
DOI reference number: 10.18293/SEKE2020-143

Significant API Calls in Android Malware Detection
Using Feature Selection Techniques and Correlation Based Feature Elimination

Asadullah Hill Galib

Institute of Information Technology

University of Dhaka

Dhaka, Bangladesh

bsse0712@iit.du.ac.bd

B M Mainul Hossain

Institute of Information Technology

University of Dhaka

Dhaka, Bangladesh

mainul@iit.du.ac.bd

Abstract— Android API Calls are an important factor in

differentiating malware from benign applications. Due to the

increasing number of API Calls and considering computational

complexity, the number of API calls in Android malware detection

should be assessed and reduced without affecting detection

performance. This study tries to figure out a feature reduction

approach for identifying significant API Calls in Android malware

detection. It incrementally analyzes various feature selection

techniques to find out the minimal feature set and the most suitable

technique. Also, it incorporated a correlation-based feature

elimination strategy for further reduction of API Calls.

Experiments on two benchmark datasets show that the Recursive

Feature Elimination with Random Forest Classifier causes the

minimal number of API Calls. Evaluation results indicate that the

reduced set of significant API Calls (SigAPI) will perform

relatively close to the full set of features in terms of accuracy,

accuracy, recall, f-1 performance, AUC, and execution time. It also

compares the performance with the existing malware detection

works and the SigAPI outperforms most of the work regarding

malware detection rate. Furthermore, it reports the top significant

API Calls in malware detection. Finally, this work suggests that

reduced features set of significant API Calls would be useful in

classifying Android malware effectively.

Keywords- Significant API Calls, Android Malware Detection,

Feature Selection

I. INTRODUCTION

Android API (Application Programming Interface) is a
series of specifications and guidelines that programs can follow
to communicate with each other. Using API Calls this
communication happens. APIs are growing exponentially every
year [1]. Due to the wide-ranging applicability of API Calls, they
are commonly used for characterizing and separating malware
from benign applications.

 However, the Android operating system uses a large
number of API Calls and the number continues to expand. So,
handling this large number of API calls in malware detection for
Android is challenging. This would overfit the classifier model
or complicated the classification method by providing a large
number of features set. It would be useful to boost this problem
by reducing features of the API Calls using feature selection
techniques.

 This study dealt with examining API Calls for reducing
the irrelevant ones without tampering significant API Calls. It

presents an approach for significant API Calls identification.
Primarily, it incrementally employed several feature selection
techniques. It trialed with Mutual Information Gain, Univariate
ROC-AUC scores, Recursive Feature Elimination (RFE) with
Gradient Boosting Classifier, and Random Forest Classifier,
SelectKBest using chi scoring function, SelectFromModel using
Random Forest and Extra Trees classifiers for exploring the
effect of incremental feature selection. Subsequently, according
to the performance evaluation, it infers a minimal range of
features for different techniques and determines the best
selection technique. Further, by incorporating a correlation-
based feature elimination strategy, it reduces the minimal range
of feature sets. Finally, the selected features are evaluated on two
benchmark datasets based on five performance metrics
(accuracy, precision, recall, f-1 score, AUC), execution time,
and comparison with existing works.

 Results show that from all the API Calls, 15-25 API
Calls are significant in malware detection according to RFE with
Random Forest Classifier. Evaluation illustrates that using those
significant API calls, the performance is close enough to the full
API Calls set. For instance, using the top 25 significant API
Calls derived from the feature selection technique, the
performance metrics are as follows for a particular dataset:
accuracy - 97.07%, precision - 97.41%, recall - 94.60%, f-1
score - 0.960, and AUC – 0.993. Likewise, as far as the
execution time is concerned, the significant API Calls take fairly
less time. In comparison with existing works, this work
outperforms other studies while using only a few numbers of
API Calls. Also, the top significant API Calls are reported.

 There were no prior works on reducing or defining
significant API calls. To the best of our knowledge, this is the
first study on significant API Calls in Android malware
detection. The main contributions of the study are as follow:

• It proposes and assesses a feature reduction approach
for identifying significant API Calls in Android
Malware Detection effectively.

• It’s reduced significant API Calls performs notably
with respect to the full features set in terms of accuracy,
precision, recall, f-1 score, AUC, and execution time.
Also, it outperforms most of the existing works.

• It provides the top significant API Calls list in Android
malware detection.

The rest of the paper is organized as follows. Section II
presents the significant API Calls identification approach in
detail. Section III gives the evaluation of the approach. Section
IV gives the limitation. Section V gives related works. Section
VI concludes the paper and guides future work.

