
Deep Hashing with Large Batch Training

for Cross-modal Retrieval

Xuewang Zhang1,2 and Yin Zhou1*
1School of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China

2School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, China

zhangxw@cqupt.edu.cn , 646031898@qq.com

Abstract—Cross-modal hashing has attracted considerable

attention as it can implement rapid cross-modal retrieval

through mapping data of different modalities into a common

Hamming space. With the development of deep learning, more

and more cross-modal hashing methods based on deep learning

are proposed. However, most of these methods use a small

batch to train a model. Large batch training can get better

gradients and can improve training efficiency. In this paper, we

propose a deep hashing with large batch training (DHLBT),

which uses large batch training and introduces orthogonal

regularization to improve the generalization ability of our

model. Moreover, we consider the discreteness of hash codes,

therefore, we add the distance between hash codes and features

to the objective function. Extensive experiments on three

benchmarks show that our method achieves better

performance than several existing hashing methods.

Keywords: cross-modal hashing; large batch training;

orthogonal regularization; the distance between hash codes and

features

I. INTRODUCTION

With the rapid growth of multimedia data with different
modalities and the increasing demands of users, cross-modal
retrieval is becoming increasingly attractive. Modeling the
relationship between different modalities is the key of cross-
modal retrieval. The key challenge is a “heterogeneous gap”
between different modalities, where the similarity among
them cannot be measured directly [1]. However, cross-modal
hashing methods can effectively bridge the gap [2, 3]. The
hashing methods convert the high-dimensional features of
data into a fixed-length hash code. Semantically similar data
has similar hash codes. By XOR bitwise operation of hash
codes, the similarity of data can be quickly obtained.
Moreover, the storage space can be effectively reduced by
only storing the hash codes of the data, instead of storing the
high-dimensional features.

In recent years, deep learning has received good results in
image processing and natural language processing. Therefore,
more and more scholars have begun to apply deep learning
technology to cross-modal hashing methods [2-7]. However,
most of these methods use a small batch size to train the
model. For example, in [2, 3, 5], the batch size is 64, and the
maximum batch size is 128 [6]. However, when training a
model in small batch size, the loss function cannot get a good

gradient because of the limited number of samples in each
batch, which makes the parameter update not good enough
and affects the retrieval performance of the final trained
model.

Large batch training which means using large batch size
to train, e.g. 2048, 4096, or 8192, which is much larger than
64 or 128, can cover more samples each time when update
parameters, resulting in better gradients and shorter training
time per epoch. Therefore, more and more scholars in
different fields are studying large batch training to get better
performance [8-12], while no scholar has explored large
batch training in the field of cross-modal hashing. So, it
makes sense to study large batch training in the field of cross-
modal hashing. However, increasing the batch size will cause
the training extremely unstable [9], and then will easily lead
to a "generalization gap" problem [13]. Orthogonal
regularization will keep the norm of a matrix unchanged and
lead the gradients to faithful propagation which will prevent
the gradient from vanishing [10, 14]. In the field of image
generation, Brock et al. [10, 14] introduced orthogonal
regularization, which proves that orthogonal regularization
achieves better performance. In multimodal retrieval, Wang
et al. [15] also introduced orthogonal regularization, which
reduces the redundancy of hash codes and improves
performance. Moreover, hash codes are discrete. Relaxing the
discrete learning problem of hash codes into continuous
learning problem is the common practice of most cross-
modal hashing methods. However, when continuous real
value features of data are converted into hash codes,
information loss will occur, which affects the performance so
that the hash codes cannot represent the data well [5]. [5]
adds the hash code to the objective function and learns the
discrete hash code without relaxing. Inspired by these, we
propose a method called deep hashing with large batch
training (DHLBT). This method includes three major features,
which are 1) Large batch size is used to train the model; 2)
Orthogonal regularization is used to improve the
generalization ability of the model; 3) Distances between
hash codes and features are added to the objective function.

The rest of this paper is presented as follows. Section 2
introduces the proposed DHLBT approach. Section 3 shows
the experiments. Finally, conclusions are made in Section 4.

