
Using Deep Learning Classifiers to Identify

Candidate Classes for Unit Testing in Object-Oriented

Systems.

Wyao Matcha

Software Engineering

Research Laboratory

Department of Mathematics

and Computer Science

University of Quebec,

Trois- Rivieres, Quebec,

Canada

Wyao.Matcha@uqtr.ca

Fadel Touré
Software Engineering

Research Laboratory

Department of Mathematics

and Computer Science

University of Quebec,

Trois- Rivieres, Quebec,

Canada

Fadel.Touré@uqtr.ca

Mourad Badri
Software Engineering

Research Laboratory

Department of Mathematics

and Computer Science

University of Quebec,

Trois- Rivieres, Quebec,

Canada

Mourad.Badri@uqtr.ca

Linda Badri
Software Engineering

Research Laboratory

Department of Mathematics

and Computer Science

University of Quebec,

Trois- Rivieres, Quebec,

Canada

Linda.Badri@uqtr.ca

Abstract — This paper aims at investigating the use of deep

learning to suggest candidate classes to be tested rigorously

during unit testing. The approach is based on software unit

testing information history and source code metrics. We

conducted our experiments using data collected from five (5)

successive versions of the open source Java Apache software

system ANT. For each version, we collected various source code

metrics from the source code of the Java classes. We then

extracted testing coverage measures for software classes for

which dedicated JUnit test classes have been developed. We

considered instruction and method level coverage granularities.

Based on the different datasets collected, we trained several

deep neural network models. We validated the constructed

classifiers using Cross Version Validation technique. The

obtained results strongly support the viability of our approach

with an average accuracy greater than 87%.

Keywords- Unit Testing, Tests Prioritization, Source Code

Metrics, Testing Coverage Measures, Machine Learning, Deep

Learning.

I. INTRODUCTION

Testing is the stage of software development where

developers (testers) assess the conformity of the system

developed (under development) with specifications [1].

Testing plays a crucial role in software quality assurance. It

is, however, a time and resource-consuming process. Unit

testing is one of the main phases of the testing process where

each software unit is early and individually tested using

dedicated unit test cases. In object-oriented (OO) software

systems, units are software classes and testers usually write a

dedicated unit test class for each software class they decided

to test [2]. The main goal of unit testing is to early reveal the

faults of software classes. In the case of large-scale OO

software systems, because of resources limitation and time

constraints, it is difficult, even unrealistic, to test rigorously

all the classes [3]. The unit testing efforts are often focused.

Testers (developers) usually prioritize unit tests by selecting

and focussing the unit testing effort on a limited set of

software classes (most critical) for which they write dedicated

unit tests. Tests case prioritization is a method for prioritizing

and planning test cases [3, 5]. This technique is used to run

higher priority test cases (focus on the most critical

components) to minimize time, cost and effort during the

software testing process [3-6].

In this paper, we focus on unit testing of classes and

particularly on how to automatically suggest suitable classes

for unit testing using deep learning and information on both

unit testing history and source code metrics. Several research

related to test cases prioritization [7] using different OO

metrics (The Chidamber and Kemerer metric suite in

particular [8]) have been proposed in the literature. Some of

these metrics, related to different software class attributes,

have already been used in recent years to predict unit

testability of classes [9-13]. These studies analyzed in

particular various open source Java software systems and the

corresponding JUnit test classes. One of the observations that

have been made in these studies is that unit test cases were

written only for a subset of classes [11-13].

Currently, many software repositories are available and

can be used (among others) to analyze and predict software

quality. Based on these repositories, can we extract valuable

information that can be used to help software testers in

prioritizing unit tests? Is it possible to automate this process?

The main goal of our research is to propose an approach to

identifying suitable classes for unit testing using deep

learning techniques [14,15] (artificial neural networks). The

approach is based on software unit testing information history

and source code metrics. We conducted our experiments

using data collected from five (5) successive versions of the

DOI reference number: 10.18293/SEKE2020-147

open source Java Apache software system ANT [16]. For

each version, we first collected various source code metrics

from the source code of the Java classes. We then extracted

testing coverage measures for software classes for which

dedicated JUnit [17] test classes have been developed. We

considered instruction and method level coverage

granularities. With the collected data, we trained several deep

neural network models. We validated the constructed

classifiers using Cross Version Validation technique. The

obtained results strongly support the viability of our approach

with an average accuracy greater than 87%.

