

SHAMROQ: Towards semantic models of regulations

Patrick D. Cook, Susan A. Mengal, Siva Parameswaran

Department of Mechanical Engineering, Department of Computer Science, Department of Mechanical Engineering

Texas Tech University, Lubbock, TX 79409−3104

patrick.d.cook@ttu.edu, susan.mengel@ttu.edu, siva.parameswaran@ttu.edu

Abstract— Regulatory documents contain a rich set of provisions

that requirement engineers must observe in software

requirements. If a requirement engineer fails to accurately

interpret or include the provisions in the software requirements,

then a right, privilege, or obligation could be omitted or incorrectly

applied – resulting in a violation. When a violation occurs,

complaints are filed, penalties are imposed, and in some instances,

the responsible party goes to prison; thus, this paper introduces

SHAMROQ, a methodology to systematically acquire software

requirements from regulations, and demonstrates the

methodology using a section of the Health Insurance Portability

and Accountability Act (HIPAA). SHAMROQ is applied to a case

study to show that it is possible to use the basic activity pattern

with modality, description logic, and Hohfeldian legal concepts to

analyze, classify, and model the legal relationships to ascertain

meaning, context, and structure.

Keywords- Knowledge representation, Semantic Web, OWL,

Resource Description Framework, SHAMROQ

I. INTRODUCTION

Regulations contain a rich set of provisions that requirement
engineers must observe in software requirements [1]. However,
if requirement engineers fail to accurately interpret or include
provisions in software specifications, then a right, privilege, or
obligation could be omitted or incorrectly applied – resulting in
a violation [2]. When a violation occurs, a complaint is filed, a
penalty is imposed, and in some instances, the responsible party
goes to prison.

In fact, between April of 2003 and the end of January 2020,
The U.S. Department of Health and Human Services (HHS)
Office for Civil Rights (OCR) received more than 227,866
Health Insurance Portability and Accountability Act (HIPAA
complaints about violations of the Privacy Rule. As a result, civil
penalties of $116,203,582 were settled or imposed.1

Apart from over $116 million in penalties, building
regulatory compliant software systems presents several
challenges [3]. First, regulations may complement, overlap, or
contradict at the federal, state, and local levels. Secondly,
regulations are continually changing, plagued with ambiguity,
and often accompanied by previous administrative rulings,
reference handbooks, and other guidelines published to facilitate

1 https://www.hhs.gov/hipaa/for-professionals/compliance-

enforcement/data/enforcement-highlights/index.html?language=en

interpretation [4]. Third, the influence of case law (the
interpretation of the law by the judicial process) over statutory
law (the written law passed by the legislature) poses other
challenges because the courts could add new interpretations to
the statues from court rulings [5]. Additionally, regulations are
notable for frequent references to other sections, also known as
cross-references [6], and regulations contain domain-specific
language or jargon – sometimes called "legalese" [1].

Despite these challenges, researchers offer several
approaches to aid requirement engineers in building regulatory
compliant software systems. Approaches included logic models
[7, 8], extracting formal specifications from regulations [9],
goal-oriented approaches [10], production rules [11], machine
learning [12] and access control [13] . More recently, researchers
are using semantic web technologies to aid requirement
engineers in building regulatory compliant software systems
[14].

Semantic web technologies are promising because they
provide a common framework that facilitates interoperability
across applications, organizations, and jurisdictional boundaries.
Moreover, the semantic web offers a family of technologies that
enable requirement engineers to create data stores, construct
vocabularies, and write rules for dealing with data 2 . In this
research, we leverage semantic web technologies, in particular,
the Web Ontology Language (OWL) to aid requirement
engineers in systematically acquiring software requirements
from regulations.

The purpose of this descriptive, embedded, single-case study
is to develop and validate the SHAMROQ methodology. At this
stage in the research, SHAMROQ is generally defined as the
systematic process to examine all words and phrases written in
a regulatory document, classify patterns that correspond to
Hohfeldian legal concepts, and model the regulations using the
basic activity pattern with modality.

The remainder of this paper is organized as follows: Section
2 reviews the background and related work; Section 3 outlines
the methodology; Section 4 describes the case study; Section 5
presents the findings; Section 6 examines the threats to validity;
and Section 7 discusses the conclusion and future work.

