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Abstract—Cross-modal hashing has attracted considerable 

attention as it can implement rapid cross-modal retrieval 

through mapping data of different modalities into a common 

Hamming space. With the development of deep learning, more 

and more cross-modal hashing methods based on deep learning 

are proposed. However, most of these methods use a small 

batch to train a model. Large batch training can get better 

gradients and can improve training efficiency. In this paper, we 

propose a deep hashing with large batch training (DHLBT), 

which uses large batch training and introduces orthogonal 

regularization to improve the generalization ability of our 

model. Moreover, we consider the discreteness of hash codes, 

therefore, we add the distance between hash codes and features 

to the objective function. Extensive experiments on three 

benchmarks show that our method achieves better 

performance than several existing hashing methods. 

Keywords: cross-modal hashing; large batch training; 

orthogonal regularization; the distance between hash codes and 

features 

I. INTRODUCTION 

With the rapid growth of multimedia data with different 
modalities and the increasing demands of users, cross-modal 
retrieval is becoming increasingly attractive. Modeling the 
relationship between different modalities is the key of cross-
modal retrieval. The key challenge is a “heterogeneous gap” 
between different modalities, where the similarity among 
them cannot be measured directly [1]. However, cross-modal 
hashing methods can effectively bridge the gap [2, 3]. The 
hashing methods convert the high-dimensional features of 
data into a fixed-length hash code. Semantically similar data 
has similar hash codes. By XOR bitwise operation of hash 
codes, the similarity of data can be quickly obtained. 
Moreover, the storage space can be effectively reduced by 
only storing the hash codes of the data, instead of storing the 
high-dimensional features. 

In recent years, deep learning has received good results in 
image processing and natural language processing. Therefore, 
more and more scholars have begun to apply deep learning 
technology to cross-modal hashing methods [2-7]. However, 
most of these methods use a small batch size to train the 
model. For example, in [2, 3, 5], the batch size is 64, and the 
maximum batch size is 128 [6]. However, when training a 
model in small batch size, the loss function cannot get a good 

gradient because of the limited number of samples in each 
batch, which makes the parameter update not good enough 
and affects the retrieval performance of the final trained 
model. 

Large batch training which means using large batch size 
to train, e.g. 2048, 4096, or 8192, which is much larger than 
64 or 128, can cover more samples each time when update 
parameters, resulting in better gradients and shorter training 
time per epoch. Therefore, more and more scholars in 
different fields are studying large batch training to get better 
performance [8-12], while no scholar has explored large 
batch training in the field of cross-modal hashing. So, it 
makes sense to study large batch training in the field of cross-
modal hashing. However, increasing the batch size will cause 
the training extremely unstable [9], and then will easily lead 
to a "generalization gap" problem [13]. Orthogonal 
regularization will keep the norm of a matrix unchanged and 
lead the gradients to faithful propagation which will prevent 
the gradient from vanishing [10, 14]. In the field of image 
generation, Brock et al. [10, 14] introduced orthogonal 
regularization, which proves that orthogonal regularization 
achieves better performance. In multimodal retrieval, Wang 
et al. [15] also introduced orthogonal regularization, which 
reduces the redundancy of hash codes and improves 
performance. Moreover, hash codes are discrete. Relaxing the 
discrete learning problem of hash codes into continuous 
learning problem is the common practice of most cross-
modal hashing methods. However, when continuous real 
value features of data are converted into hash codes, 
information loss will occur, which affects the performance so 
that the hash codes cannot represent the data well [5]. [5] 
adds the hash code to the objective function and learns the 
discrete hash code without relaxing. Inspired by these, we 
propose a method called deep hashing with large batch 
training (DHLBT). This method includes three major features, 
which are 1) Large batch size is used to train the model; 2) 
Orthogonal regularization is used to improve the 
generalization ability of the model; 3) Distances between 
hash codes and features are added to the objective function.  

The rest of this paper is presented as follows. Section 2 
introduces the proposed DHLBT approach. Section 3 shows 
the experiments. Finally, conclusions are made in Section 4. 
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II. DEEP HASHING WITH LARGE BATCH TRAINING 

In this section, we will describe the details of our 
proposed method. 