DOI reference number: 10.18293/SEKE2020-148

mailto:zhangxw@cqupt.edu.cn
mailto:646031898@qq.com

II. DEEP HASHING WITH LARGE BATCH TRAINING

In this section, we will describe the details of our
proposed method.

A. Notations

In this paper, we only consider image and text modal data.
Therefore, there are two kinds of retrieval tasks in this paper:
1) text query image task and 2) image query text task.

Assume that we have k training data, image modality is

denoted as 1{ }k

i iI I == , text modality is denoted as
1{ }k

i iT T == .

Then, we use
1{ , }

i i

k

I T iF F F == to denote the low dimensional

features of data, 1{ , }
i i

k

I T iq q q == to denote the query data,

1{ , }
i i

k

I T iH H H == to denote the hash codes of data, and

Frobenius
 to denote the Frobenius norm of a matrix,

respectively.

B. Network structure

Many cross-modal hashing methods based on deep
learning, e.g. SCH-GAN [2], use convolutional neural
networks (CNN) to extract the features of images as input
values for training. In this paper, we use VGG-19 [16] to
extract the features of the images and encode them as hash
codes through two fully-connected layers. While for texts, the
texts are represented by the bag-of-words (BoW) features and
are also encoded into hash codes through two fully-connected
layers. The whole DHLBT model is shown in Fig. 1.

Figure 1. The framework of our DHLBT model.

C. Feature Learning Part

We firstly map the extracted image or text features to a
common space through the fully-connected layer1 in the Fig.
1, then obtain the low-dimensional features through the fully-
connected layer2 in the Fig. 1. The activation functions for
the fully-connected layer1 and the fully-connected layer2 are
tanh function and sigmoid function, respectively. The process
can be represented as:

2 1 1 2

((tanh()))c c c cF sigmoid W W f B B= + + ()

where W are the weights, B is the bias,
1c denotes the

fully-connected layer1,
2c denotes the fully-connected

layer2. f denote the input value of VGG-19 [16] features

of images or BoW features of texts. The low-dimensional

features of images
IF and the low-dimensional features of

texts
TF have the same shape, which allows us to measure

the similarity between them. The hash code length is also the

same as the dimension of the low-dimensional features so

that the low-dimensional features F can be directly mapped

to the hash codes H by the threshold function:

1, 0.5

0, 0.5

if F
H

if F

=

 ()

D. Hashing Objectives

Our objective function is mainly divided into three parts,
which are: 1) the distance between the features of the images

IF and the features of the texts
TF , 2) the distance between

the features F and the hash code H , and 3) the regularization
items of W and B . The image query text task and the text

query image task are symmetric. Therefore, we take the text
query image task as an example to show the objective
function in the following parts.

The distance between
IF and

TF :

2

2
TiTi i i

qq I I
D F F+ += − ()

2

2
TiTi i i

qq I I
D F F− += − ()

where D denotes distance, iI +
denotes semantically similar

image and iI −
 denotes semantically dissimilar image with

text query
Tiq .

Ti iq I
D + are the distance between iI +

 and
Tiq .

Ti iq I
D − are the distance between iI −

 and
Tiq . We use a

margin-based hinge loss function to measure the loss, which
is shown below:

 1

1
max(0,)

Ti i Ti i

n

q I q I
i

L D D
n

 + −= + − ()

where is a margin parameter between
Ti iq I

D + and
Ti iq I

D − ,

and is an adjustable hyper-parameter. n is the number of

triplet (, ,)Ti i iq I I+ −
. While reducing the loss

1L ,
Ti iq I

D + will be

reduced and
Ti iq I

D − will be increased simultaneously. This

also conforms to the principle that small distance between
semantically similar data and the large distance between
semantically dissimilar data. In the process of training

optimization, we intend to decrease the value of
Ti iq I

D + and

increase the value of
Ti iq I

D − simultaneously. Therefore, the

optimization process can be transformed into a binary
classification problem, and then, we apply sigmoid cross-
entropy as the loss function on it. The sigmoid cross-entropy
formula for binary classification problem is shown below:

[ln(() (1)ln(1 ()))]