2 https://www.w3.org/standards/semanticweb/

DOI reference number: 10.18293/SEKE2020-144

https://www.hhs.gov/hipaa/for-professionals/compliance-enforcement/data/enforcement-highlights/index.html?language=en
https://www.hhs.gov/hipaa/for-professionals/compliance-enforcement/data/enforcement-highlights/index.html?language=en
https://www.w3.org/standards/semanticweb/

Figure 1. SHAMROQ - Theoretical Framework

II. BACKGROUND AND RELATED WORK

In this section, the background and related work in
requirements engineering to extract software requirements from
regulations is considered.

A. Background

Our working definition of requirements engineering,
borrowed from Pamela Zave and generalized by Phillip A.
Laplante, is the following: “Requirements engineering is the
branch of engineering concerned with the real-world goals for,
functions of, and constraints on systems. It is also concerned
with the relationships of these factors to precise specifications of
system behavior and to their evolution over time and across
families of related systems” [15].

Laplante argues that software systems are bifurcated along
functional (i.e., what the system does) and nonfunctional (how
well the system does it under observable quality attributes)
requirements. SHAMROQ provides a means to address both,
however, this paper concentrates on nonfunctional.

Nonfunctional requirements are further broken down into
design/implementation constraints, economic constraints,
operating constraints, and political/cultural constraints. In this
work, we will focus on the political/cultural constraint; i.e., the
laws and regulations category, of nonfunctional requirements.

B. Related Work

 Researchers use a variety of approaches to extract
requirements from regulations and model them for system
development. A comprehensive survey of the approaches is
outlined by Otto [3]. Here, we concentrate on the related work
that directly influences the ideas in our research: Semantic
Parameterization [1, 2, 16-18], Frame-based [19, 20], and
Production Rules [11, 21, 22].

Semantic Parameterization [1, 2, 16-18] is a process to
represent a domain of interest in a structural way using
Description Logic [23]. This process happens over three phases.

In phase 1, phrase heuristics are applied to natural language
features, so that noun phrases, pronouns, intentional and
extensional synonyms, and polysemes are differentiated. In
phase 2, a dictionary is used to assign meaning to the words so
that the domain is grounded. In phase 3, the dictionary is used
to identify the tacit relationships to build a meta-model. As a
result, Restricted Natural Language Statements (RNLS) are
modeled using the basic activity pattern with modality. RNLS
are derived from the original text and are restricted to one
discrete activity. The RNLS is then represented by the basic
activity pattern using one unary relation and two asymmetric,
binary relations. The unary relation defines the root concept σ,
while parameters use associative relations α, and values use
declarative relations ẟ.

To further illustrate the point, Breaux uses the following
RNLS as an example: “The provider may share information.”
Figure 2 depicts the unary relation σ (activity1) in the shaded
region. The associated relations α (activity1, actor1), α (activity1,
action1), α (activity1, object1), is captured by the shaded region
and oval. The declarative relations ẟ (actor1, provider), ẟ
(action1, share), ẟ (object1, information) is captured by
connecting the directed arrow between the oval in the shaded
region with the ovals outside of it.

Figure 2. Basic Activity Model

Breaux contends that these three relations represent a
complete parameterization process when all words and phrases
written in a regulatory document are assigned or subsumed by a
parameter or value. In instances where parameter values require
concepts with additional parameters, then a second
parameterization takes place with an additional associative and
declarative relations.

In figure 3, we see the additional associative relations α
(activity1, purpose1), and the additional declarative relations ẟ
(purpose1, activity2) that represents the RNLS: “The provider
may share information to market services.” Note, the
preposition “to” is indicative of an additional associative
relation.

This research builds on Semantic Parameterization and
extends this work in the following ways. First, we codify the
unary relation, as a root node, with a Hohfeldian legal concept
[24, 25]. For example, the statement, “The provider may share
information to market services,” uses the modal verb “may,” to
establish the root node “Privilege Activity.”

Figure 3. Basic Activity Model with Purpose

Secondly, we reduce the steps presented by Breaux [16]from
UNLS, RNLS, Activity Model (3 steps) to UNLS, Activity
model (2 steps). Third, we combine the associate and declarative
relations and explicitly represent the activity as Resource
Description Framework (RDF) triples. Next, we add a meta-
data-model to the basic activity pattern that consists of the
following attributes: a unique identifier, category, title, priority,
and degree of necessity. We capture the triples in Figure 4.

