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Abstract — This paper aims at investigating the use of deep 

learning to suggest candidate classes to be tested rigorously 

during unit testing. The approach is based on software unit 

testing information history and source code metrics. We 

conducted our experiments using data collected from five (5) 

successive versions of the open source Java Apache software 

system ANT. For each version, we collected various source code 

metrics from the source code of the Java classes. We then 

extracted testing coverage measures for software classes for 

which dedicated JUnit test classes have been developed. We 

considered instruction and method level coverage granularities. 

Based on the different datasets collected, we trained several 

deep neural network models. We validated the constructed 

classifiers using Cross Version Validation technique. The 

obtained results strongly support the viability of our approach 

with an average accuracy greater than 87%. 

Keywords- Unit Testing, Tests Prioritization, Source Code 

Metrics, Testing Coverage Measures, Machine Learning, Deep 

Learning. 

I. INTRODUCTION  

Testing is the stage of software development where 

developers (testers) assess the conformity of the system 

developed (under development) with specifications [1]. 

Testing plays a crucial role in software quality assurance. It 

is, however, a time and resource-consuming process. Unit 

testing is one of the main phases of the testing process where 

each software unit is early and individually tested using 

dedicated unit test cases. In object-oriented (OO) software 

systems, units are software classes and testers usually write a 

dedicated unit test class for each software class they decided 

to test [2]. The main goal of unit testing is to early reveal the 

faults of software classes. In the case of large-scale OO 

software systems, because of resources limitation and time 

constraints, it is difficult, even unrealistic, to test rigorously 

all the classes [3]. The unit testing efforts are often focused. 

Testers (developers) usually prioritize unit tests by selecting 

and focussing the unit testing effort on a limited set of 

software classes (most critical) for which they write dedicated 

unit tests. Tests case prioritization is a method for prioritizing 

and planning test cases [3, 5]. This technique is used to run 

higher priority test cases (focus on the most critical 

components) to minimize time, cost and effort during the 

software testing process [3-6]. 

In this paper, we focus on unit testing of classes and 

particularly on how to automatically suggest suitable classes 

for unit testing using deep learning and information on both 

unit testing history and source code metrics. Several research 

related to test cases prioritization [7] using different OO 

metrics (The Chidamber and Kemerer metric suite in 

particular [8]) have been proposed in the literature. Some of 

these metrics, related to different software class attributes, 

have already been used in recent years to predict unit 

testability of classes [9-13]. These studies analyzed in 

particular various open source Java software systems and the 

corresponding JUnit test classes. One of the observations that 

have been made in these studies is that unit test cases were 

written only for a subset of classes [11-13]. 

Currently, many software repositories are available and 

can be used (among others) to analyze and predict software 

quality. Based on these repositories, can we extract valuable 

information that can be used to help software testers in 

prioritizing unit tests? Is it possible to automate this process? 

The main goal of our research is to propose an approach to 

identifying suitable classes for unit testing using deep 

learning techniques [14,15] (artificial neural networks). The 

approach is based on software unit testing information history 

and source code metrics. We conducted our experiments 

using data collected from five (5) successive versions of the 
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open source Java Apache software system ANT [16]. For 

each version, we first collected various source code metrics 

from the source code of the Java classes. We then extracted 

testing coverage measures for software classes for which 

dedicated JUnit [17] test classes have been developed. We 

considered instruction and method level coverage 

granularities. With the collected data, we trained several deep 

neural network models. We validated the constructed 

classifiers using Cross Version Validation technique. The 

obtained results strongly support the viability of our approach 

with an average accuracy greater than 87%. 