A. Notations 

In this paper, we only consider image and text modal data. 
Therefore, there are two kinds of retrieval tasks in this paper: 
1) text query image task and 2) image query text task. 

Assume that we have k training data, image modality is 

denoted as 1{ }k

i iI I == , text modality is denoted as 
1{ }k

i iT T == . 

Then, we use 
1{ , }

i i

k

I T iF F F == to denote the low dimensional 

features of data, 1{ , }
i i

k

I T iq q q ==  to denote the query data,  

1{ , }
i i

k

I T iH H H ==  to denote the hash codes of data, and 

Frobenius
 to denote the Frobenius norm of a matrix, 

respectively. 

B. Network structure 

Many cross-modal hashing methods based on deep 
learning, e.g. SCH-GAN [2], use convolutional neural 
networks (CNN) to extract the features of images as input 
values for training. In this paper, we use VGG-19 [16] to 
extract the features of the images and encode them as hash 
codes through two fully-connected layers. While for texts, the 
texts are represented by the bag-of-words (BoW) features and 
are also encoded into hash codes through two fully-connected 
layers. The whole DHLBT model is shown in Fig. 1. 

 

Figure 1.  The framework of our DHLBT model. 

C. Feature Learning Part 

We firstly map the extracted image or text features to a 
common space through the fully-connected layer1 in the Fig. 
1, then obtain the low-dimensional features through the fully-
connected layer2 in the Fig. 1. The activation functions for 
the fully-connected layer1 and the fully-connected layer2 are 
tanh function and sigmoid function, respectively. The process 
can be represented as: 

 
2 1 1 2

( (tanh( ) ))c c c cF sigmoid W W f B B= + +  () 

where W  are the weights, B  is the bias, 
1c  denotes the 

fully-connected layer1, 
2c  denotes the fully-connected 

layer2. f  denote the input value of VGG-19 [16] features 

of images or BoW features of texts. The low-dimensional 

features of images 
IF  and the low-dimensional features of 

texts 
TF  have the same shape, which allows us to measure 

the similarity between them. The hash code length is also the 

same as the dimension of the low-dimensional features so 

that the low-dimensional features F  can be directly mapped 

to the hash codes H  by the threshold function: 

 
1, 0.5

0, 0.5

if F
H

if F


= 


 () 

D. Hashing Objectives 

Our objective function is mainly divided into three parts, 
which are: 1) the distance between the features of the images 

IF  and the features of the texts 
TF , 2) the distance between 

the features F and the hash code H , and 3) the regularization 
items of W and B . The image query text task and the text 

query image task are symmetric. Therefore, we take the text 
query image task as an example to show the objective 
function in the following parts. 

The distance between 
IF  and

TF : 

 
2

2
TiTi i i

qq I I
D F F+ += −  () 

 
2

2
TiTi i i

qq I I
D F F− += −  () 

where D denotes distance, iI +
denotes semantically similar 

image and iI −
 denotes semantically dissimilar image with 

text query 
Tiq . 

Ti iq I
D +  are the distance between iI +

 and  
Tiq . 

Ti iq I
D −  are the distance between iI −

 and  
Tiq . We use a 

margin-based hinge loss function to measure the loss, which 
is shown below: 

 1

1
max(0, )

Ti i Ti i

n

q I q I
i

L D D
n

 + −= + −  () 

where   is a margin parameter between 
Ti iq I

D +  and 
Ti iq I

D −  , 

and   is an adjustable hyper-parameter. n is the number of 

triplet ( , , )Ti i iq I I+ −
. While reducing the loss 

1L , 
Ti iq I

D +  will be 

reduced and 
Ti iq I

D −  will be increased simultaneously. This 

also conforms to the principle that small distance between 
semantically similar data and the large distance between 
semantically dissimilar data. In the process of training 

optimization, we intend to decrease the value of 
Ti iq I

D +  and 

increase the value of
Ti iq I

D −  simultaneously. Therefore, the 

optimization process can be transformed into a binary 
classification problem, and then, we apply sigmoid cross-
entropy as the loss function on it. The sigmoid cross-entropy 
formula for binary classification problem is shown below: 