Figure 4 shows the root node, PrivilegeActivity, and the
associate relations as predicates (i.e., hasActor, hasAction,
hasObject, and hasPurpose). Also depicted are the declarative
relations as objects (i.e., provider, share, information, and
PurposeActivity), and the meta-data-model as predicates.

The Frame-Based Requirements Analysis Method
(FBRAM) [19, 20], is another means of extracting requirements
from regulations. Breaux uses FBRAM to annotate the
regulatory document manually in order for a tool to parse the
annotations to extract the requirements. From this extraction,
three artifacts are produced: an upper ontology, a context-free
markup, and a document model.

The upper ontology is used to classify regulatory statements
and consists of three concepts: a statement-level used to
categorize individual regulatory statements, a phrase-level used
to categorize individual regulatory phrases, and an abstract
placeholder. The context-free markup describes the structure
using concepts and logical connectives. The analyst uses the
context-free markup to make some interpretation about the text
and aligns the upper ontology in a manner that removes
ambiguity.

The document model describes how the document is
organized using a hierarchical representation. Moreover, the
document model enables traceability between the requirements
and the section, subsections, and paragraphs of the original
regulations. The requirements are represented as HTML, in a
table format, and contain the frame type; i.e., the type of
requirement, the pattern, and the traceability information

Similarly, to FBRAM, we examine the natural language
features of regulatory documents and map concepts to an
ontology. However, our approach differs from FBRAM in that
we extract software requirements directly from the regulations
with natural language processing techniques and use Web
Ontology Language Description Logics (OWL-DL) to express
requirements as opposed to a document model to formalize the
legal syntax. Moreover, our work focuses on all eight
Hohfeldian legal concepts – not just rights and obligations.

The Production Rule Methodology [11, 21, 22] codifies four
sections of the HIPAA Privacy Rule (§164.520, §164.522,
§164.524 and §164.526) SWI-Prolog software application [21].
A production rule is a knowledge representation technique that
is stated using horn clauses connected by logical operators [22].
Each rule consists of a two-part structure: an antecedent and a
consequent. If the antecedent set of conditions resolves to true,
then the consequent set of actions takes place. A collection of
rules creates a knowledge base. The interaction with this
knowledge base requires the top-level query using an inference
engine; for example, backward chaining, as a reasoning strategy
to execute on the rules base [22].

Prior to getting started, the production rule methodology
requires an ontology and some legal text as input. Then, a
preparatory step (Create Rule Patterns of Ontological Concepts)
followed by two activities (Specify Production rules and
Refactoring, respectively) takes place. In the preparatory step,
production rule patterns are created from the ontology. The first
activity, specify production rules, requires five steps.

In step 1, normative phrase analysis is used to classify rules
based on the words and phrases used in the legislation. In step 2,
identify rule parameters, the objective is to identify the subject
of the statement, the relation the actor can change, the action the
actor has the right or obligation to perform, and the source of the
rule. In step 3, identify preconditions, the legal preconditions

Figure 4. Semantic Web Parameterization

that enable the rule to be true are captured. In step 4, remove the
rule, disjunctions, the statements in the legislation that are
separated by an "or," are split into separate statements. Finally,
in step 5, identify rules implied by the ontology, the software
engineer may deduce other facts. After the completion of the
first activity, a complete production rule model exists. However,
the second activity, which refactors the rules base to remove
duplicates, provides an opportunity to improve the design.

Like the production rule methodology, we use a multi-step
process to extract requirements from regulations. We evaluate
the natural language phrases and classify patterns that
correspond to Hohfeldian legal concepts. Unlike the production
rule methodology, we read the regulations directly from a file,
segment the sentences from the regulations, tokenize the strings,
tag the words with parts of speech, and chunk the sentences in a
manner that can be modeled with OWL-DL.

III. METHODOLOGY

The research methodology is borne out of a constructivist
worldview [26]. The philosophical idea around constructivism
is to seek understanding of the world in its real-world context
and is typically associated with qualitative research. Moreover,
constructivists interpret meanings others have about the world or
generate theory inductively as opposed to starting with theory.
This induction is directly in contrast to the postpositivist
worldview. The philosophical ideas of the postpositivist start
with a theory, collect data to support or refute the theory, then
revise, and are typically associated with quantitative research.