II. RELATED WORK 

Touré et al. [7] investigated an approach based on software 
information history to support the prioritization of classes to 
be tested. They have analyzed different class attributes of ten 
Java open source software systems for which JUnit unit test 
classes were developed. Using different techniques, they first 
characterized the classes for which JUnit test classes were 
developed by the testers. Secondly, they built two classifiers 
using OO metrics and unit tests information collected from the 
selected systems. The classifiers provide, for each software, a 
set of classes on which the unit testing efforts must be focused. 
The sets of obtained candidate classes were compared to the 
sets of classes for which JUnit test classes were developed by 
the testers. The results have shown that: (1) average values of 
the metrics of the classes tested are very different from 
average values of the metrics of the other classes (2) there is a 
significant relationship between the fact that a JUnit test class 
was developed for a class and its source code attributes, and 
(3) the sets of classes suggested by the classifiers correctly 
reflect the selection of testers. 

Mirarab et al. [18] used Bayesian networks to create a 
unified model based on information provided by the CK 
metrics suite [8], changes and testing coverage rates. The 
defined approach optimizes coverage and improves the fault 
detection rate compared to the random planning of test 
scenarios. 

Helge Spieker et al. [19] present Retecs (Reinforcement 
Learning for Automatic Test Cases Prioritization and 
Selection in Continuous Integration), which is a method for 
selecting and prioritizing test cases based on machine 
learning. It is used in cases of continuous integration with the 
aim of minimizing the round-trip delay between code 
validation and developer comments in the event of failure of 
the test cases. The Retecs method uses reinforcement learning 
to select and prioritize test cases according to their duration, 
the last execution history and failure. In an environment where 
new test cases are created and obsolete test cases are deleted, 
the Retecs method learns to prioritize error-prone tests using 
a reward function and build on previous cycles of integration. 
By applying Retecs on data extracted from three industrial 
case studies, Helge Spieker et al. have shown for the first time 
that reinforcement learning allows fruitful selection and 
automatic prioritization in continuous integration and 
regression tests. 

III. DATA COLLECTION 

For our investigations, we carried out our experiments on 
Apache ANT software system, which is a command-line tool 
used to control the execution processes described in mutually 
dependent XML files (build files) [16]. The versions 1.3, 1.4, 
1.5, 1.6 and 1.7 of ANT system have been extracted to carry 
on our experiments. 

A. Data Collection Tools 

The source code of ANT’s considered versions has been 
grabbed from GitHub [20] repository. Under IntelliJ [21] IDE, 
we used Code Mr [22], Cover [23] plugins as well as the JUnit 
Framework [17] to run the unit test suites and collect source 
code metrics and testing coverage measures. 

B. Source Code Metrics 

Four our study, we considered six (6) source code metrics, 

five from the well-known metrics suite proposed by 

Chidamber and Kemerer [8] and the widely used SLOC 

metric. These metrics capture various OO attributes such as 

coupling, inheritance, cohesion, complexity and size. They 

have received particular attention in empirical software 

engineering research and are computed by Code Mr plugin 

according to the following definitions: 

Coupling metrics: (1) CBO (Coupling between objects) 

calculates the number of classes to which a class is linked and 

vice versa. 

Inheritance metrics: (2) DIT: (Depth of Inheritance) counts 

the number of classes between the measured class and the 

root of its inheritance hierarchy. (3) NOC: (Number of 

Children) calculates the number of subclasses that inherit 

from the measured class. 

Cohesion metrics: (4) LCOM: (Lack of cohesion in Methods) 

assesses the lack of cohesion in a class. It counts the number 

of methods pairs whose similarity is 0 minus the number of 

method pairs whose similarity is different from zero. 

Complexity metrics: (5) WMC: (Weighted Method 

Complexity) sums up the cyclical complexities of all the 

methods of the measured class. (6) RFC: (Response for 

classes) calculates the number of possible methods that can 

be called in response to the method invocation of the 

measured class. 

Size metrics: (7) SLOC: (Source Lines of Codes) calculates 

the number of lines of code in measured class. 

C. Descriptive statistics 

The descriptive statistics on the different versions of the ANT 

system [13] show that the number of classes increases from 

1093 for version 1.3 to 1145 classes for version 1.7. The 

average complexity (WMC) and source lines of code (SLOC) 

vary slightly from one version to another (around 19 for 

WMC and 156 for SLOC). This small variation is also 

observed for the other metrics average values. The great 

variability of metrics within the same version indicated by the 



standard deviations (σ), reflects the variability level of the 

software classes characteristics. 