. . {0,1}

loss z sigmoid x z sigmoid x

s t z

= − + − −

 ()

where x represent a input value, and it can be assigned by

either
Ti iq I

D + or
Ti iq I

D − . z denotes a target value. For
Ti iq I

D + ,

we want
Ti iq I

D + as small as possible, that is, let 0z = , bring it

into (6), as shown in equation (7):

1 ln(1 ()) ln(1)q ITi i

Ti i

D

q I
loss sigmoid D e

+

+= − − = + ()

For
Ti iq I

D − , we want
Ti iq I

D − as large as possible, that is, let

1z = , bring it into (6), as shown in equation (8):

2 ln(()) ln(1)q ITi i

Ti i

D

q I
loss sigmoid D e

−

−

−

= − = + ()

By combining equation (7) and (8), we have our second
loss item:

2 1 2

1
()

n

i

L loss loss
n

= + ()

The distance between F and H :

Hash codes are discrete, and information loss will occur
in the process while converting real value features F to hash
codes H :

q q Ti TiTi Ti

H F q qD H F= − ()

I Ii i i i i i

H F I I I I
D H F H F+ + − −= − + − ()

where
q qTi Ti

H FD denotes the distance between the low-

dimensional features
TiqF of text query

Tiq and hash codes

TiqH of text query
Tiq .

I Ii i
H FD denotes the distance between

the low-dimensional features
IF of images I and hash codes

IH of images I . The following loss function can be obtained:

 3

1
()

q q I ITi Ti i i

n

H F H F

i

L D D
n

= + ()

In the optimization process, the loss function will make
hash codes more and more close to the features and will
reduce the information loss caused by the conversion process
from the features to hash codes.

The regularization items of W and B :

Large batch training has low stability while training. To
minimize the negative effect of the problem, we introduce the
orthogonal regularization as the penalty term of W . For B ,

we still use L2 regularization as a penalty term. The loss item
is as follows:

2 2

4

transpose

identity FrobeniusFrobenius
L W W I B = − + ()

where transposeW is the transpose of the weight matrix W and

identityI is an identity matrix. B denotes the bias. and

denotes the hyper-parameters.

By combining
1L ,

2L ,
3L and

4L together, we can get

the full objective:

1 2 3 4min L L L L L = + + + ()

where and denote adjustable hyper-parameters.

We also take the text query image task as an example to
show the training process of our method in Algorithm 1.

Algorithm 1 Training Process of DHLBT

Input: training data I, T

Output: weights W and bias B

1: initialize: Randomly initialize W and B, the batch

size is b and the number of training epochs is e;

2: for epoch = 0; 1; 2; :::;e¡1 do

3: if epoch%30 == 0 then

4: for qT=T1;T2;T3; :::;Tk do

5: Randomly sample m points from I+ and m

points from I¡ to make up a triplet set (qT ,I
+,I¡) as

training data.

6: end for

7: end if

8: for step = 1; 2; :::; dk¤m=be do

9: Train network and update parameters W and

B by equation (14);

10: end for

11: end for

III. EXPERIMENTS

In this section, we evaluate the performance of DHLBT
on two datasets, and compare the result with several current
state-of-the-art methods.

A. DATASETS

We use 2 datasets for experiments: Wikipedia [17] and
MIRFlickr [18], which are widely used public datasets in
cross-modal hashing. And to evaluate this method more fully,
we added a larger data set NUS-WIDE [19] for experiments.

Wikipedia dataset [17] is a popular dataset which
consists of 2866 text/image pairs divided into 10 categories.
Following [2], Wikipedia dataset is separated into two parts:
1) a training data of 2173 pairs which are also used as the
retrieval database and 2) a query set of 693 pairs. Each image
is represented by 4096 deep features extracted by the fc2
layer of 19-layer VGGNet [16] from Keras applications, and
each text is represented as a 1000-dimensional BoW vector.