The constructivist worldview is necessary in this research
because we seek to understand a phenomenon in its real-world
context. Therefore, we adhere to the qualitative research design
and the case study strategy of inquiry. Yin [27] describes a case
study as an empirical method that takes an in-depth analysis of a
contemporary phenomenon within a real-world context. Case
study design includes four types: single-case embedded, single-
case holistic, multi-case embedded, and multi-case holistic. The
choice to use a single vs. multi-case study design is based on the
number of cases in a study.

A case is a centralized phenomenon that exists within a real-
life context. Within the context of software engineering, a case
may range from a software development project to a process,
product, team, technology, specific role, or policy [28].
Consequently, if only one case exists, then it is best to select a
single case study. However, if two or more cases exist, then it is
best to select the multi-case study design.

The choice to use an embedded vs. holistic is based on
whether the case study has multiple units of analysis; i.e.,
subunits, or the case study examines the global nature of a
phenomenon. Yin defines a unit of analysis as the actual source
of information (e.g., a person, organizational document, or an
artifact.)

Runeson [28] elaborates on the unit of analysis for software
engineering as a project, group, or a decision. In short, a unit of
analysis is the phenomenon within a case that is examined. On
the other hand, to examine the global nature of a phenomenon
means a holistic view of the case is assessed, and there are no
subunits. Therefore, if the case study has multiple units of
analysis, then one selects an embedded case study. If the case
study looks at the nature of the whole phenomenon, then one
selects a holistic approach.

This research employs an embedded, single-case study
research design as defined by Yin and as recommended for
software engineering by Runeson. This design is intentionally
chosen with a long-range strategy in mind. We intend to leverage
the results of this descriptive study to support future studies that
will be prescriptive in nature. In the next section, we outline the
case, units of analysis, research questions, theoretical
framework, and strategy for mitigating threats.

IV. CASE STUDY

1) Case Selection
This study purposely selects HIPAA regulation §164.510

(a)(1), as illustrated in figure 2, because this specific provision
of the regulation provides normative phrases, continuations,
exceptions, and parameter values that are concepts with other
parameters.

2) Units of Analysis
Yin defines the unit of analysis as the element within the case

study for which the data is collected [27]. For software
engineering research, Runeson stated that the unit of analysis
might be some element of the project, the methodology, or some
aspect of the ongoing development or maintenance [28]. Here,
the unit of analysis consists of the natural language features (i.e.,
the keywords, sentences, phrases, and clauses) that form the
parameters applied to the basic activity model.

3) Research Questions
Creswell declares that qualitative research questions are

central with associated sub-questions [26]. A central research
question takes a broad view and explores a central phenomenon.
In this study, the following main central question outlines a
broader view of the purpose statement to describe and explain
the SHAMROQ methodology. To what extent can SHAMROQ
be used to build a knowledge base? What is the SHAMROQ
framework? How does the SHAMROQ methodology work in
practice to extract requirements from regulatory documents?

4) Quality Assurance – Mitigating Threats to Validity
The quality of a case study is evaluated based on its ability

to identify and mitigate threats to validity. Yin outlines four tests
to assess the threats to validity. The four tests are construct,
internal, external, and reliability. This study addresses three out
of the four threats to validity. Internal validity applies to
explanatory or causal studies and does not apply to descriptive
or exploratory studies [27].

5) Theoretical Framework
SHAMROQ represents a contribution to the body of

knowledge formalized by a systematic literature review (SLR)
as outlined by Barbara Kitchenham [29] and meta-ethnography
synthesis as outlined by Noblit and Hare [30]. A meta-
ethnography synthesis (MES) uniquely and systematically
defines a qualitative process for generating theory, which
involves induction and interpretation. Meta-ethnography places
emphasis on maintaining alignment with the original research
articles and encourages researchers to extend beyond the original
ideas of the research [30].

A clear finding of the SLR and MES was that several
strategies are required to analyze, classify, and model
regulations. SHAMROQ is a manifestation of those strategies.
In the next section, we provide an overview of the SHAMROQ
and will answer the central research question, to what extent can
SHAMROQ be used to extract requirements from regulations.