  

 
[ ln( ( ) (1 )ln(1 ( )))]

. . {0,1}

loss z sigmoid x z sigmoid x

s t z

= − + − −


 () 

where x  represent a input value, and it can be assigned by 

either 
Ti iq I

D +  or 
Ti iq I

D − . z  denotes a target value. For 
Ti iq I

D + , 

we want 
Ti iq I

D +  as small as possible, that is, let 0z = , bring it 

into (6), as shown in equation (7): 

 
1 ln(1 ( )) ln(1 )q ITi i

Ti i

D

q I
loss sigmoid D e

+

+= − − = +  () 

For 
Ti iq I

D − , we want 
Ti iq I

D −  as large as possible, that is, let 

1z = , bring it into (6), as shown in equation (8): 

 
2 ln( ( )) ln(1 )q ITi i

Ti i

D

q I
loss sigmoid D e

−

−

−

= − = +  () 

By combining equation (7) and (8), we have our second 
loss item: 

 
2 1 2

1
( )

n

i

L loss loss
n

= +  () 

The distance between F  and H : 

Hash codes are discrete, and information loss will occur 
in the process while converting real value features F  to hash 
codes H : 

 
q q Ti TiTi Ti

H F q qD H F= −  () 

 
I Ii i i i i i

H F I I I I
D H F H F+ + − −= − + −  () 

where
q qTi Ti

H FD denotes the distance between the low-

dimensional features
TiqF of text query 

Tiq  and hash codes 

TiqH  of text query 
Tiq . 

I Ii i
H FD denotes the distance between 

the low-dimensional features 
IF  of images I  and hash codes 

IH  of images I . The following loss function can be obtained: 

 3

1
( )

q q I ITi Ti i i

n

H F H F

i

L D D
n

= +  () 

In the optimization process, the loss function will make 
hash codes more and more close to the features and will 
reduce the information loss caused by the conversion process 
from the features to hash codes. 

The regularization items of W and B : 

Large batch training has low stability while training. To 
minimize the negative effect of the problem, we introduce the 
orthogonal regularization as the penalty term of W . For B , 

we still use L2 regularization as a penalty term. The loss item 
is as follows: 

 
2 2

4

transpose

identity FrobeniusFrobenius
L W W I B = − +  () 

where transposeW  is the transpose of the weight matrix W and 

identityI  is an identity matrix. B  denotes the bias.   and   

denotes the hyper-parameters.  

By combining 
1L , 

2L , 
3L  and 

4L  together, we can get 

the full objective: 

 
1 2 3 4min L L L L L = + + +  () 

where  and  denote adjustable hyper-parameters.  

We also take the text query image task as an example to 
show the training process of our method in Algorithm 1. 

Algorithm 1 Training Process of DHLBT

Input: training data I, T

Output: weights W and bias B

1: initialize: Randomly initialize W and B, the batch

size is b and the number of training epochs is e;

2: for epoch = 0; 1; 2; :::;e¡1 do

3: if epoch%30 == 0 then

4: for qT=T1;T2;T3; :::;Tk do

5: Randomly sample m points from I+ and m

points from I¡ to make up a triplet set (qT ,I
+,I¡) as

training data.

6: end for

7: end if

8: for step = 1; 2; :::; dk¤m=be do

9: Train network and update parameters W and

B by equation (14);

10: end for

11: end for

  

III. EXPERIMENTS 

In this section, we evaluate the performance of DHLBT 
on two datasets, and compare the result with several current 
state-of-the-art methods. 

A. DATASETS 

We use 2 datasets for experiments: Wikipedia [17] and 
MIRFlickr [18], which are widely used public datasets in 
cross-modal hashing. And to evaluate this method more fully, 
we added a larger data set NUS-WIDE [19] for experiments.  

Wikipedia dataset [17] is a popular dataset which 
consists of 2866 text/image pairs divided into 10 categories. 
Following [2], Wikipedia dataset is separated into two parts: 
1) a training data of 2173 pairs which are also used as the 
retrieval database and 2) a query set of 693 pairs. Each image 
is represented by 4096 deep features extracted by the fc2 
layer of 19-layer VGGNet [16] from Keras applications, and 
each text is represented as a 1000-dimensional BoW vector. 