II. SIGNIFICANT API CALLS IDENTIFICATION APPROACH

The overall approach of significant API Calls identification
consists of five steps. The overview of the approach is depicted
in Fig. 1. The details of each step are as follow:

Figure 1. Significant API Calls Identification Approach

A. Data Preprocessing

The dataset is preprocessed using traditional data
preprocessing techniques. Other features are excluded from the
dataset except for the API Calls. Subsequently, missing value
treatment and label encoding are incorporated. For, incremental
feature selection, the dataset is split into training and validation
sets.

B. Incremental Feature Selection (IFS)

In identifying the significant API Calls, two aspects are
considered. First, how many numbers of API Calls should we
choose? In this regard, it is avoided to set any predefined
parameters like a certain number of API Calls to be selected.
Rather, it is intended to determine the optimal/minimal number
of API Calls by analyzing performance metrics for different
numbers of API Calls. In doing so, a feature selection technique
is employed in an incremental way. For each feature selection
technique, from one to the highest number of API Calls are
assessed separately based on performance metrics.

Second, which feature selection technique is more suitable in
reducing API Calls while maintaining the performance in
Android malware detection? Again, various feature selection
techniques are analyzed to figure out the most suitable
technique, rather than imposing a predetermined feature
selection technique. In this study, the following feature selection
techniques are examined:

1. Feature Selection using Mutual Information Gain (Entropy-
Based): Mutual Information is a non-negative value
between two random variables, which measures
dependency between variables. It measures the quantity of

information gained by analyzing the other random variable
involving one random variable. It is equal to zero if there
are two independent random variables, and higher values
mean higher dependence. The function is based on
nonparametric methods based on entropy estimation of the
distances from k-nearest neighbors as defined in [2] and [3].

2. Feature Selection Based on Univariate ROC-AUC Score: A
ROC curve (receiver operating characteristic curve) is a
graph representing a classification model output at all
classification thresholds. This curve maps two parameters:
True Positive Rate and False Positive Rate. AUC stands for
"Area under the ROC Curve," meaning that AUC measures
the whole two-dimensional space under the ROC Curve.
The region under the curve (AUC) is proportional to the
probability that a classifier ranks a randomly selected
positive instance higher than a randomly selected negative
one by using normalized units [4]. Univariate ROC-AUC
involves the analysis of a single variable. An AUC equal to
0.5 corresponds to a type of random classification. For a
model to be acceptable AUC will be greater than 0.5.

3. Feature Selection using Recursive Feature Elimination
(RFE): The goal of recursive feature elimination (RFE) is
to pick features by recursively considering smaller and
smaller sets of features, given an external estimator that
assigns weights to features. First, the estimator is trained on
the initial collection of features and the importance of each
function is obtained. The least significant characteristics are
then pruned from the present range of characteristics. The
process is repeated recursively on the pruned collection
before finally achieving the required number of features to
be chosen [5]. In this work, two classifiers are used as the
estimators of the RFE.

3.1. RFE with Gradient Boosting Classifier: As the base
estimator of the RFE, Gradient Boosting Classifier is
employed. Gradient Boosting Classifier builds an
additive model in forward-stage-wise fashion; enables
arbitrary differentiable loss functions to be optimized.
Regression trees are fit on the negative gradient of the
function of binomial or multinomial loss of deviance
in each point [6].

3.2. RFE with Random Forest Classifier: Random Forest
Classifier is also used as the base estimator of the RFE.
It is a meta-estimator that fits multiple decision tree
classifiers on various dataset sub-samples and uses an
average to improve predictive [7].

4. Feature Selection using SelectKBest with chi2: SelectKBest
scores the features according to the k highest scores. It takes
a score function as a parameter, which would be specific to
a pair. The score function retains the features of the first k
with the highest scores [8]. In this study, the chi2 scoring
function is employed. This scoring function computes the
chi-squared stats between each non-negative feature and
class scores accordingly. It tests for which the distribution
of the test statistic approaches the χ2 (Chi-Squared)
distribution asymptotically [9].

5. Feature Selection using SelectFromModel (Tree-Based):
SelectFromModel is a meta-transformer that can be used

along with any tree-based estimator. It calculates the feature
importance of each feature according to fitting the estimator
into the data. Based on the feature importance it selects the
top N features, where N is predefined [10]. Tree-based
estimators are used here as it can classify the significant
features by selecting the classification features on the basis
of how well they boost the node's purity [11]. In this case,
every possible value of N is evaluated. Also, two tree-based
estimators are incorporated here: Random Forest Classifier
and Extra Trees Classifier.