V. FINDINGS AND DISCUSSION

This section presents the evolution of SHAMROQ and
answers the research questions.

A. What is the SHAMROQ Framework?

SHAMROQ is an acronym that embodies the strategies used
to build a knowledge base: semantic web parameterization,
Hohfeldian legal concepts, Artificial Intelligence, Metadata
Enrichment, Reasoning System, Ontologies, and Query
language. Collectively, these seven core strategies provide
requirement engineers a means to analyze, classify, and model
functional and nonfunctional requirements using the semantic

web. As illustrated in figure 1, there are four main artifacts that
influence SHAMROQ.

First, depicted in figure 1, are the laws that are established
by Congress. Secondly, are the regulations (i.e., rules) that
implement a statue or act as a guide. Third are the system
documents that represent the stakeholder's needs, goals,
deliverables, constraints, limitations, security, and performance
criteria. Some examples of system documents are a Statement
of Work (SOW), Software Requirement Specification (SRS),
and Concept of Operations (CONOPS). Finally, are the policies
that are an assortment of legal artifacts to include executive
orders and presidential actions.

The context depicted in figure 1 shows the people involved
and contends that they must be a part of the software
development lifecycle. The intervening conditions include the
characteristics that laws, regulations, and policy artifacts exhibit
that make them both beneficial and problematic; in particular,
the legal document structure, ambiguity, cross-references, and
frequent changes.

The next construct of the framework, strategies, are
reflective of the techniques to carry out the analysis,
classification, and modeling of the artifacts that influence the
framework – given the context and intervening conditions. As a
result, the strategies yield a set of consequences that make
legislative documents traceable, verifiable, searchable, absent of
contradictions, complete, precise, and amenable to change.

Given the number of strategies to unpack, we narrow the
scope of this paper to semantic web parameterization,
Hohfeldian legal concepts, and ontologies. In the next section,
we describe how the SHAMROQ methodology works in
practice to extract requirements from regulations.

Figure 5. §164.510 (a)(1) of HIPAA

B. How does the SHAMROQ methodology work in practice to

build a knowledge base of regulatory documents.

In this section, we describe the methodology that supports
the framework. The methodology aids practitioners in providing
a formal means to represent legal provisions, minimize

ambiguity, trace a requirement from its basic activity model back
to its origin, and enrich the data model with metadata. What
follows is a description of the automated process to analyze and
classify and the manual process to model. To illustrate, we use
the example of §164.510 (a)(1)(i)(A) of the HIPAA Privacy
Rule, to describe each phase.

1) Analysis
In the analysis phase, we download the XML version of the

regulations from the govinfo.gov website 3 and perform the
following automated processing on the text using the Python
programming language and Natural Language Toolkit (NLTK)
[31]. First, the XML file is scanned to obtain the root node of
the regulation. Secondly, preprocessing is performed on the
document by traversing the root node and extracting the
information associated with the node.tag, the node.attrib, and
node.text. The analysis phase concludes when the results are
stored in a python dictionary that contains the metadata, header,
and body structure.

2) Classify
 In the classification phase, the python dictionary is taken

from the analysis phase and NLTK aids in performing sentence
segmentation on the body of the python dictionary which
contains the regulatory text. Next, NLTK helps to segment the
regulatory text into sentences, to tokenize each sentence into
words, and to tag each word with a part of speech. Finally, a
grammar, illustrated in figure 6, helps to chunk the tagged words
into eight categories: section, topic, noun phrase, exception,
modality, conjunction, continuance, and action.

Figure 6. Grammar

Chunks, with a focus on noun phrases and verbs, are
inspected manually in the output to identify an actor, action,
object, target, exception, or constraint. A search for the modal
verb is performed to assign to the root activity. Table 1 outlines
the normative phrases [1] that align with Hohfeldian legal
concepts[24, 25].

Table 2 captures the predicates that are aligned with the
subject, verb, and object along with other attributes to support
building a model that represent the regulation. The
classification phase ends when all words and phrases written in
a regulatory document are mapped to a category.

TABLE I. HOHFELDIAN CLASSIFICATION

Serial

No.