II. RELATED WORK

Touré et al. [7] investigated an approach based on software
information history to support the prioritization of classes to
be tested. They have analyzed different class attributes of ten
Java open source software systems for which JUnit unit test
classes were developed. Using different techniques, they first
characterized the classes for which JUnit test classes were
developed by the testers. Secondly, they built two classifiers
using OO metrics and unit tests information collected from the
selected systems. The classifiers provide, for each software, a
set of classes on which the unit testing efforts must be focused.
The sets of obtained candidate classes were compared to the
sets of classes for which JUnit test classes were developed by
the testers. The results have shown that: (1) average values of
the metrics of the classes tested are very different from
average values of the metrics of the other classes (2) there is a
significant relationship between the fact that a JUnit test class
was developed for a class and its source code attributes, and
(3) the sets of classes suggested by the classifiers correctly
reflect the selection of testers.

Mirarab et al. [18] used Bayesian networks to create a
unified model based on information provided by the CK
metrics suite [8], changes and testing coverage rates. The
defined approach optimizes coverage and improves the fault
detection rate compared to the random planning of test
scenarios.

Helge Spieker et al. [19] present Retecs (Reinforcement
Learning for Automatic Test Cases Prioritization and
Selection in Continuous Integration), which is a method for
selecting and prioritizing test cases based on machine
learning. It is used in cases of continuous integration with the
aim of minimizing the round-trip delay between code
validation and developer comments in the event of failure of
the test cases. The Retecs method uses reinforcement learning
to select and prioritize test cases according to their duration,
the last execution history and failure. In an environment where
new test cases are created and obsolete test cases are deleted,
the Retecs method learns to prioritize error-prone tests using
a reward function and build on previous cycles of integration.
By applying Retecs on data extracted from three industrial
case studies, Helge Spieker et al. have shown for the first time
that reinforcement learning allows fruitful selection and
automatic prioritization in continuous integration and
regression tests.

III. DATA COLLECTION

For our investigations, we carried out our experiments on
Apache ANT software system, which is a command-line tool
used to control the execution processes described in mutually
dependent XML files (build files) [16]. The versions 1.3, 1.4,
1.5, 1.6 and 1.7 of ANT system have been extracted to carry
on our experiments.

A. Data Collection Tools

The source code of ANT’s considered versions has been
grabbed from GitHub [20] repository. Under IntelliJ [21] IDE,
we used Code Mr [22], Cover [23] plugins as well as the JUnit
Framework [17] to run the unit test suites and collect source
code metrics and testing coverage measures.

B. Source Code Metrics

Four our study, we considered six (6) source code metrics,

five from the well-known metrics suite proposed by

Chidamber and Kemerer [8] and the widely used SLOC

metric. These metrics capture various OO attributes such as

coupling, inheritance, cohesion, complexity and size. They

have received particular attention in empirical software

engineering research and are computed by Code Mr plugin

according to the following definitions:

Coupling metrics: (1) CBO (Coupling between objects)

calculates the number of classes to which a class is linked and

vice versa.

Inheritance metrics: (2) DIT: (Depth of Inheritance) counts

the number of classes between the measured class and the

root of its inheritance hierarchy. (3) NOC: (Number of

Children) calculates the number of subclasses that inherit

from the measured class.

Cohesion metrics: (4) LCOM: (Lack of cohesion in Methods)

assesses the lack of cohesion in a class. It counts the number

of methods pairs whose similarity is 0 minus the number of

method pairs whose similarity is different from zero.

Complexity metrics: (5) WMC: (Weighted Method

Complexity) sums up the cyclical complexities of all the

methods of the measured class. (6) RFC: (Response for

classes) calculates the number of possible methods that can

be called in response to the method invocation of the

measured class.

Size metrics: (7) SLOC: (Source Lines of Codes) calculates

the number of lines of code in measured class.

C. Descriptive statistics

The descriptive statistics on the different versions of the ANT

system [13] show that the number of classes increases from

1093 for version 1.3 to 1145 classes for version 1.7. The

average complexity (WMC) and source lines of code (SLOC)

vary slightly from one version to another (around 19 for

WMC and 156 for SLOC). This small variation is also

observed for the other metrics average values. The great

variability of metrics within the same version indicated by the

standard deviations (σ), reflects the variability level of the

software classes characteristics.