MIRFlickr dataset [18] contains 25000 images that are
collected from the Flickr website and they are annotated with
some of 24 provided labels. Each image is described with
some textual tags. Therefore, each instance is a text-image
pair. Following [2, 20], firstly, we preprocess raw tags of
these images by removing punctuations and stop words. Then,

we count the number of times for each word appeared in
these tags. We only keep words that appeared at least 20
times and add them to the vocabulary of BoW. Furthermore,
we remove instances that do not contain the word of the
vocabulary and that do not have textual tags or labels. We
take 5% of instances in each category as the query set and the
rest of the instances as the retrieval database. In addition, we
sample 5000 data pairs from the retrieval database as the
training data. Each image is represented by 4096 deep
features extracted by the fc2 layer of 19-layer VGGNet from
Keras applications, and each text is represented as a 1386-
dimensional BoW vector.

NUS-WIDE dataset [19] contains 269648 images that are
collected from the Flickr website and they are annotated with
some of 81 provided labels. Each image is described with
some textual tags. Therefore, each instance is a text-image
pair. We select the 10 most common labels and the
corresponding 186577 text-image pairs. We take 2000 of
pairs in each category as the query set and the rest of the pairs
as the retrieval database. In addition, we sample 5000 data
pairs from the retrieval database as the training data. Each
image is represented by 4096 deep features extracted by the
fc2 layer of 19-layer VGGNet from Keras applications, and
each text is represented as a 1386-dimensional BoW vector.
Table 1 shows the number of samples in each set intuitively.

TABLE I. STATISTICS OF TWO BENCHMARK DATASETS

 Wikipedia MIRFlickr NUS-WIDE

Dataset Size 2866 20819 186577
Training Set 2173 5000 5000

Query Set 693 1041 2000

Retrieval Set 2173 19778 186577

labels 10 24 10

B. EVALUATION PROTOCOL

We perform two kinds of retrieval tasks for each dataset:

1) retrieving text by image query, termed image→text; and 2)

retrieving image by text query, termed text → image.

Following [2], we utilize Hamming ranking to evaluate
DHLBT and compared the result with the other state-of-the-
art methods. Specifically, we first obtain the hash codes of
images and texts, and then compute the Hamming distance
between query with all the retrieval database. After ranking
the Hamming distance list, we use 2 widely used assessment
standards to evaluate the retrieval performance, which are
shown below:

1) Mean Average Precision (MAP): The mean of all
queries’ average precisions (AP) called MAP.

1

1 n k

kk

R
AP rel

R k=
= is the definition of AP where R is

the amount of the related data in the retrieval database, n is

the amount of retrieval database,
kR is the amount of the

related data in the top k ranks of the Hamming distance

ranking list, and
krel is an indicator of relevance of the

Hamming distance ranking list which is set to 1 if the data at

k -th position is related and 0 elsewise.

2)Precision Recall curve (PR-curve): The precision at the
certain recall of the Hamming distance ranking list, that often
evaluates the performance of retrieval.

C. BASELINES AND IMPLEMENT DETAILS

We compare two non-deep learning methods: SePH [20]
and GSPH [21], which are both supervised methods. For
SePH and GSPH, they are kernel-based methods and both of
them achieved best results by using KLR which respectively
created in two ways: 1) k-means algorithm and 2) random
sampling. So, for these two hashing methods, we use KLR to
learn hash function and create kernel by using k-means
algorithm (klr+k) and random sampling (klr+r). In addition,
we also compare our methods to three state-of-the-art deep
learning-based methods, including SCH-GAN [2], UGACH
[3] and DCMH [5]. SCH-GAN is a semi-supervised method.
UGACH is an unsupervised method and DCMH is a
supervised method. In all experiments, two modal data of
image and text are used. When the data of one modal is used
as the query set, the data of the other modal is used as the
retrieval set. Source codes of all methods are kindly provided
by the corresponding authors. For the parameters mentioned
in all methods, we directly adopt the original parameter
settings used in their codes. For an objective comparison
between different methods, we use the same image and text
features as input data features for all compared methods.
Specifically, for Wikipedia and NUS-WIDE datasets, we use
the 4096 deep features extracted by the fc2 layer of 19-layer
VGGNet from Keras applications for images, and 1000-
dimensional bag-of-words features for texts; For MIRFlickr
dataset, we use the 4096 deep features extracted by the fc2
layer of 19-layer VGGNet from Keras applications for
images, and 1386-dimensional bag-of-words features for
texts. For DCMH, which is an end-to-end method, we add an
experiment which directly uses original image features as the