Modality and Normative Phrase Correlation

Normative Phrase Concept

1 has a/the right to, retains the right to Right

3 https://www.govinfo.gov/content/pkg/CFR-2019-title45-vol2/xml/CFR-

2019-title45-vol2-sec164-510.xml

Serial

No.

Modality and Normative Phrase Correlation

Normative Phrase Concept

2
must, is required to, shall, may not,

is prohibited, is subject to
Obligation

3

may, may elect not to, is not required to,

requirement does not apply, is permitted to,

at the election of, is not subject to

Privilege

4 does not have a right to No-Right

5
authorize termination of, must obtain an
authorization, may revoke, may terminate

Power

6
provide that <actor> will/must, obtain

assurance
Liability

7 None Immunity

8 may not authorize Disability

The sentences are further examined manually to ascertain
continuances [32]. Continuances are clauses that break into
multiple constituent parts. The constituent parts are appended to
the base clause and must be classified and modeled separately in
the following manner [21].

TABLE II. ACTIVITY CLASSIFICATIONS

Serial

No.

Classification Scheme

Predicate Description

1 hasActor
The subject of the clause and answer the ICM

question who

2 hasAction
The verb of the clause and answers the question

what

3 hasModality
The auxiliary verb that corresponds to a
Hohfeldian legal concept

4 hasObject
The verb of the clause and answers the question

what

5 hasTarget The person, place, or thing receiving an action

6 hasPurpose The goal or objective of the clause

7 hasException Contains keywords that express an exception

8 hasConstraint Contains keywords that express a constraint

9 hasSource Contains the legislation source section

a) § 164.510 (a)(1)(i)(B)

Except when an objection is expressed in accordance with
paragraphs (a) (2) or (3) of this section, a covered health care
provider may: (i) Use the following protected health information
to maintain a directory of individuals in its facility: The
individual's location in the covered health care provider's
facility;

a) 164.510 (a)(1)(i)(C)

Except when an objection is expressed in accordance with
paragraphs (a) (2) or (3) of this section, a covered health care
provider may: (i) Use the following protected health information
to maintain a directory of individuals in its facility: The
individual's condition described in general terms that does not
communicate specific medical information about the individual;
and

https://www.govinfo.gov/content/pkg/CFR-2019-title45-vol2/xml/CFR-2019-title45-vol2-sec164-510.xml
https://www.govinfo.gov/content/pkg/CFR-2019-title45-vol2/xml/CFR-2019-title45-vol2-sec164-510.xml

Figure 7. Semantic Web Parameterization

b) § 164.510 (a)(1)(i)(D)

Except when an objection is expressed in accordance with
paragraphs (a) (2) or (3) of this section, a covered health care
provider may: (i) Use the following protected health
information to maintain a directory of individuals in its
facility: The individual's religious affiliation; and

3) Model
In this phase, the output of the classification phase is

inspected manually and protégé [33] is used to represent an
organized, logical representation of concepts and categories
using semantic web parameterization. The root activity
contains the assignment based on the modal verb in the
normative phrase. To provide more clarity, we continue with
the example of § 164.510 (a)(1)(i)(A).

In figure 7, the illustration shows the results of the
Semantic Web Parameterization process, in particular, the

assignment of the root activity σ’(PrivelegeActivity0). The
root activity is a privilege according to the phrase, “a covered
health care provider may:” A look in Table 1, serial 3 shows
the modal verb “may” maps to a privilege – the root activity.

The combined associate and declarative relations become

the following triples: α’(privelegeActivity0, hasActor0, some

Health care Provider), α’(privelegeActivity0, hasAction0,

some Use), α’(privelegeActivity0, hasObject0, some Name

Individual Activity), α’(privelegeActivity0, hasPurpose0,

some Purpose Activity), α’(privelegeActivity0, hasException0,

some CFR 164 (a) (2)_Activity), and α’(privelegeActivity0,
hasException0, some Exception_IAW_a_2_or_a_4)

VI. THREATS TO VALIDITY

In this paper, we used section §164.510 of HIPAA as a
descriptive, embedded, single-case study to develop and
validate the SHAMROQ methodology. To assess the quality
of a case study, Yin describes four criteria: construct validity,
internal validity, external validity, and reliability. Internal

validity is used for explanatory or causal case studies and not
for descriptive or exploratory studies [27]. Therefore, internal
validity is not tested here. In this section, we discuss construct
validity, external validity, and reliability.