TABLE 1:Descriptive statistics of the used source code metrics - ANT

Vers. obs. Stat CBO DIT LCOM SLOC NOC RFC WMC

V1.3 1096

Min 0 1 0 4 0 1 1

Max 672 7 30 1899 143 326 236

Mean 10.97 2.4 1.85 156.64 0.67 26.06 19.74

σ 1111.2 1.82 5.36 49022.6 27.09 1130 864.26

V1.4 1102

Min 0 1 0 6 0 1 1

Max 674 7 30 2204 143 321 235

Mean 10.84 2.39 1.84 155.65 0.67 25.78 19.51

σ 1104.3 1.82 5.35 50129.7 26.97 1106.4 841.08

V1.5 1103

Min 0 1 0 6 0 1 1

Max 674 7 30 2204 143 321 235

Mean 10.84 2.39 1.84 155.73 0.67 25.79 19.52

σ 1104.3 1.82 5.35 50304.1 26.97 1108.1 843.18

V1.6 1140

Min 0 1 0 6 0 1 1

Max 694 7 30 2214 145 321 252

Mean 10.8 2.38 1.82 155.01 0.66 25.63 19.44

σ 1123 1.82 5.18 50743.9 27.72 1096.2 840.85

V1.7 1143

Min 0 1 0 4 0 0 1

Max 694 7 30 2214 145 321 255

Mean 10.81 2.39 1.83 157.33 0.66 25.65 19.45

σ 1125.1 1.83 5.25 53739.4 27.71 1100.1 843.81

D. Empirical Analysis

We have collected the source code of the five different

versions of ANT [16] considered for the study, grabbed from

GitHub repository [20]. We followed the steps described

below for each version:

Step 1: Extracting the considered source code metrics using

Code Mr [22] plugin.

Step 2: Running unit test suites and collecting the testing

coverage rates by using Cover [23] plugin and JUnit [17]

framework.

Step 3: Filtering outlier observations, which are mainly OO

artefacts with 0 complexity (interfaces, some of abstract

classes, enumerations and constants collecting classes).

Step 4: Computing the rank of each value of the metrics. This

step is motivated by the fact that the classifier will be trained

on several versions of different sizes. Ranks will help the

classifiers to mitigate the metrics’ values.

Step 5: Labelling testing coverage data. We have labelled

each class with a binary value, 1 or 0, depending on whether

its unit testing coverage reaches a given threshold percent or

not. 50%, 30% and 0% thresholds have been considered. For

example, by setting the threshold at 50%, all the classes

having a testing coverage greater or equal to 50% are labelled

as 1 (considered as tested), and the rest of classes is labelled

as 0 (considered as not tested).

For each class, the attributes formed by the source code

metrics, the associated rank values as well as the binarized

coverage rates, form a labelled observation. With the

collected data, our goal is to train a deep neural network

model to build classifiers that could automatically predict

(suggest) the label of each observation. In addition, we

wanted to investigate if a classifier built from the dataset of

version n, correctly predicts the level of testing coverage in

the successive n + 1 version.

TABLE 2: Distribution of tested classes - method granularity

Versions Obs 0% 30% 50%

13 1096 179 108 81

14 1102 187 114 82

15 1103 193 117 85

16 1140 193 116 85

17 1143 196 119 87

TABLE 3: Distribution of tested classes - instruction granularity

Versions Obs 0% 30% 50%

13 1096 179 98 60

14 1102 187 102 61

15 1103 193 105 65

16 1140 193 103 62

17 1143 196 106 64

IV. EXPERIMENTAL METHOD

A. Neural networks

Neural networks belong to the family of machine learning
classifier models [24, 25]. The building blocks for neural
networks are artificial neurons [26]. These are simple
computational units that have weighted input signals and
produce an output signal using an activation function [27].

Neurons are arranged into networks of neurons. A row of

neurons is called a layer. Neural networks may have multiple

layers. The first layer, called input or visible layer, takes input

from the dataset. The following layers are referred as hidden

layers. They are responsible for compressing and building

internal representation of datasets. The last layer, also called

output layer, is responsible for classifying the output on the

required classes.

Deep neural networks refer to networks containing more

than one hidden layer. Training those layers requires large

amount of data and specific techniques that prevent vanishing

gradient issue [25].

The neural net training process relies on forward
propagation technique that consists of feeding input values to
the neural network and getting an output (predicted value). On
each training epoch, error is computed using back-propagation
technique [28].

