we take La4j as an example to analyze the consis-
tency between the co-evolutionary content of architecture and
the actual change. The details are shown in Table V.

As Table V shows that, actual architecture change in the
actual evolution is ”Add org.la4j.Matrix node”, the corre-
sponding co-evolutionary content of the architecture is ”Add
org.la4j.Matrix node”, so the co-evolutionary content matches
the actual architecture change. The evolution of dependency
is mainly reflected in the addition or deletion of dependency
edges between nodes or changes in the weights of edges.
According to Table V, we know that, the actual architecture
change is consistent with the co-evolved architecture.

IV. RELATED WORK

At present, there are mainly four co-evolutionary methods
which are shown in the first column of Table VI.

Direction. The first two methods only support one-way
co-evolution, so the two methods support fewer application
scenarios than the other methods.

Representation. Most of these methods use the component
dependency graph as the representation of architecture, except
the multi-view method. The component dependency graph is a
widely acceptable representation of architecture. Considering
architecture and code may be used in other researches, we
think that the component dependency graph is more applicable
for representing architecture.

TABLE V
THE CO-EVOLVED ARCHITECTURE AND THE ACTUAL ARCHITECTURE CHANGES IN LA4J PROJECT

Actual Code change The co-evolutionary content of architecture Actual architecture change

Adding a file Matrix in the package org.la4j. Adding a new node org.la4j.Matrix. Adding a new node org.la4j.Matrix.
Deleting the file CCSFactory of the package
org.la4j.factory.

Deleting the node org.la4j.factory.CCSFactory. Deleting the node org.la4j.factory.CCSFactory
org.la4j.factory.

Adding 4 method invocation dependencies between
org.la4j.LinearAlgebra and org.la4j.Matrix.

Adding a new dependent edge between
org.la4j.LinearAlgebra and org.la4j.Matrix, and
the weight is 4.

Adding a new dependent edge between
org.la4j.LinearAlgebra and org.la4j.Matrix, and
the weight is 4.

Deleting the generalization dependencies between the
two files ArrayVectorSource and VectorSource which
are contained in the package org.la4j.vector.source.

Deleting the dependent edge between the two n-
odes org.la4j.vector.source. ArrayVectorSource and
org.la4j.vector.source. VectorSource.

Deleting the dependent edge between the two n-
odes org.la4j.vector.source. ArrayVectorSource and
org.la4j.vector.source. VectorSource

Increasing the parameter dependencies between the two
files org.la4j.linear.JacobiSolver and org.la4j.Matrix,
and the increased dependencies are 2 times.

Increasing the weight of edge between the two nodes
org.la4j.linear. JacobiSolver and org.la4j.Matrix by 2.

Increasing the weight of edge between the two nodes
org.la4j.linear.JacobiSolver and org.la4j.Matrix by 2.

Reducing the method invocation dependencies between
the two files AbstractSolver and LinearSystemSolver
which are contained in the package org.la4j.linear.

Reducing the weight of edge between the two nodes
org.la4j.linear.AbstractSolver and org.la4j.linear. Lin-
earSystemSolver by 1.

Reducing the weight of edge between the two nodes
org.la4j.linear.AbstractSolver and org.la4j.linear. Lin-
earSystemSolver by 1.

TABLE VI
THE COMPARISON BETWEEN RELATED METHODS

Method Direction Representation Technology Implementation

Architecture recovery One-way Component dependency graph Mapping rules, clustering algorithm Automatic
Generate code One-way Component dependency graph Mapping rules, clustering algorithm Automatic
Multi-View Two-way UML Mapping relations Automatic
Information fusion Two-way Component dependency graph Logic element programming, metadata, language development Artificial

Technology. The table shows that the mapping rules are
widely used in many methods. It indicates that the mapping
rules are effective for co-evolutionary methods.

Implementation. Most of these methods are implemented au-
tomatically, but the information fusion method is implemented
artificially. So the information fusion method is not suitable
for large-scale programs.

According to the above analysis of related work, we know
that the above four methods do not support the two-way co-
evolution automatically between component dependency graph
and code automatically. So, we propose a co-evolutionary
method to solve these problems.

V. CONCLUSION AND FUTURE WORK

In the paper, we propose a co-evolutionary method between
architecture and code, including the co-evolutionary method
of code based on evolved architecture and the co-evolutionary
method of architecture based on evolved code. In our method,
more types of change actions are taken into consideration,
and the changes are converted based on mapping rules, then
we use FDG as the intermediate level between architecture
and code to perform co-evolutionary algorithms. We conduct
the experiments with eight open source projects, and the
experimental results indicate that the co-evolutionary method
of architecture based on evolved code and the co-evolutionary
of code based on evolved architecture are all effective. In our
future work, we will combine our method with architecture
quality, then we improve architecture quality automatically.

REFERENCES

[1] Umberto Azadi, Francesca Arcelli Fontana, and Davide Taibi. Architec-
tural smells detected by tools: a catalogue proposal. In 2019 IEEE/ACM

International Conference on Technical Debt (TechDebt), pages 88–97.
IEEE, 2019.

[2] Daniel Link, Pooyan Behnamghader, Ramin Moazeni, and Barry Boehm.
The value of software architecture recovery for maintenance. In Pro-
ceedings of the 12th Innovations on Software Engineering Conference,
pages 1–10, 2019.

[3] Ana Paula Allian, Bruno Sena, and Elisa Yumi Nakagawa. Evaluating
variability at the software architecture level: an overview. In Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing, pages
2354–2361, 2019.

[4] Burak Uzun and Bedir Tekinerdogan. Domain-driven analysis of archi-
tecture reconstruction methods. In Model Management and Analytics
for Large Scale Systems, pages 67–84. Elsevier, 2020.

[5] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Ma, and
Jean Bernard Stefani. The fractal component model and its support in
java. Software Practice & Experience, 36(11-12):1257–1284, 2010.

[6] R. France and J. M. Bieman. Multi-view software evolution : A uml-
based framework for evolving object-oriented software. In Proceedings
IEEE International Conference on Software Maintenance. ICSM 2001,
pages 386–395, 2001.

[7] Pooyan Jamshidi and Claus Pahl. Business process and software
architecture model co-evolution patterns. In International Workshop on
Modeling in Software Engineering, pages 91–97, 2012.

[8] Mitchell A Potter and Kenneth A De Jong. Cooperative coevolution:
An architecture for evolving coadapted subcomponents. Evolutionary
Computation, 8(1):1–29, 2014.

[9] Amir Ngah and Siti Aminah Selamat. Using object to slice java program.
Journal of Engineering and Applied Sciences, 13(6):1320–1325, 2018.

[10] Yeounoh Chung, Tim Kraska, Neoklis Polyzotis, Ki Hyun Tae, and
Steven Euijong Whang. Slice finder: Automated data slicing for model
validation. In 2019 IEEE 35th International Conference on Data
Engineering (ICDE), pages 1550–1553. IEEE, 2019.

[11] Tong Wang, Dongdong Wang, Ying Zhou, and Bixin Li. Software
multiple-level change detection based on two-step mpat matching.
In 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 4–14. IEEE, 2019.

[12] Nenad Medvidovic and Vladimir Jakobac. Using software evolution
to focus architectural recovery. Automated Software Engineering,
13(2):225–256, 2006.