MIRFlickr dataset [18] contains 25000 images that are 
collected from the Flickr website and they are annotated with 
some of 24 provided labels. Each image is described with 
some textual tags. Therefore, each instance is a text-image 
pair. Following [2, 20], firstly, we preprocess raw tags of 
these images by removing punctuations and stop words. Then, 



  

we count the number of times for each word appeared in 
these tags. We only keep words that appeared at least 20 
times and add them to the vocabulary of BoW. Furthermore, 
we remove instances that do not contain the word of the 
vocabulary and that do not have textual tags or labels. We 
take 5% of instances in each category as the query set and the 
rest of the instances as the retrieval database. In addition, we 
sample 5000 data pairs from the retrieval database as the 
training data. Each image is represented by 4096 deep 
features extracted by the fc2 layer of 19-layer VGGNet from 
Keras applications, and each text is represented as a 1386-
dimensional BoW vector.  

NUS-WIDE dataset [19] contains 269648 images that are 
collected from the Flickr website and they are annotated with 
some of 81 provided labels. Each image is described with 
some textual tags. Therefore, each instance is a text-image 
pair. We select the 10 most common labels and the 
corresponding 186577 text-image pairs. We take 2000 of 
pairs in each category as the query set and the rest of the pairs 
as the retrieval database. In addition, we sample 5000 data 
pairs from the retrieval database as the training data. Each 
image is represented by 4096 deep features extracted by the 
fc2 layer of 19-layer VGGNet from Keras applications, and 
each text is represented as a 1386-dimensional BoW vector. 
Table 1 shows the number of samples in each set intuitively. 

TABLE I.  STATISTICS OF TWO BENCHMARK DATASETS 

 Wikipedia MIRFlickr NUS-WIDE 

Dataset Size 2866 20819 186577 
Training Set 2173 5000 5000 

Query Set 693 1041 2000 

Retrieval Set 2173 19778 186577 

labels 10 24 10 

B. EVALUATION PROTOCOL 

We perform two kinds of retrieval tasks for each dataset: 

1) retrieving text by image query, termed image→text; and 2) 

retrieving image by text query, termed text → image. 

Following [2], we utilize Hamming ranking to evaluate 
DHLBT and compared the result with the other state-of-the-
art methods. Specifically, we first obtain the hash codes of 
images and texts, and then compute the Hamming distance 
between query with all the retrieval database. After ranking 
the Hamming distance list, we use 2 widely used assessment 
standards to evaluate the retrieval performance, which are 
shown below: 

1) Mean Average Precision (MAP): The mean of all 
queries’ average precisions (AP) called MAP. 

1

1 n k

kk

R
AP rel

R k=
=   is the definition of AP where R is 

the amount of the related data in the retrieval database, n  is 

the amount of retrieval database, 
kR   is the amount of the 

related data in the top k  ranks of the Hamming distance 

ranking list, and 
krel   is an indicator of relevance of the 

Hamming distance ranking list which is set to 1 if the data at 

k -th position is related and 0 elsewise. 

2)Precision Recall curve (PR-curve): The precision at the 
certain recall of the Hamming distance ranking list, that often 
evaluates the performance of retrieval. 