B. Construction and Architecture of the Neural Network

Our deep learning architectures (ANN) are built using

Python programing language, under TensorFlow [29] and

Keras [30] frameworks supported by Pandas [31] library for

data manipulation. We carried out several tests before coming

to the following configuration that produced the obtained

results.

Our input layer contains fourteen (14) neurons to match

the 14 characteristics (7 for source code metrics plus 7 for

rank values associated with each metric value). Thirteen (13)

hidden layers follow the input layer containing 169 neurons

each. And finally, 2 neurons compose the output layer to

match our binary classification problem. We used ReLu as

activation function for input and hidden layers. We relied on

"Adam" as optimizer and the mean square as loss function.

The model has been evaluated using confusion matrix.

C. Classifier Validation

We validated our classifier using Cross Version

Validation (CVV) technique inspired by classical cross

validation techniques. CVV approach consists of training the

neural network model on dataset of a version V of the ANT

system, then validating the obtain classifier on the dataset of

the successive version V+1.

V. RESULTS AND INTERPRETATIONS

The CVV technique has validated the suggestions of

classes to be tested for a given version, made by a classifier

trained on the previous version. The following results were

obtained by this validation technique applied to the different

considered versions of ANT.

TABLE 4: CVV results on Method granularity level
 CM50 CM30 CM0

13->13 93.20% 91.77% 88.28%

13->14 92.97% 91.19% 87.99%

14->14 94.04% 90.84% 88.79%

14->15 93.77% 90.57% 88.26%

15->15 93.51% 92.62% 89.06%

15->16 93.64% 92.35% 88.57%

16->16 94.67% 94.07% 89.86%

16->17 94.25% 93.56% 89.70%

From Table 4 (CVV results on method granularity level),
it can be seen that:

The threshold of 50% produces accuracy scores that are
greater than 92%. The lowest accuracy is obtained for a
validation on version 1.4 (92.97%) and the highest is obtained
for a validation on version 1.7 (94.25%).

For a threshold of 30%, the obtained accuracy scores are
greater than 90%. The lowest accuracy is obtained while
validating on version 1.5 (90.57%) and the highest for the
validation on version 1.7 (93.56%).

For a threshold of 0%, the accuracy scores obtained are
greater than 87%. The lowest accuracy is obtained when
validation is done on version 1.4 (87.99%) and the highest for
validation on version 1.7(89.70%).

After all validations, we can notice the trends of the
accuracy to increase. Indeed, the highest accuracy scores
obtained are noticed for a threshold set at 50%. This indicates
that there exists a relationship between classes metrics and
labelled classes (classes labelled 1 or 0). Other results obtained
with threshold sets at 30% and 0% are good but show that their
classifiers are not as accurate as the one obtained with the
threshold set at 50%.

From these results, we can conclude that by using method
granularity level, we are able to predict correctly candidate
classes for unit testing.

 TABLE 5: CVV results on Instruction granularity level

 CLOC50 CLOC30 CLOC0

13->13 94.63% 93.47% 88.37%

13->14 94.48% 93.06% 87.28%

14->14 95.37% 94.22% 89.86%

14->15 95.02% 93.95% 89.32%

15->15 94.48% 94.57% 90.12%

15->16 94.67% 94.24% 89.69%

16->16 95.79% 94.76% 88.57%

16->17 95.62% 94.42% 88.58%

From Table 5 (CVV results on instruction granularity
level), it can be seen that:

For a threshold set at 50%, the accuracy scores obtained
are greater than 94%. The lowest accuracy is obtained for a
validation on version 1.4 (94.48%) and the highest is obtained
for a validation on version 1.7 (95.62%).

For a threshold set at 30%, the accuracy values obtained
are greater than 93%. The lowest accuracy is obtained while
validating on version 1.4 (93.06%) and the highest for
validation on version 1.7 (94.42%).

For a threshold set at 0%, the accuracy values obtained are
greater than 87%. The lowest accuracy is obtained for
validation on version 1.4 (87.28%) and the highest for
validation on version 1.6 (89.69%).

 As we go from validation on version 1.3 to validation on
version 1.7, we observed an increase of the accuracy from
87% to 89%.

As in the case of method granularity level, we obtained the
highest accuracy scores for a threshold set at 50%. Hence a
classifier obtained by training it on the dataset will be more
efficient and accurate than the one obtained with another
threshold. We also observe a tendency of the accuracy to
increase during the test.

From these results, we can conclude that by using
instruction granularity level, we are also able to predict
correctly candidate classes for unit testing.