 
TABLE 1:Descriptive statistics of the used source code metrics - ANT 

Vers. obs. Stat CBO DIT LCOM SLOC NOC RFC WMC 

V1.3 1096 

Min 0 1 0 4 0 1 1 

Max 672 7 30 1899 143 326 236 

Mean 10.97 2.4 1.85 156.64 0.67 26.06 19.74 

σ 1111.2 1.82 5.36 49022.6 27.09 1130 864.26 

V1.4 1102 

Min 0 1 0 6 0 1 1 

Max 674 7 30 2204 143 321 235 

Mean 10.84 2.39 1.84 155.65 0.67 25.78 19.51 

σ 1104.3 1.82 5.35 50129.7 26.97 1106.4 841.08 

V1.5 1103 

Min 0 1 0 6 0 1 1 

Max 674 7 30 2204 143 321 235 

Mean 10.84 2.39 1.84 155.73 0.67 25.79 19.52 

σ 1104.3 1.82 5.35 50304.1 26.97 1108.1 843.18 

V1.6 1140 

Min 0 1 0 6 0 1 1 

Max 694 7 30 2214 145 321 252 

Mean 10.8 2.38 1.82 155.01 0.66 25.63 19.44 

σ 1123 1.82 5.18 50743.9 27.72 1096.2 840.85 

V1.7 1143 

Min 0 1 0 4 0 0 1 

Max 694 7 30 2214 145 321 255 

Mean 10.81 2.39 1.83 157.33 0.66 25.65 19.45 

σ 1125.1 1.83 5.25 53739.4 27.71 1100.1 843.81 

 

D. Empirical Analysis 

We have collected the source code of the five different 

versions of ANT [16] considered for the study, grabbed from 

GitHub repository [20]. We followed the steps described 

below for each version: 

Step 1: Extracting the considered source code metrics using 

Code Mr [22] plugin.  

Step 2: Running unit test suites and collecting the testing 

coverage rates by using Cover [23] plugin and JUnit [17] 

framework. 

Step 3: Filtering outlier observations, which are mainly OO 

artefacts with 0 complexity (interfaces, some of abstract 

classes, enumerations and constants collecting classes). 

Step 4: Computing the rank of each value of the metrics. This 

step is motivated by the fact that the classifier will be trained 

on several versions of different sizes. Ranks will help the 

classifiers to mitigate the metrics’ values. 

Step 5: Labelling testing coverage data. We have labelled 

each class with a binary value, 1 or 0, depending on whether 

its unit testing coverage reaches a given threshold percent or 

not. 50%, 30% and 0% thresholds have been considered. For 

example, by setting the threshold at 50%, all the classes 

having a testing coverage greater or equal to 50% are labelled 

as 1 (considered as tested), and the rest of classes is labelled 

as 0 (considered as not tested). 

For each class, the attributes formed by the source code 

metrics, the associated rank values as well as the binarized 

coverage rates, form a labelled observation. With the 

collected data, our goal is to train a deep neural network 

model to build classifiers that could automatically predict 

(suggest) the label of each observation. In addition, we 

wanted to investigate if a classifier built from the dataset of 

version n, correctly predicts the level of testing coverage in 

the successive n + 1 version. 

 
TABLE 2: Distribution of tested classes - method granularity  

Versions Obs 0% 30% 50% 

13 1096 179 108 81 

14 1102 187 114 82 

15 1103 193 117 85 

16 1140 193 116 85 

17 1143 196 119 87 

 
TABLE 3: Distribution of tested classes - instruction granularity  

Versions Obs 0% 30% 50% 

13 1096 179 98 60 

14 1102 187 102 61 

15 1103 193 105 65 

16 1140 193 103 62 

17 1143 196 106 64 

 

IV. EXPERIMENTAL METHOD 

A. Neural networks 

Neural networks belong to the family of machine learning 
classifier models [24, 25]. The building blocks for neural 
networks are artificial neurons [26]. These are simple 
computational units that have weighted input signals and 
produce an output signal using an activation function [27]. 