input value of the image network. 19DCMHvgg and

DCMHoriginal denote these two versions of DCMH,

respectively. For our method, we set 0.01 = , 0.01 = ,

0.0001 = and 0.01 = . Similar to [2, 3], for each data, the

corresponding data is selected to form 4 triplets for training,
that is, m in Algorithm 1 is set to 4. So, there

are 2173 4 8692 = triplets for Wikipedia

dataset, 5000 4 20000 = triplets for MIRFlickr and NUS-

WIDE datasets. The batch size is set to 8192. And the
learning rate for Wikipedia dataset is 0.08, the learning rate
for MIRFlickr dataset is 0.016 and the learning rate for NUS-
WIDE dataset is 0.016. The hash code bits are 16, 32, and 64,
and is 6, 8, and 10, respectively. We implement the

proposed DHLBT by Tensorflow applications. All the
experiments conducted on a server with hardware of
NVIDIA GTX 1080Ti graphic card, Intel(R) Xeon(R) E5-
2620 v4 2.10GHz CPU, 128 GB memory. The model was
built by Python3.5.2 and Tensorflow 1.11.0.

D. EXPERIMENTAL RESULTS

We demonstrate the MAP scores of all methods on
MIRFlickr, Wikipedia and NUS-WIDE datasets in Table 2,
Table 3 and Table 4. From the result, it can be observed that
our method achieves the best retrieval accuracy at 32-bit and
64-bit hash code length over all datasets. In general,
compared with the second-best method SCH-GAN, in the
task of image query text, our method is about 1.8%, 8.2% and
1.1% higher on MIRFlickr, Wikipedia and NUS-WIDE
datasets, respectively. And in the task of text query image,

our method is about 1.3%, 2% and 0.2% higher on MIRFlickr,
Wikipedia and NUS-WIDE datasets, respectively. This is
mainly because we use large batch size to train the model
which can get better gradients and use orthogonal
regularization to improve the generalization ability of our
model. And it is also because the distance between the hash
codes and the features of data is added to the loss function
which makes the hash codes are more realistic to represent
the features of data. From the results, we can see that the hash
code length has a remarkable impact on the MAP scores. For
16-bit hash code, the length is not enough to get sufficient
information. Although our method has achieved the best
results on Wikipedia dataset, it is only the second-best on
MIRFlickr and NUS-WIDE datasets, indicating that the hash
code length has a certain impact on MAP scores.

TABLE II. THE MAP SCORES ON MIRFLICKR DATASET

Methods
image→text text→image

16 32 64 16 32 64

SePHklr r+ [20] 0.7364 0.7367 0.7451 0.7486 0.7514 0.7573

SePHklr k+ [20] 0.7377 0.7459 0.7467 0.7522 0.7595 0.7599

GSPHklr r+ [21] 0.7279 0.7425 0.7541 0.7579 0.7693 0.7760

GSPHklr k+ [21] 0.7374 0.7485 0.7584 0.7614 0.7729 0.7798

UGACH [3] 0.6100 0.6045 0.5848 0.6278 0.6029 0.6101

DCMHoriginal [5] 0.7296 0.7363 0.7386 0.7639 0.7650 0.7703

19DCMHvgg [5] 0.7433 0.7527 0.7592 0.7669 0.7792 0.7837

SCH-GAN [2] 0.7203 0.7481 0.7609 0.7661 0.7851 0.7884

Ours 0.7410 0.7571 0.7718 0.7822 0.7915 0.7953

TABLE III. THE MAP SCORES ON WIKIPEDIA DATASET

Methods
image→text text→image

16 32 64 16 32 64

SePHklr r+ [20] 0.5009 0.5287 0.5393 0.5508 0.5955 0.6190

SePHklr k+ [20] 0.4997 0.5252 0.5413 0.5584 0.6009 0.6122

GSPHklr r+ [21] 0.5064 0.5289 0.5320 0.5701 0.6001 0.6237

GSPHklr k+ [21] 0.5117 0.5318 0.5390 0.5801 0.6036 0.6207

UGACH [3] 0.3332 0.3605 0.3688 0.3222 0.3323 0.3471

DCMHoriginal [5] 0.4503 0.4506 0.4120 0.7419 0.7238 0.6940

19DCMHvgg [5] 0.4387 0.4698 0.4809 0.8279 0.8457 0.7927

SCH-GAN [2] 0.5207 0.5370 0.5076 0.8352 0.8351 0.8288
Ours 0.5528 0.5712 0.5688 0.8426 0.8502 0.8572