By comparing the results obtained for the different levels
of granularities (methods and instruction), we see that we
obtain high accuracy scores for the instruction level.

From these two tests, we can conclude that the choice of
the level of granularity as well as the threshold set is crucial.

The CVV validation showed that it is possible to predict
classes to be tested on a version developed or under
development by a classifier trained on the previous version of
the same system. Moreover, we can notice that we got higher
accuracy rates for the instruction granularity level with a
threshold of 50%.

VI. LIMITATIONS

The obtained results are quite significant with regard to the
used dataset (information collected from five different
versions of a same system) but should nevertheless be
considered as exploratory. The selection of the classes to test
explicitly (for which JUnit test classes have been developed)
is in most cases left to the goodwill of developers. This can
lead to partially tested classes and systems with few tested
classes, which in turn can influence the results obtained in our
various experiments.

The generalization of our results requires additional
investigations including tests quality as well as the
application’s domain of the considered software systems,
which can also impact the results and restrict their scope. In
our analyzes, we limited ourselves to Java OO language. Even
if Java is a reference language in OO programming, our results
could be biased by this limitation.

We limited our investigations to a well-known case study
system (ANT). The study should be replicated on more
software systems in order to draw more general conclusions.

VII. CONCLUSION

In this work, the goal was to provide an approach that
supports unit testing decision when selecting the software
classes to be tested. For that, we used a classifier build from
deep neural network model based on various class source code
metrics and the corresponding unit testing coverage data. Two
levels of testing coverage measures have been considered in
combination. We validated the constructed classifier using
cross version validation technique. By obtaining after various
tests more than 87% of accuracy rates, we can conclude that
the obtained results strongly support the viability of the
approach.

These results open the possibility of using software
metrics and the developers’ experience (particularly in terms
of unit testing development) in guiding the distribution of the
overall unit testing effort. Hence using current big data
analysis techniques (involving artificial intelligence
algorithms), it is possible to develop cloud-based tools in
order to build a new generation of tests prioritization tools and
guidance integrated into software development environments.

REFERENCES

[1] B. Boehm, "A Spiral Model of Software Development and

Enhancement", Proc. Int’l Workshop Software Process and Software
Environments, ACM Press, 1985; also in ACM Software Eng. Notes,

Aug. 1986, pp. 22-42.

[2] B. Boehm. "Software Engineering Economics". Prentice Hall,

Englewood Cliffs, NJ, ISBN-10 : 0138221227, edition 01 oct 1981.

[3] S. Elbaum, A. G. Malishevsky and G. Rothermel, "Test Case
Prioritization: A Family of Empirical Studies", IEEE Transactions

Software Engineering, Vol. 28, No. 2, pp.159-182, 2002.

[4] S. Elbaum, A. G. Malishevsky and G. Rothermel, "Prioritizing test

cases for regression testing". Proc. ACM SIGSOFT Int. Symp. on

Software Testing and Analysis (ISSTA), Portland, OR, USA, 22-25

August 2000, pp. 102-12

[5] G. Rothermel, R.H Untch, C. Chu and M.J Harrold . "Test case

prioritization: an empirical study", International Conference on

Software Maintenance, Oxford, UK, pp. 179–188.,1999.

[6] J. Kim, and A. Porter , "A history-based test prioritization technique
for regression testing in resource constrained environments", In

Proceedings of the International Conference on Software Engineering,

2002.

[7] F. Toure., M. Badri and L. Lamontagne, "Investigating the

Prioritization of Unit Testing Effort Using Software Metrics", In
Proceedings of the 12th International Conference on Evaluation of

Novel Approaches to Software Engineering (ENASE’17) Volume 1:

ENASE, pages 69-80, 2017.

[8] Chidamber S.R. and Kemerer C.F., "A Metrics Suite for Object

Oriented Design", IEEE Transactions on Software Engineering, vol.

20, no. 6, pp. 476–493, 1994.

[9] M. Bruntink , and A.V. Deursen,"Predicting Class Testability using

Object-Oriented Metrics", 4th Int. Workshop on Source Code Analysis

and Manipulation (SCAM), IEEE, 2004.

[10] V. Gupta, K. K. Aggarwal and Y. Singh, "A Fuzzy Approach for

Integrated Measure of Object-Oriented Software Testability", Journal

of Computer Science, Vol. 1, No. 2, 2005, pp. 276-282.

doi:10.3844/jcssp.2005.276.282.