C. BASELINES AND IMPLEMENT DETAILS 

We compare two non-deep learning methods: SePH [20] 
and GSPH [21], which are both supervised methods. For 
SePH and GSPH, they are kernel-based methods and both of 
them achieved best results by using KLR which respectively 
created in two ways: 1) k-means algorithm and 2) random 
sampling. So, for these two hashing methods, we use KLR to 
learn hash function and create kernel by using k-means 
algorithm (klr+k) and random sampling (klr+r). In addition, 
we also compare our methods to three state-of-the-art deep 
learning-based methods, including SCH-GAN [2], UGACH 
[3] and DCMH [5]. SCH-GAN is a semi-supervised method. 
UGACH is an unsupervised method and DCMH is a 
supervised method. In all experiments, two modal data of 
image and text are used. When the data of one modal is used 
as the query set, the data of the other modal is used as the 
retrieval set. Source codes of all methods are kindly provided 
by the corresponding authors. For the parameters mentioned 
in all methods, we directly adopt the original parameter 
settings used in their codes. For an objective comparison 
between different methods, we use the same image and text 
features as input data features for all compared methods. 
Specifically, for Wikipedia and NUS-WIDE datasets, we use 
the 4096 deep features extracted by the fc2 layer of 19-layer 
VGGNet from Keras applications for images, and 1000-
dimensional bag-of-words features for texts; For MIRFlickr 
dataset, we use the 4096 deep features extracted by the fc2 
layer of 19-layer VGGNet from Keras applications for 
images, and 1386-dimensional bag-of-words features for 
texts. For DCMH, which is an end-to-end method, we add an 
experiment which directly uses original image features as the 

input value of the image network. 19DCMHvgg and 

DCMHoriginal denote these two versions of DCMH, 

respectively. For our method, we set 0.01 = , 0.01 = , 

0.0001 = and 0.01 = . Similar to [2, 3], for each data, the 

corresponding data is selected to form 4 triplets for training, 
that is, m in Algorithm 1 is set to 4. So, there 

are 2173 4 8692 = triplets for Wikipedia 

dataset, 5000 4 20000 = triplets for MIRFlickr and NUS-

WIDE datasets. The batch size is set to 8192. And the 
learning rate for Wikipedia dataset is 0.08, the learning rate 
for MIRFlickr dataset is 0.016 and the learning rate for NUS-
WIDE dataset is 0.016. The hash code bits are 16, 32, and 64, 
and   is 6, 8, and 10, respectively. We implement the 

proposed DHLBT by Tensorflow applications. All the 
experiments conducted on a server with hardware of 
NVIDIA GTX 1080Ti graphic card, Intel(R) Xeon(R) E5-
2620 v4 2.10GHz CPU, 128 GB memory. The model was 
built by Python3.5.2 and Tensorflow 1.11.0. 

D. EXPERIMENTAL RESULTS 

We demonstrate the MAP scores of all methods on 
MIRFlickr, Wikipedia and NUS-WIDE datasets in Table 2, 
Table 3 and Table 4. From the result, it can be observed that 
our method achieves the best retrieval accuracy at 32-bit and 
64-bit hash code length over all datasets. In general, 
compared with the second-best method SCH-GAN, in the 
task of image query text, our method is about 1.8%, 8.2% and 
1.1% higher on MIRFlickr, Wikipedia and NUS-WIDE 
datasets, respectively. And in the task of text query image, 



  

our method is about 1.3%, 2% and 0.2% higher on MIRFlickr, 
Wikipedia and NUS-WIDE datasets, respectively. This is 
mainly because we use large batch size to train the model 
which can get better gradients and use orthogonal 
regularization to improve the generalization ability of our 
model. And it is also because the distance between the hash 
codes and the features of data is added to the loss function 
which makes the hash codes are more realistic to represent 
the features of data. From the results, we can see that the hash 
code length has a remarkable impact on the MAP scores. For 
16-bit hash code, the length is not enough to get sufficient 
information. Although our method has achieved the best 
results on Wikipedia dataset, it is only the second-best on 
MIRFlickr and NUS-WIDE datasets, indicating that the hash 
code length has a certain impact on MAP scores. 