C. Determining Feature Selection Technique using the

Minimal Range of Features

After implementing the incremental feature selection using
different feature selection techniques, analysis of performance
metrics is carried out to identify the minimal range of features.
The minimal range of features implies a range of features from
which segment the performances of Android malware detection
are not increased significantly with respect to the increase of
features. In other words, before the minimal range, the
performances are increased. But, after the minimal range, the
performances are quite unchanged with the increase in the
number of features. To draw a conclusion from the analysis, a
self-explanatory plot is generated using the performance metrics
(accuracy, precision, recall, f-1 score) with respect to the
increasing number of features. According to the plots for
different techniques, the minimal range of features are deduced.

These minimal ranges are conducive to determine the best
feature selection technique. The feature selection technique with
the lowest minimal range is carefully chosen for identifying
significant API Calls in Android Malware Detection.

D. Correlation-based Feature Elimination

After selecting the important features using the suitable
feature selection technique, a final feature elimination strategy
is performed for further reduction of API Calls without affecting
the performances notably. Here, a correlation-based feature
elimination strategy is applied.

A pair-wise Pearson correlation coefficient is calculated for
all pairs of important API Calls. It is a measure of the linear
correlation between two variables X and Y. It is calculated using
the following equation [12]:

𝜌𝑥𝑦 =
Cov(x,y)

𝜎𝑥 𝜎𝑦
 (1)

Where,

𝜌𝑥𝑦 = Pearson correlation coefficient

Cov (x,y) = covariance of variable x and y

𝜎𝑥 = standard deviation of x

𝜎𝑦 = standard deviation of y

Then all the pairs with a Pearson correlation coefficient
greater than 0.85 are filtered out for the feature elimination
process. As the two features in each pair are highly correlated,
so removing one of them would not affect the classification
performances.

The elimination strategy here is to remove the less important
feature from each pair. To measure the relative importance of the
features, a tree-based estimator – Random Forest Classifier is
used. According to the relative feature importance, the more
important feature in each pair is intact, and the less important
feature is eliminated.

E. Evaluating Significant API Calls

Finally, the reduced set of API Calls are evaluated according
to five performance metrics – accuracy, precision, recall, f-1
score, AUC. Here, the minimal range of features derived from
the best feature selection technique is assessed. In the final
assessment, the Random Forest classifier is trained and
evaluated with 10-fold cross-validation. Along with the five-
performance metrics, execution time, and comparison with the
existing approach are also evaluated. Also, significant API Calls
are determined and reported.

III. EVALUATION

In the evaluation of this study, two benchmark datasets are

used. The experimental results are analyzed based on five

performance metrics - accuracy, precision, recall, f-1 score, and

AUC. These metrics are widely used in performance measure

of Android malware detection. Besides, the execution time of

detection is considered for evaluation. Three research questions
are being answered here regarding significant API Calls in

malware detection.

A. Dataset

In this study, the Drebin [13] and the Android Malware
Genome Project [14] datasets are used. The datasets are used
separately to ensure the applicability and generalizability of the
approach.

The Drebin dataset contains 5,560 malware applications
from 179 different malware families. Also, 9470 benign
applications derived from the Google Play Store are
incorporated here for classifying the malware properly.

The Android Malware Genome Project dataset contains
1,200 malware samples that cover most existing Android
malware families. Here, 2539 benign applications derived from
the Google Play Store are incorporated. In the rest of the paper,
this dataset is referred to as Malgenome.

Only the API Calls are considered in this work. In total, 73

API Calls are found in the Drebin dataset and 69 API Calls are

found in the Android Malware Genome Project dataset.

B. RQ1: How can we sort out the significant API Calls

(features) in Android malware detection?

According to the different incremental feature selection
techniques, the minimal ranges are analyzed to determine the
best feature selection technique in identifying significant API
Calls. The near minimal ranges are as depicted in Table I.

From the experiments, the best feature selection technique
for API Calls reduction is Recursive Feature Elimination (RFE)

with Random Forest Classifier as it has the lowest minimal

range among other techniques for both datasets (see Table I).