[11] M. Bruntink and A. Van Deursen, "Predicting class testability using
object-oriented metrics", in Proceedings of the 4th IEEE International

Workshop on Source Code Analysis and Manipulation (SCAM ’04),

pp. 136–145, September 2004.

[12] M. Bruntink and A. van Deursen, "An empirical study of class

testability", Journal of Systems and Software, vol. 79, no. 9, pp. 1219–

1232, 2006.

[13] L. Badri, M. Badri, and F. Toure, "An empirical analysis of lack of

cohesion metrics for predicting testability of classes", International

Journal of Software Engineering and Its Applications, vol. 5, no. 2,

2011.

[14] K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. "What is

the best multi-stage architecture for object recognition?" In

International Conference on Computer Vision, pages 2146–2153.

IEEE, 2009.

[15] Y. LeCun, K. Kavukcuoglu, and C. Farabet, Convolutional networks
and applications in vision. In Circuits and Systems (ISCAS),

Proceedings of 2010 IEEE International Symposium on, pages 253–

256. IEEE, 2010.

[16] Apache ANT releases, https://github.com/apache/ant/releases, Visited

in december 2019.

[17] JUnit Framework, https://junit.org/junit5/. Visited in december 2019.

[18] S. Mirarab, A. Hassouna, and L. Tahvildar, "Using Bayesian belief

networks to predict change propagation in software systems" in

Proceedings of the 15th IEEE International Conference on Program

Comprehension, pages 177-188, 2007.

[19] H. Spieker, A. Gotlieb, D. Marijan and M. Mossige, "Reinforcement

learning for automatic test case prioritization and selection in

continuous integration", Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis, July 2017.

[20] ANT on Github Repository, https://github.com/apache/ant, Visited in

december 2019.

[21] IntelliJ IDE, https://www.jetbrains.com/idea/, Visited in december

2019.

[22] Code Mr plugin, https://plugins.jetbrains.com/plugin/10811-codemr/,

Visited in december 2019.

[23] Code-Coverage plugin, https://www.jetbrains.com/help/idea/code-

coverage.html, Visited in december 2019.

[24] Artificial Intelligence and life in 2030, one-hundred-year study on

artificial Intelligence, report of the 2015 Study panel, September 2016

[25] Y. LeCun, Y. Bengio, G, Hinton. "Deep learning" . Nature.

2015;521(7553):436-444. doi:10.1038/nature14539

[26] F. Rosenblatt, "The perceptron : A probabilistic model for information

storage and Organization in the brain", in cognitive systems. Buffalo:

Cornell Aeronautical Laboratory, Inc. Rep. No. VG-1196-G-1, 1958.

[27] M. Minsky, and S. Papert, “Perceptrons: An Introduction to

Computational Geometry,” MIT Press, expanded edition, ISBN-10 :

0262631113, décembre 1987

[28] D. E. Rumelhart, G. Hinton, and R. J. Williams, "Learning
representations by back-propagating errors", Cognitive modeling 5.3

(1988):

[29] Tensorflow: https://www.tensorflow.org/

[30] Kera: https://keras.io/

[31] Panda: https://pandas.pydata.org

	I. Introduction
	II. Related Work
	III. Data Collection
	A. Data Collection Tools
	B. Source Code Metrics
	Coupling metrics: (1) CBO (Coupling between objects) calculates the number of classes to which a class is linked and vice versa.
	Inheritance metrics: (2) DIT: (Depth of Inheritance) counts the number of classes between the measured class and the root of its inheritance hierarchy. (3) NOC: (Number of Children) calculates the number of subclasses that inherit from the measured cl...
	Cohesion metrics: (4) LCOM: (Lack of cohesion in Methods) assesses the lack of cohesion in a class. It counts the number of methods pairs whose similarity is 0 minus the number of method pairs whose similarity is different from zero.
	Complexity metrics: (5) WMC: (Weighted Method Complexity) sums up the cyclical complexities of all the methods of the measured class. (6) RFC: (Response for classes) calculates the number of possible methods that can be called in response to the metho...
	Size metrics: (7) SLOC: (Source Lines of Codes) calculates the number of lines of code in measured class.

	C. Descriptive statistics
	D. Empirical Analysis

	IV. Experimental method
	A. Neural networks
	B. Construction and Architecture of the Neural Network
	C. Classifier Validation

	V. Results and Interpretations
	VI. LIMITATIONS
	VII. Conclusion
	References