TABLE II.  THE MAP SCORES ON MIRFLICKR DATASET 

Methods 
image→text text→image 

16 32 64 16 32 64 

SePHklr r+ [20] 0.7364 0.7367 0.7451 0.7486 0.7514 0.7573 

SePHklr k+ [20] 0.7377 0.7459 0.7467 0.7522 0.7595 0.7599 

GSPHklr r+ [21] 0.7279 0.7425 0.7541 0.7579 0.7693 0.7760 

GSPHklr k+ [21] 0.7374 0.7485 0.7584 0.7614 0.7729 0.7798 

UGACH [3] 0.6100 0.6045 0.5848 0.6278 0.6029 0.6101 

DCMHoriginal [5] 0.7296 0.7363 0.7386 0.7639 0.7650 0.7703 

19DCMHvgg [5] 0.7433 0.7527 0.7592 0.7669 0.7792 0.7837 

SCH-GAN [2] 0.7203 0.7481 0.7609 0.7661 0.7851 0.7884 

Ours 0.7410 0.7571 0.7718 0.7822 0.7915 0.7953 

TABLE III.  THE MAP SCORES ON WIKIPEDIA DATASET 

Methods
image→text text→image 

16 32 64 16 32 64 

SePHklr r+ [20] 0.5009 0.5287 0.5393 0.5508 0.5955 0.6190 

SePHklr k+ [20] 0.4997 0.5252 0.5413 0.5584 0.6009 0.6122 

GSPHklr r+ [21] 0.5064 0.5289 0.5320 0.5701 0.6001 0.6237 

GSPHklr k+ [21] 0.5117 0.5318 0.5390 0.5801 0.6036 0.6207 

UGACH [3] 0.3332 0.3605 0.3688 0.3222 0.3323 0.3471 

DCMHoriginal [5] 0.4503 0.4506 0.4120 0.7419 0.7238 0.6940 

19DCMHvgg [5] 0.4387 0.4698 0.4809 0.8279 0.8457 0.7927 

SCH-GAN [2] 0.5207 0.5370 0.5076 0.8352 0.8351 0.8288 
Ours 0.5528 0.5712 0.5688 0.8426 0.8502 0.8572 

TABLE IV.  THE MAP SCORES ON NUS-WIDE DATASET 

Methods
image→text text→image 

16 32 64 16 32 64 

SePHklr r+ [20] 0.6537 0.676 0.6792 0.6769 0.6857 0.6836 

SePHklr k+ [20] 0.6625 0.685 0.6848 0.6681 0.6875 0.6886 

GSPHklr r+ [21] 0.6703 0.6858 0.6961 0.676 0.6838 0.7028 

GSPHklr k+ [21] 0.6746 0.696 0.7049 0.6756 0.6986 0.7052 

UGACH [3] 0.6231 0.6296 0.6293 0.6152 0.6116 0.6152 

DCMHoriginal [5] 0.6008 0.6419 0.6383 0.6439 0.6739 0.6709 

19DCMHvgg [5] 0.6341 0.6552 0.6631 0.6803 0.699 0.7058 

SCH-GAN [2] 0.6647 0.6909 0.7027 0.6862 0.7086 0.7128 

Ours 0.6625 0.7007 0.7179 0.6848 0.7091 0.7189 

 
Figure 2.  The PR-curves on Wikipedia dataset. 

 
Figure 3.  The PR-curves on MIRFlickr dataset. 

 
Figure 4.  The PR-curves on NUS-WIDE dataset. 

 



  

TABLE V.  THE DIFFERENT BATCH SIZE TRAINING OF DHLBT ON WIKIPEDIA DATASET 

Batch Size 
Learning 

rate 
Ortho. 

MAP (image → text) MAP (text → image) 
The sum of MAP 

(image→text and text → image) 

Time of 

 each epoch 

16 32 64 16 32 64 16 32 64 16 32 64 

512 0.02 N 0.5406 0.5506 0.5612 0.8280 0.8524 0.8432 1.3686 1.4030 1.4044 9.3s 9.6s 10.2s 

512 0.02 Y 0.5588 0.5629 0.5691 0.8312 0.8576 0.8479 1.3900 1.4205 1.4170 16.0s 16.3s 16.8s 

2048 0.04 N 0.5509 0.5594 0.5699 0.8231 0.8462 0.8326 1.3740 1.4056 1.4025 8.1s 8.2s 8.5s 

2048 0.04 Y 0.5559 0.5668 0.5702 0.8380 0.8486 0.8545 1.3939 1.4154  1.4247 10.9s 11.0s 11.3s 

8192 0.08 N 0.5487 0.5563 0.5649 0.8217 0.8431 0.8327 1.3704 1.3994 1.3976 7.5s 7.5s 7.9s 

8192 0.08 Y 0.5528 0.5712 0.5688 0.8426 0.8502 0.8572 1.3954 1.4214 1.4260 8.2s 8.3s 8.6s 

 

Figure 5.  The changes of MAP during the training process with the batch size of 512, 2048 and 8192, respectively. 