Neurons are arranged into networks of neurons. A row of 

neurons is called a layer. Neural networks may have multiple 

layers. The first layer, called input or visible layer, takes input 

from the dataset. The following layers are referred as hidden 

layers. They are responsible for compressing and building 

internal representation of datasets. The last layer, also called 

output layer, is responsible for classifying the output on the 

required classes. 

Deep neural networks refer to networks containing more 

than one hidden layer. Training those layers requires large 

amount of data and specific techniques that prevent vanishing 

gradient issue [25]. 

The neural net training process relies on forward 
propagation technique that consists of feeding input values to 
the neural network and getting an output (predicted value). On 
each training epoch, error is computed using back-propagation 
technique [28]. 

B. Construction and Architecture of the Neural Network 

Our deep learning architectures (ANN) are built using 

Python programing language, under TensorFlow [29] and 

Keras [30] frameworks supported by Pandas [31] library for 

data manipulation. We carried out several tests before coming 

to the following configuration that produced the obtained 

results.  



Our input layer contains fourteen (14) neurons to match 

the 14 characteristics (7 for source code metrics plus 7 for 

rank values associated with each metric value). Thirteen (13) 

hidden layers follow the input layer containing 169 neurons 

each.  And finally, 2 neurons compose the output layer to 

match our binary classification problem. We used ReLu as 

activation function for input and hidden layers. We relied on 

"Adam" as optimizer and the mean square as loss function. 

The model has been evaluated using confusion matrix. 

C. Classifier Validation  

We validated our classifier using Cross Version 

Validation (CVV) technique inspired by classical cross 

validation techniques. CVV approach consists of training the 

neural network model on dataset of a version V of the ANT 

system, then validating the obtain classifier on the dataset of 

the successive version V+1.  

V. RESULTS AND INTERPRETATIONS 

The CVV technique has validated the suggestions of 

classes to be tested for a given version, made by a classifier 

trained on the previous version. The following results were 

obtained by this validation technique applied to the different 

considered versions of ANT. 
 

TABLE 4: CVV results on Method granularity level 
 CM50 CM30 CM0 

13->13 93.20% 91.77% 88.28% 

13->14 92.97% 91.19% 87.99% 

14->14 94.04% 90.84% 88.79% 

14->15 93.77% 90.57% 88.26% 

15->15 93.51% 92.62% 89.06% 

15->16 93.64% 92.35% 88.57% 

16->16 94.67% 94.07% 89.86% 

16->17 94.25% 93.56% 89.70% 

 

From Table 4 (CVV results on method granularity level), 
it can be seen that: 

The threshold of 50% produces accuracy scores that are 
greater than 92%. The lowest accuracy is obtained for a 
validation on version 1.4 (92.97%) and the highest is obtained 
for a validation on version 1.7 (94.25%).  

For a threshold of 30%, the obtained accuracy scores are 
greater than 90%. The lowest accuracy is obtained while 
validating on version 1.5 (90.57%) and the highest for the 
validation on version 1.7 (93.56%).  

For a threshold of 0%, the accuracy scores obtained are 
greater than 87%. The lowest accuracy is obtained when 
validation is done on version 1.4 (87.99%) and the highest for 
validation on version 1.7(89.70%).  

After all validations, we can notice the trends of the 
accuracy to increase. Indeed, the highest accuracy scores 
obtained are noticed for a threshold set at 50%. This indicates 
that there exists a relationship between classes metrics and 
labelled classes (classes labelled 1 or 0). Other results obtained 
with threshold sets at 30% and 0% are good but show that their 
classifiers are not as accurate as the one obtained with the 
threshold set at 50%. 

From these results, we can conclude that by using method 
granularity level, we are able to predict correctly candidate 
classes for unit testing.  