TABLE IV. THE MAP SCORES ON NUS-WIDE DATASET

Methods
image→text text→image

16 32 64 16 32 64

SePHklr r+ [20] 0.6537 0.676 0.6792 0.6769 0.6857 0.6836

SePHklr k+ [20] 0.6625 0.685 0.6848 0.6681 0.6875 0.6886

GSPHklr r+ [21] 0.6703 0.6858 0.6961 0.676 0.6838 0.7028

GSPHklr k+ [21] 0.6746 0.696 0.7049 0.6756 0.6986 0.7052

UGACH [3] 0.6231 0.6296 0.6293 0.6152 0.6116 0.6152

DCMHoriginal [5] 0.6008 0.6419 0.6383 0.6439 0.6739 0.6709

19DCMHvgg [5] 0.6341 0.6552 0.6631 0.6803 0.699 0.7058

SCH-GAN [2] 0.6647 0.6909 0.7027 0.6862 0.7086 0.7128

Ours 0.6625 0.7007 0.7179 0.6848 0.7091 0.7189

Figure 2. The PR-curves on Wikipedia dataset.

Figure 3. The PR-curves on MIRFlickr dataset.

Figure 4. The PR-curves on NUS-WIDE dataset.

TABLE V. THE DIFFERENT BATCH SIZE TRAINING OF DHLBT ON WIKIPEDIA DATASET

Batch Size
Learning

rate
Ortho.

MAP (image → text) MAP (text → image)
The sum of MAP

(image→text and text → image)

Time of

 each epoch

16 32 64 16 32 64 16 32 64 16 32 64

512 0.02 N 0.5406 0.5506 0.5612 0.8280 0.8524 0.8432 1.3686 1.4030 1.4044 9.3s 9.6s 10.2s

512 0.02 Y 0.5588 0.5629 0.5691 0.8312 0.8576 0.8479 1.3900 1.4205 1.4170 16.0s 16.3s 16.8s

2048 0.04 N 0.5509 0.5594 0.5699 0.8231 0.8462 0.8326 1.3740 1.4056 1.4025 8.1s 8.2s 8.5s

2048 0.04 Y 0.5559 0.5668 0.5702 0.8380 0.8486 0.8545 1.3939 1.4154 1.4247 10.9s 11.0s 11.3s

8192 0.08 N 0.5487 0.5563 0.5649 0.8217 0.8431 0.8327 1.3704 1.3994 1.3976 7.5s 7.5s 7.9s

8192 0.08 Y 0.5528 0.5712 0.5688 0.8426 0.8502 0.8572 1.3954 1.4214 1.4260 8.2s 8.3s 8.6s

Figure 5. The changes of MAP during the training process with the batch size of 512, 2048 and 8192, respectively.

Figure 6. The changes of MAP in different value of the hyperparameter , and , respectively.

The PR-curves at 32- and 64-bit hash code length on
Wikipedia, MIRFlickr and NUS-WIDE datasets are shown in
Fig. 2, Fig. 3 and Fig. 4, respectively. The result shows that our
method performs better than other state-of-the-art methods.

In addition, we also compare the effects of different batch
sizes and orthogonal regularization on our model training on
the Wikipedia dataset. The batch size is set to 512, 2048, and
8192, respectively. When increasing the batch size, it is
necessary to increase the learning rate to ensure the
convergence speed, so the learning rates are 0.02, 0.04, and
0.08, respectively. N means that orthogonal regularization is
not used, and Y means orthogonal regularization is used. When
orthogonal regularization is not used, we replace it with L2
regularization, that is, equation (13) is replaced by:

2 2

4 ()
Frobenius Frobenius

L w B= + ()

We keep configuration for all parameter except the learning
rate. The result of the comparison is shown in Table 5. When
evaluating the performance, we need to consider not only the

map of image→ text, but also the map of text→ image.