 

Figure 6.  The changes of MAP in different value of the hyperparameter  ,  and  , respectively.

The PR-curves at 32- and 64-bit hash code length on 
Wikipedia, MIRFlickr and NUS-WIDE datasets are shown in 
Fig. 2, Fig. 3 and Fig. 4, respectively. The result shows that our 
method performs better than other state-of-the-art methods.  

In addition, we also compare the effects of different batch 
sizes and orthogonal regularization on our model training on 
the Wikipedia dataset.  The batch size is set to 512, 2048, and 
8192, respectively. When increasing the batch size, it is 
necessary to increase the learning rate to ensure the 
convergence speed, so the learning rates are 0.02, 0.04, and 
0.08, respectively. N means that orthogonal regularization is 
not used, and Y means orthogonal regularization is used. When 
orthogonal regularization is not used, we replace it with L2 
regularization, that is, equation (13) is replaced by:  

 
2 2

4 ( )
Frobenius Frobenius

L w B= +  () 

We keep configuration for all parameter except the learning 
rate. The result of the comparison is shown in Table 5. When 
evaluating the performance, we need to consider not only the 

map of image→ text, but also the map of text→ image. 

Therefore, the map sum of text→image and image→text is 

given in Table 5. It can be seen that using orthogonal 
regularization can obviously achieve better performance when 
using same batch size, but the training time of each epoch will 
be increased. Extend the batch size will significantly increase 
training speed. Simply increasing the batch size without using 
orthogonal regularization does not achieve good performance. 
When the batch size is 8192 and the orthogonal regularization 
is used, we achieve the best performance. 

We also analyze the training stability of our model. The 
changes of MAP at 64-bit hash code length during the training 
process with the batch size of 512, 2048 and 8192 on 
Wikipedia dataset are shown in Fig. 5. “orth” means that 
orthogonal regularization is used, and “no_orth” means 



  

orthogonal regularization is not used. The result shows that the 
changes of MAP are more volatile with the increase of batch 
size. And the changes of MAP become stable and the model 
can get better performance when used the orthogonal 
regularization. 

At last, we conduct sensitivity experiments for 
hyperparameter  ,  and  .   is set to 0.001, 0.01, 0.1 and 

1.0, respectively.   is set to 0.001, 0.01, 0.1 and 1.0, 

respectively.   is set to 4, 8, 12 and 16, respectively. When 

performing sensitivity experiments on one hyperparameter, 
other hyperparameters remain fixed. That is, we set 

=0.01 when performing sensitivity experiments on  or  . 

We set =0.01 when performing sensitivity experiments on 

 or  . We set =8 when performing sensitivity experiments 

on  or  . Fig. 6 shows the changes of MAP at 32-bit hash 

code length in different value of the hyperparameter  ,  and 

  on MIRFlickr dataset. The result shows that the changes of 

MAP are not volatile when the value of  or   is set to 

between 0.001 and 0.01. The changes of MAP are volatile in 
different value of the hyperparameter  . When the value of   

is set to 8, we get the best MAP scores. For hyperparameter 
0.0001 = and 0.01 = ,we follow [10] and [2], respectively, 

which are the best parameters selected by the corresponding 
authors through sufficient experiments. In order to reduce 
hyperparameters, we set  and   to the same value of  , 

which is 0.01.   

IV. CONCLUSIONS 

In this paper, we propose a deep hashing with large batch 
training (DHLBT) for the cross-modal hashing retrieval. 
DHLBT is the cross-modal hashing which uses large batch 
training and uses orthogonal regularization to improve the 
generalization ability of our model. Moreover, the distance 
between hash codes and features is added to the objective 
function which makes hash codes to represent data more 
realistically. The effectiveness of DHLBT is demonstrated 
through the experiments on three widely-used datasets: 
Wikipedia, MIRFlickr and NUS-WIDE.  
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