TABLE I. MINIMAL RANGE OF FEATURES FOR DIFFERENT FEATURE

SELECTION TECHNIQUES

Feature Selection

Technique

Minimal Range

for Drebin

Minimal Range

for Malgenome

Mutual Information Gain 37-42 23-28

Univariate ROC-AUC

Score
35-38 25-30

RFE with Gradient

Boosting Classifier
23-28 20-25

RFE with Random Forest

Classifier
18-25 18-21

SelectKBest with chi2 47-50 30-33

SelectFromModel with

Random Forest Classifier
25-30 17-22

SelectFromModel with

Extra Trees Classifier
28-33 20-23

The minimal range of features using RFE with

Random Forest Classifier for the Drebin dataset can be

deduced from Fig.2 and Fig. 3. According to Fig. 2., with the

number of features, are increased, the performance metrics

are also increased initially. However, in the range between

18-25 features (approximately), the performance metrics are

going to be stable and remain constant (the lines are almost

horizontal) for the following selected features. So, it can be
inferred that by taking those 18-25 features, the

performances are close enough to the actual performances of

all the 73 features. In the next research question, this minimal

range of features are evaluated.

Figure 2. Recursive Feature Elimination (RFE) using Random Forest

Classifier (Performance Metrics vs Number of Features)

Before proceeding to the performance evaluation, the

correlation-based feature elimination (CFE) is performed on

the minimal range of features. And, experiments show that

CFE can reduce the features as depicted in Table II. For

instance, CFE can reduce 18 features to 15 and 16 features

respectively for the Drebin and Malgenome datasets.

TABLE II. CORRELATION-BASED FEATURE ELIMINATION (CFE) ON THE

MINIMAL FEATURE SETS

Number of API Calls

Minimal Feature Sets

With CFE for

Drebin

With CFE for

Malgenome

18 15 16

19 15 17

20 17 18

21 19 19

22 20 20

23 21 21

24 21 21

25 22 22

C. RQ2: How do the significant API Calls perform in

detecting Android Malware?

In this research question, the reduced set of Significant API
Calls (SigAPI) are evaluated based on the performance metrics,
execution time, and comparison with existing works.

1) Performance Evaluation of the SigAPI

The performance evaluation for the significant API

Calls is based on five metrics. The evaluation is described in

Table III and Table IV for the number of API Calls– 15, 17,

19, 21, 23, 25, and all API Calls to sidestep redundancy.

Table III shows that for the Drebin dataset, the

performance metrics using significant API Calls are close to

the performance metrics of using all the API Calls (73).

Table IV also shows that for the Malgenome dataset,

the significant API Calls performs almost identically to the

full feature set of API Calls (69).

Specifically, how many significant API calls should be
selected? - It depends on the requirement of the stakeholders.

However, it is suggested to use the range of 15-25 significant

API Calls based on the prerequisite of performance metrics.

TABLE III. PERFORMANCE EVALUATION OF THE SIGNIFICANT API CALLS

(DREBIN)

Feature

Selection

Technique

of

API

Calls

Acc

(%)

Pre

(%)

Rec

(%)
F-1 AUC

All Features 73 98.32 98.62 96.17 0.974 0.996

RFE with

Random

Forest Clas-

sifier

25 97.07 97.41 94.60 0.960 0.993

23 96.69 96.92 94.06 0.955 0.993

21 96.26 96.64 93.15 0.949 0.992

19 96.17 96.26 93.27 0.947 0.991

17 95.62 95.58 92.43 0.940 0.988

15 95.38 96.03 91.29 0.936 0.986

TABLE IV. PERFORMANCE EVALUATION OF THE SIGNIFICANT API CALLS

(MALGENOME)

Feature

Selection

Technique

of

API

Calls

Acc

(%)

Pre

(%)

Rec

(%)
F-1 AUC

All

Features
69 98.71 98.87 97.22 0.980 0.998

RFE with

Random

Forest

Clas-sifier

25 98.12 98.16 96.19 0.972 0.998

23 98.03 98.15 95.87 0.970 0.998

21 98.10 98.07 96.10 0.971 0.996

19 96.16 97.92 96.51 0.972 0.996

17 97.97 97.82 96.03 0.969 0.995

15 97.26 97.62 94.05 0.958 0.993

2) Execution Time of the SigAPI

Table V shows the comparative execution time of

malware detection. The result shows that using the

significant API Calls (ranges between 15-25), the execution
time of the malware detection is considerably lower than

using all the features. For large data sets, this time would be

substantially higher.

TABLE V. EXECUTION TIME OF THE SIGNIFICANT API CALLS

of

API

Calls

Execution Time (s)

for Drebin

Execution Time (s)

for Malgenome

All 6.48 5.76

25 4.15 4.02

23 4.11 3.98

21 4.11 3.88

19 3.95 3.85

17 3.91 3.78

15 3.90 3.74

3) Comparison with Existing Works

Table VI shows the comparative analysis of the

detection rate using significant 20 API Calls – SigAPI (20)

for the Drebin dataset with respect to some existing works on

Android malware detection. The result shows that SigAPI

(20) outperformed all the existing works except two.