Therefore, the map sum of text→image and image→text is

given in Table 5. It can be seen that using orthogonal
regularization can obviously achieve better performance when
using same batch size, but the training time of each epoch will
be increased. Extend the batch size will significantly increase
training speed. Simply increasing the batch size without using
orthogonal regularization does not achieve good performance.
When the batch size is 8192 and the orthogonal regularization
is used, we achieve the best performance.

We also analyze the training stability of our model. The
changes of MAP at 64-bit hash code length during the training
process with the batch size of 512, 2048 and 8192 on
Wikipedia dataset are shown in Fig. 5. “orth” means that
orthogonal regularization is used, and “no_orth” means

orthogonal regularization is not used. The result shows that the
changes of MAP are more volatile with the increase of batch
size. And the changes of MAP become stable and the model
can get better performance when used the orthogonal
regularization.

At last, we conduct sensitivity experiments for
hyperparameter , and . is set to 0.001, 0.01, 0.1 and

1.0, respectively. is set to 0.001, 0.01, 0.1 and 1.0,

respectively. is set to 4, 8, 12 and 16, respectively. When

performing sensitivity experiments on one hyperparameter,
other hyperparameters remain fixed. That is, we set

=0.01 when performing sensitivity experiments on or .

We set =0.01 when performing sensitivity experiments on

 or . We set =8 when performing sensitivity experiments

on or . Fig. 6 shows the changes of MAP at 32-bit hash

code length in different value of the hyperparameter , and

 on MIRFlickr dataset. The result shows that the changes of

MAP are not volatile when the value of or is set to

between 0.001 and 0.01. The changes of MAP are volatile in
different value of the hyperparameter . When the value of

is set to 8, we get the best MAP scores. For hyperparameter
0.0001 = and 0.01 = ,we follow [10] and [2], respectively,

which are the best parameters selected by the corresponding
authors through sufficient experiments. In order to reduce
hyperparameters, we set and to the same value of ,

which is 0.01.

IV. CONCLUSIONS

In this paper, we propose a deep hashing with large batch
training (DHLBT) for the cross-modal hashing retrieval.
DHLBT is the cross-modal hashing which uses large batch
training and uses orthogonal regularization to improve the
generalization ability of our model. Moreover, the distance
between hash codes and features is added to the objective
function which makes hash codes to represent data more
realistically. The effectiveness of DHLBT is demonstrated
through the experiments on three widely-used datasets:
Wikipedia, MIRFlickr and NUS-WIDE.

V. ACKNOWLEDGMENT

This work is supported by the Major Science and
Technology Project for “Innovation of Common Technology in
Key Industries” of Chongqing (cstc2017zdcy-zdzxX0013),
Technology Innovation and Application Development Project
of CSTC (cstc2020jscx-fyzx0212), and Basic and Advanced
Research Project of CSTC (cstc2019jcyj-zdxmX0008).

REFERENCES

[1] Y. Peng, X. Huang, and Y. Zhao, “An overview of cross-media retrieval:
Concepts, methodologies, benchmarks, and challenges,” IEEE Trans.
Circuits and Syst. Video Technol., vol. 28, no. 9, pp. 2372-2385, Sep.
2018.

[2] J. Zhang, Y. Peng, and M. Yuan, “SCH-GAN: Semi-supervised cross-
modal hashing by generative adversarial network,” IEEE Trans. Cybern.,
vol. 50, no. 2, pp. 489-502. 2020.

[3] J. Zhang, Y. Peng, and M. Yuan, “Unsupervised generative adversarial
cross-modal hashing,” in Proc. 32nd AAAI Conf. Artif. Intell., New
Orleans, Lousiana, USA, 2-7 February 2018, pp. 539-546.

[4] L. Wu, Y. Wang, and L. Shao, “Cycle-consistent deep generative
hashing for cross-modal retrieval,” IEEE Trans. Image Process., vol. 28,
no. 4, pp. 1602 - 1612, Apr. 2019.

[5] Q. Y. Jiang, and W. J. Li, “Deep cross-modal hashing,” in Proc. 30th
IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, 21-26
July 2017, pp. 3232–3240.