 TABLE 5: CVV results on Instruction granularity level 

 CLOC50 CLOC30 CLOC0 

13->13 94.63% 93.47% 88.37% 

13->14 94.48% 93.06% 87.28% 

14->14 95.37% 94.22% 89.86% 

14->15 95.02% 93.95% 89.32% 

15->15 94.48% 94.57% 90.12% 

15->16 94.67% 94.24% 89.69% 

16->16 95.79% 94.76% 88.57% 

16->17 95.62% 94.42% 88.58% 

 

From Table 5 (CVV results on instruction granularity 
level), it can be seen that: 

For a threshold set at 50%, the accuracy scores obtained 
are greater than 94%. The lowest accuracy is obtained for a 
validation on version 1.4 (94.48%) and the highest is obtained 
for a validation on version 1.7 (95.62%).  

For a threshold set at 30%, the accuracy values obtained 
are greater than 93%. The lowest accuracy is obtained while 
validating on version 1.4 (93.06%) and the highest for 
validation on version 1.7 (94.42%).  

For a threshold set at 0%, the accuracy values obtained are 
greater than 87%. The lowest accuracy is obtained for 
validation on version 1.4 (87.28%) and the highest for 
validation on version 1.6 (89.69%). 

 As we go from validation on version 1.3 to validation on 
version 1.7, we observed an increase of the accuracy from 
87% to 89%. 

As in the case of method granularity level, we obtained the 
highest accuracy scores for a threshold set at 50%. Hence a 
classifier obtained by training it on the dataset will be more 
efficient and accurate than the one obtained with another 
threshold. We also observe a tendency of the accuracy to 
increase during the test. 

From these results, we can conclude that by using 
instruction granularity level, we are also able to predict 
correctly candidate classes for unit testing. 

By comparing the results obtained for the different levels 
of granularities (methods and instruction), we see that we 
obtain high accuracy scores for the instruction level. 

From these two tests, we can conclude that the choice of 
the level of granularity as well as the threshold set is crucial.  

The CVV validation showed that it is possible to predict 
classes to be tested on a version developed or under 
development by a classifier trained on the previous version of 
the same system. Moreover, we can notice that we got higher 
accuracy rates for the instruction granularity level with a 
threshold of 50%.  



VI. LIMITATIONS 

The obtained results are quite significant with regard to the 
used dataset (information collected from five different 
versions of a same system) but should nevertheless be 
considered as exploratory. The selection of the classes to test 
explicitly (for which JUnit test classes have been developed) 
is in most cases left to the goodwill of developers. This can 
lead to partially tested classes and systems with few tested 
classes, which in turn can influence the results obtained in our 
various experiments. 

The generalization of our results requires additional 
investigations including tests quality as well as the 
application’s domain of the considered software systems, 
which can also impact the results and restrict their scope. In 
our analyzes, we limited ourselves to Java OO language. Even 
if Java is a reference language in OO programming, our results 
could be biased by this limitation.  

We limited our investigations to a well-known case study 
system (ANT). The study should be replicated on more 
software systems in order to draw more general conclusions. 

VII. CONCLUSION 

In this work, the goal was to provide an approach that 
supports unit testing decision when selecting the software 
classes to be tested. For that, we used a classifier build from 
deep neural network model based on various class source code 
metrics and the corresponding unit testing coverage data. Two 
levels of testing coverage measures have been considered in 
combination. We validated the constructed classifier using 
cross version validation technique. By obtaining after various 
tests more than 87% of accuracy rates, we can conclude that 
the obtained results strongly support the viability of the 
approach.  

These results open the possibility of using software 
metrics and the developers’ experience (particularly in terms 
of unit testing development) in guiding the distribution of the 
overall unit testing effort. Hence using current big data 
analysis techniques (involving artificial intelligence 
algorithms), it is possible to develop cloud-based tools in 
order to build a new generation of tests prioritization tools and 
guidance integrated into software development environments.  
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