TABLE VI. COMPARISON WITH THE EXISTING WORKS

Works Detection Rate (%)

SigAPI (20) 96.30

Drebin [10] 93.90

SigPID [15] 93.62

Yerima et al. [11] 92.1%

Yerima et al. [12] 97.5%

Peiravian et al. [13] 95.75%

DroidAPIMiner [14] ~99%

Altaher et al. [16] 91%

A. RQ3: Which API Calls are Significant in Android

Malware Detection?

Table VII shows the top 25 significant API Calls in

Malware Detection for the Drebin dataset. These API Calls

are derived from the feature selection technique – RFE with

Random Forest Classifier. Also, these 25 API Calls are

almost identical to the Malgenome dataset except 3 API

Calls. More data instances would be conducive to generating

identical API Calls. Yet, as this study primarily suggests a

feature reduction approach for significant API Calls, the

dataset to dataset it may slightly vary due to the inconsistency
and time period of datasets.

TABLE VII. TOP 25 SIGNIFICANT API CALLS (DREBIN)

TOP 25 SIGNIFICANT API CALLS (DREBIN)

transact ClassLoader

onServiceConnected Landroid.content.Context.register

Receiver

bindService Ljava.lang.Class.getField

attachInterface android.content.pm.PackageInfo

ServiceConnection TelephonyManager.getLine1Num

ber

android.os.Binder Ljava.lang.Class.getMethod

Ljava.lang.Class.getCanonicalNa

me

android.telephony.gsm.SmsMana

ger

Ljava.lang.Class.getMethods TelephonyManager.getSubscriber

Id

Ljava.lang.Class.cast Ljava.lang.Object.getClass

Ljava.net.URLDecoder TelephonyManager.getDeviceId

android.content.pm.Signature HttpUriRequest

android.telephony.SmsManager Runtime.exec

IV. LIMITATION

In this study, only the Drebin and Malgenome datasets have
been analyzed, which is subject to bias and lack of
generalizability, threatening external validity. In terms of threats
to internal validity, the parameters of different techniques and
algorithms, execution time measurement are susceptible to bias
and can be examined differently by different analysts and
machines.

V. RELATED WORK

Several works dealt with API Calls in Android malware
detection. For instance, Drebin incorporated API Calls with
other features and obtained an accuracy of 93.90% in malware
detection [13]. Yerima et al. combined API Calls and
Permissions with Bayesian Classifier and attained 92.1%
accuracy [15]. In another work, they achieved an accuracy of
97.5% and an AUC of 0.953 by using a composite parallel
classifier approach [16]. Using API Calls modeled with SVM
(Support Vector Machine), Peiravian et al. gained an accuracy
of 95.75% and an AUC of 0.957 [17]. Likewise, DroidAPIMiner
integrated API level features and reached an accuracy as high as
99% using the KNN classifier [18].

Though a handful number of works employed API Calls,
none dealt with reducing API Calls or identifying important API
Calls. However, feature reduction technique is applied in
Permission features previously. Li et al. successfully reduced
135 Permission features to 22 features. They used Permission
ranking with negative rate, support based Permission ranking,
and Permission mining with association rules for feature
selection. Their reduced Permission features have higher recall
value, close enough accuracy value with the full features set. But
their precision was lower and false positive rate (FPR) was
higher significantly with respect to all Permission features [19].

 Altaher et al. proposed an approach based on ANFIS with
fuzzy c-means clustering using significant application
permissions. Their classification accuracy was 91%, with the
lowest false positive and false negative rates of 0.5% and 0.4%,
respectively [20].

Wang et al. evaluated individual permissions and collective
permissions and implemented three measures of scoring on the
permission features. They discovered dangerous permission
subsets using Sequential Forward Selection (SFS) and Principal
Component Analysis (PCA). They got a 94.62% detection rate
[21].

To the best of our knowledge, there is no such work on
feature reduction of API Calls in Android malware detection.

VI. CONCLUSION

In this study, a feature reduction approach is proposed for
identifying significant API Calls in Android Malware detection.
Evaluation of the significant API Calls shows that API Calls can
be reduced without affecting performance so much. Therefore,
reduced features set of significant API Calls would be
convenient in classifying Android malware considering
performance and computational complexity.