Construct validity assesses the correctness of operational
measures by evaluating the means in which the researcher
collects data, builds, or validates theory, and reports results
[27]. Yin outlines three case study tactics to mitigate the
threats to construct validity: use multiple sources of evidence,
establish a chain of evidence, and use key informants to
review the draft case study [27].

Although the case study in this paper uses one section of
HIPAA, the basis of the SHAMROQ methodology is
grounded in the literature and based on prior theories of
semantic parameterization [16], description logic [23], and
Hohfeldian legal concepts [24, 25]. We establish a chain of
evidence by following our methodology and retaining copies
of all artifacts. Lastly, the authors listed here reviewed the
draft case study report.

External validity assesses whether the results are specific
to the phenomenon under investigation or are applicable more
generally [27]. We acknowledge several threats to external
validity in our case study. First, we only examine one legal
text within one regulatory domain - HIPAA. However, we
purposely selected §164.510 because this provision provides
normative phrases, continuations, exceptions, and parameter
values that are indicative of legal text. Further studies
modeling more legal texts across multiple domains will serve
to validate and refine the methodology.

Reliability assesses whether the research can be
independently verified, using the same methodology, to yield
the same results [27]. Researchers independently verifying
our case study are likely to use different grammar rules,
identify a different combination of noun phrases, and identify
a different ontology. Therefore, a small probability exists that
the exact results of our case study could be replicated.

However, reliability is improved by evaluating reliability
against our documented process and case-study database.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced SHAMROQ, a methodology
to examine all the natural language features in a regulatory
document, group the features according to their shared
characteristic, and model the features using the semantic web
parameterization. We analyzed HIPAA regulation §164.510,
which contained provisions with normative phrases,
continuations, exceptions, and cross-references that are
indicative of legal text. Our findings show that it is possible
to use the basic activity pattern with modality, description
logic, and Hohfeldian legal concepts to analyze, classify, and
model the legal relationships to ascertain meaning, context,
and structure.

Future work will include automating the manual steps to
generate a semantic model from the noun phrases produced by
the chunked grammar. Moreover, we will refine and validate
SHAMROQ with a more extensive legal corpus across
multiple regulatory domains and evaluate to what extent a
multi-class classification machine learning algorithm can
classify Hohfeldian legal concepts for semantic modeling.

REFERENCES

[1] T. D. Breaux, M. W. Vail, and A. I. Anton, "Towards

regulatory compliance: Extracting rights and obligations to align
requirements with regulations," in Requirements Engineering,

14th IEEE International Conference, 2006: IEEE, pp. 49-58.
[2] T. D. Breaux and A. I. Antón, "Analyzing regulatory rules for

privacy and security requirements," Software Engineering, IEEE

Transactions on, vol. 34, no. 1, pp. 5-20, 2008.
[3] P. N. Otto, A. Antón, and others, "Addressing legal

requirements in requirements engineering," 2007 2007: IEEE,

pp. 5-14. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4384161[O

nline]. Available: files/272/abs_all.html

[4] E. Kamsties, "Understanding ambiguity in requirements
engineering," in Engineering and Managing Software

Requirements: Springer, 2005, pp. 245-266.

[5] M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P.
Hammond, and H. T. Cory, "The British Nationality Act as a

logic program," Communications of the ACM, vol. 29, no. 5, pp.

370-386, 1986.
[6] J. C. Maxwell, A. I. Anton, and J. B. Earp, "An empirical

investigation of software engineers' ability to classify legal

cross-references," in Requirements Engineering Conference
(RE), 2013 21st IEEE International, 2013: IEEE, pp. 24-31.

[7] L. E. Allen, "Symbolic logic: A razor-edged tool for drafting

and interpreting legal documents," Yale LJ, vol. 66, p. 833,
1956.

[8] T. J. Bench-Capon, G. O. Robinson, T. W. Routen, and M. J.

Sergot, "Logic programming for large scale applications in law:
A formalisation of supplementary benefit legislation," in

Proceedings of the 1st international conference on Artificial

intelligence and law, 1987: ACM, pp. 190-198.
[9] T. D. Breaux, A. I. Ant, and #243, "Mining rule semantics to

understand legislative compliance," presented at the

Proceedings of the 2005 ACM workshop on Privacy in the
electronic society, Alexandria, VA, USA, 2005.