[6] Z. Ji, W. Yao, W. Wei, H. Song, and H. Pi, “Deep multi-level semantic
hashing for cross-modal retrieval,” IEEE Access, vol. 7, pp. 23667-
23674. 2019.

[7] G. Wu, Z. Lin, J. Han, L. Liu, G. Ding, B. Zhang, and J. Shen,
“Unsupervised deep hashing via binary latent factor models for large-
scale cross-modal retrieval,” in Proc. 27th Int. Joint Conf. Artif. Intell.,
Stockholm, Sweden, 13-19 July 2018, pp. 2854-2860.

[8] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A.
Kyrola, A. Tulloch, Y. Jia, and K. He (2017). “Accurate large minibatch
SGD: Training imagenet in 1 hour.” [Online]. Available:
http://arxiv.org/abs/1706.02677

[9] Y. You, I. Gitman, and B. Ginsburg (2017). “Large batch training of
convolutional networks.” [Online]. Available:
https://arxiv.org/abs/1708.03888

[10] A. Brock, J. Donahue, and K. Simonyan (2018). “Large scale GAN
training for high fidelity natural image synthesis.” [Online]. Available:
https://arxiv.org/abs/1809.11096

[11] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo, Y.
Yang, L. Yu, T. Chen, G. Hu, S. Shi, and X. Chu (2018). “Highly
scalable deep learning training system with mixed-precision: Training
imagenet in four minutes.” [Online]. Available:
https://arxiv.org/abs/1807.11205

[12] Y. You, J. Hseu, C. Ying, J. Demmel, and C. J. Hsieh (2019). “Large-
batch training for LSTM and beyond.” [Online]. Available:
https://arxiv.org/abs/1901.08256

[13] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and T. P. T.
Ping (2016). “On large-batch training for deep learning: Generalization
gap and sharp minima.” [Online]. Available:
https://arxiv.org/abs/1609.04836

[14] A. Brock, T. Lim, J. M. Ritchie, and N. Weston (2016). “Neural photo
editing with introspective adversarial networks.” [Online]. Available:
https://arxiv.org/abs/1609.07093

[15] D. Wang, C. Peng, M. Ou, and W. Zhu, “Deep multimodal hashing with
orthogonal regularization,” in Proc. 24th AAAI Conf. Artif. Intell.,
Buenos Aires, Argentina, 26-27 July 2015, pp. 2291-2297.

[16] K. Simonyan, and A. Zisserman (2014). “Very deep convolutional
networks for large-scale image recognition.” [Online]. Available:
http://arxiv.org/abs/1409.1556

[17] J. C. Pereira, E. Coviello, G. Doyle, N. Rasiwasia, G. R. G. Lanckriet, R.
Levy, and N. Vasconcelos, “On the role of correlation and abstraction in
cross-modal multimedia retrieval,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 3, pp. 521-35, Mar. 2014.

[18] M. J. Huiskes, and M. S. Lew, “The MIR flickr retrieval evaluation,” in
Proc. 1st ACM Int. Conf. Multimedia Inf. Retr., Vancouver, British
Columbia, Canada, 30-31 October 2008, pp. 39-43.

[19] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng. "NUS-
WIDE: A real-world web image database from national university of
singapore" in Proc. of the 2009 ACM Int. Conf. on Image and Video
Retr., Santorini, Fira, Greece, 8-10 July 2009, pp. 48-56.

[20] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-Preserving Hashing
for Cross-View Retrieval,” in Proc. 28th IEEE Conf. Comput. Vis.
Pattern Recognit., Boston, MA, USA, 7-12 June 2015, pp. 3864-3872.

[21] D. Mandal, K. N. Chaudhury, and S. Biswas, “Generalized semantic
preserving hashing for cross-modal retrieval,” IEEE Trans. Image
Process., vol. 28, no. 1, pp. 102-112, Jan. 2019.

http://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1708.03888
https://arxiv.org/abs/1809.11096
https://arxiv.org/abs/1807.11205
https://arxiv.org/abs/1901.08256
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.07093
http://arxiv.org/abs/1409.1556