In the future, the approach will be evaluated using different
and large datasets. Also, other feature selection techniques using
deep learning, ensemble learning, etc. will be employed.

REFERENCES

[1] J. Fernando, “What is an API ? How to call an API from Android ?,”
DroidMentor, 12-Oct-2016. [Online]. Available:

https://droidmentor.com/api-call-api-android/. [Accessed: 11-Jan-2020].

[2] A. Kraskov, H. Stögbauer, and P. Grassberger, “Erratum: Estimating
mutual information [Phys. Rev. E69, 066138 (2004)],” Physical Review

E, vol. 83, no. 1, 2011.

[3] B. C. Ross, “Mutual Information between Discrete and Continuous Data

Sets,” PLoS ONE, vol. 9, no. 2, 2014.

[4] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition

Letters, vol. 27, no. 8, pp. 861–874, 2006.

[5] “sklearn.feature_selection.RFE¶,” scikit. [Online]. Available:
https://scikit-

learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html.

[Accessed: 11-Feb-2020].

[6] M. B. Fraj, “In Depth: Parameter tuning for Gradient Boosting,” Medium,
24-Dec-2017. [Online]. Available: https://medium.com/all-things-ai/in-

depth-parameter-tuning-for-gradient-boosting-3363992e9bae.

[Accessed: 03-Mar-2020].

[7] Ho, Tin Kam. "Random decision forests." In Proceedings of 3rd
international conference on document analysis and recognition, vol. 1, pp.

278-282. IEEE, 1995.

[8] “sklearn.feature_selection.SelectKBest¶,” scikit. [Online]. Available:
http://scikit-

learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBes

t.html. [Accessed: 11-Jan-2020].

[9] Pearson K. X. On the criterion that a given system of deviations from the

probable in the case of a correlated system of variables is such that it can
be reasonably supposed to have arisen from random sampling. The

London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science. 1900 Jul 1;50(302):157-75.

[10] “1.13. Feature selection¶,” scikit. [Online]. Available: https://scikit-

learn.org/stable/modules/feature_selection.html. [Accessed: 01-Mar-

2020].

[11] “Using Scikit-Learn in python for feature selection,” Data Science

Beginners, 26-Nov-2018. [Online]. Available:
https://datasciencebeginners.com/2018/11/26/using-scikit-learn-in-

python-for-feature-selection/. [Accessed: 01-Mar-2020].

[12] “Basic Concepts of Correlation,” Real Statistics Using Excel. [Online].
Available: http://www.real-statistics.com/correlation/basic-concepts-

correlation/. [Accessed: 04-Mar-2020].

[13] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin:

Effective and Explainable Detection of Android Malware in Your
Pocket,” Proceedings 2014 Network and Distributed System Security

Symposium, 2014.

[14] Yajin Zhou, Xuxian Jiang, "Dissecting Android Malware:
Characterization and Evolution," Proceedings of the 33rd IEEE

Symposium on Security and Privacy (Oakland 2012), San Francisco, CA,

May 2012

[15] Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013, March). A

new android malware detection approach using bayesian classification. In
2013 IEEE 27th international conference on advanced information

networking and applications (AINA) (pp. 121-128). IEEE.

[16] Peiravian, N., & Zhu, X. (2013, November). Machine learning for android
malware detection using permission and api calls. In 2013 IEEE 25th

international conference on tools with artificial intelligence (pp. 300-305).

IEEE.

[17] Yerima, S. Y., Sezer, S., & Muttik, I. (2014, September). Android

malware detection using parallel machine learning classifiers. In 2014
Eighth International Conference on Next Generation Mobile Apps,

Services and Technologies (pp. 37-42). IEEE.

[18] Aafer, Y., Du, W., & Yin, H. (2013, September). Droidapiminer: Mining
api-level features for robust malware detection in android. In International

conference on security and privacy in communication systems (pp. 86-

103). Springer, Cham.

[19] Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., & Ye, H. (2018). Significant
permission identification for machine-learning-based android malware

detection. IEEE Transactions on Industrial Informatics, 14(7), 3216-3225.

[20] Altaher, A., & BaRukab, O. (2017). Android malware classification based
on ANFIS with fuzzy c-means clustering using significant application

permissions. Turkish Journal of Electrical Engineering & Computer

Sciences, 25(3), 2232-2242.

[21] Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., & Zhang, X. (2014).

Exploring permission-induced risk in android applications for malicious
application detection. IEEE Transactions on Information Forensics and

Security, 9(11), 1869-1882