[10] A. Antón, J. B. Earp, A. Reese, and others, "Analyzing website

privacy requirements using a privacy goal taxonomy," 2002
2002: IEEE, pp. 23-31. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1048502[O

nline]. Available: files/279/abs_all.html

[11] J. C. Maxwell, A. I. Ant, and #243, "The production rule
framework: developing a canonical set of software requirements

for compliance with law," presented at the Proceedings of the

1st ACM International Health Informatics Symposium,
Arlington, Virginia, USA, 2010.

[12] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker,

"A machine learning approach for tracing regulatory codes to
product specific requirements," presented at the Proceedings of

the 32nd ACM/IEEE International Conference on Software

Engineering - Volume 1, Cape Town, South Africa, 2010.
[13] M. J. May, C. A. Gunter, and I. Lee, "Privacy APIs: Access

control techniques to analyze and verify legal privacy policies,"

2006: IEEE, pp. 13-pp.
[14] P. Slootweg, L. Rutledge, L. Wedemeijer, and S. Joosten, "The

Implementation of Hohfeldian Legal Concepts with Semantic

Web Technologies," AI4J–Artificial Intelligence for Justice, p.
65, 2016.

[15] P. A. Laplante, Requirements engineering for software and

systems. CRC Press, 2017.
[16] T. D. Breaux and A. I. Antón, "Analyzing goal semantics for

rights, permissions, and obligations," 2005: IEEE, pp. 177-186.

[17] T. D. Breaux, A. I. Antón, and J. Doyle, "Semantic

parameterization: A process for modeling domain descriptions,"

ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 18, no. 2, p. 5, 2008.
[18] T. D. Breaux and A. Anton, "Deriving semantic models from

privacy policies," in Policies for Distributed Systems and
Networks, 2005. Sixth IEEE International Workshop on, 2005:

IEEE, pp. 67-76.

[19] T. D. Breaux and A. I. Antón, "A systematic method for
acquiring regulatory requirements: A frame-based approach,"

RHAS-6), Delhi, India, 2007 2007.

[20] T. D. Breaux, Legal requirements acquisition for the
specification of legally compliant information systems.

ProQuest, 2009.

[21] J. C. Maxwell and A. I. Anton, "A refined production rule
model for aiding in regulatory compliance," North Carolina

State University. Dept. of Computer Science, 2010.

[22] J. C. Maxwell and A. I. Anton, "Developing production rule
models to aid in acquiring requirements from legal texts," in

Requirements Engineering Conference, 2009. RE'09. 17th IEEE

International, 2009: IEEE, pp. 101-110.
[23] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, Introduction to

Description Logic. Cambridge University Press, 2017.

[24] W. N. Hohfeld, "Fundamental legal conceptions as applied in
judicial reasoning," The Yale Law Journal, vol. 26, no. 8, pp.

710-770, 1917.

[25] W. N. Hohfeld, "Some fundamental legal conceptions as applied
in judicial reasoning," Yale Law Journal, pp. 16-59, 1913.

[26] J. W. Creswell, Research design: Qualitative, quantitative, and

mixed methods approaches. Sage, 2013.
[27] R. K. Yin, Case study research and applications: Design and

methods. Sage publications, 2017.

[28] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case study
research in software engineering: Guidelines and examples.

John Wiley & Sons, 2012.

[29] B. Kitchenham and P. Brereton, "A systematic review of
systematic review process research in software engineering,"

Information and Software Technology, vol. 55, no. 12, pp. 2049-

2075, 12// 2013, doi:
http://dx.doi.org/10.1016/j.infsof.2013.07.010.

[30] G. W. Noblit and R. D. Hare, Meta-ethnography: Synthesizing

qualitative studies. Sage, 1988.
[31] E. Loper and S. Bird, "NLTK: the natural language toolkit,"

arXiv preprint cs/0205028, 2002.

[32] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, "Automated
analysis of requirement specifications," 1997, pp. 161-171.

[33] M. A. Musen, "The protégé project: a look back and a look

forward," AI matters, vol. 1, no. 4, pp. 4-12, 2015.

