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Abstract— Android API Calls are an important factor in 

differentiating malware from benign applications. Due to the 

increasing number of API Calls and considering computational 

complexity, the number of API calls in Android malware detection 

should be assessed and reduced without affecting detection 

performance. This study tries to figure out a feature reduction 

approach for identifying significant API Calls in Android malware 

detection. It incrementally analyzes various feature selection 

techniques to find out the minimal feature set and the most suitable 

technique. Also, it incorporated a correlation-based feature 

elimination strategy for further reduction of API Calls. 

Experiments on two benchmark datasets show that the Recursive 

Feature Elimination with Random Forest Classifier causes the 

minimal number of API Calls. Evaluation results indicate that the 

reduced set of significant API Calls (SigAPI) will perform 

relatively close to the full set of features in terms of accuracy, 

accuracy, recall, f-1 performance, AUC, and execution time. It also 

compares the performance with the existing malware detection 

works and the SigAPI outperforms most of the work regarding 

malware detection rate. Furthermore, it reports the top significant 

API Calls in malware detection. Finally, this work suggests that 

reduced features set of significant API Calls would be useful in 

classifying Android malware effectively.    

Keywords- Significant API Calls, Android Malware Detection, 

Feature Selection  

I.  INTRODUCTION  

Android API (Application Programming Interface) is a 
series of specifications and guidelines that programs can follow 
to communicate with each other. Using API Calls this 
communication happens. APIs are growing exponentially every 
year [1]. Due to the wide-ranging applicability of API Calls, they 
are commonly used for characterizing and separating malware 
from benign applications. 

 However, the Android operating system uses a large 
number of API Calls and the number continues to expand. So, 
handling this large number of API calls in malware detection for 
Android is challenging. This would overfit the classifier model 
or complicated the classification method by providing a large 
number of features set. It would be useful to boost this problem 
by reducing features of the API Calls using feature selection 
techniques.      

 This study dealt with examining API Calls for reducing 
the irrelevant ones without tampering significant API Calls. It 

presents an approach for significant API Calls identification. 
Primarily, it incrementally employed several feature selection 
techniques. It trialed with Mutual Information Gain, Univariate 
ROC-AUC scores, Recursive Feature Elimination (RFE) with 
Gradient Boosting Classifier, and Random Forest Classifier, 
SelectKBest using chi scoring function, SelectFromModel using 
Random Forest and Extra Trees classifiers for exploring the 
effect of incremental feature selection. Subsequently, according 
to the performance evaluation, it infers a minimal range of 
features for different techniques and determines the best 
selection technique. Further, by incorporating a correlation-
based feature elimination strategy, it reduces the minimal range 
of feature sets. Finally, the selected features are evaluated on two 
benchmark datasets based on five performance metrics 
(accuracy, precision, recall, f-1 score, AUC), execution time, 
and comparison with existing works.  

 Results show that from all the API Calls, 15-25 API 
Calls are significant in malware detection according to RFE with 
Random Forest Classifier. Evaluation illustrates that using those 
significant API calls, the performance is close enough to the full 
API Calls set. For instance, using the top 25 significant API 
Calls derived from the feature selection technique, the 
performance metrics are as follows for a particular dataset: 
accuracy - 97.07%, precision - 97.41%, recall - 94.60%, f-1 
score - 0.960, and AUC – 0.993. Likewise, as far as the 
execution time is concerned, the significant API Calls take fairly 
less time. In comparison with existing works, this work 
outperforms other studies while using only a few numbers of 
API Calls. Also, the top significant API Calls are reported.  

 There were no prior works on reducing or defining 
significant API calls. To the best of our knowledge, this is the 
first study on significant API Calls in Android malware 
detection. The main contributions of the study are as follow: 

• It proposes and assesses a feature reduction approach 
for identifying significant API Calls in Android 
Malware Detection effectively.  

• It’s reduced significant API Calls performs notably 
with respect to the full features set in terms of accuracy, 
precision, recall, f-1 score, AUC, and execution time. 
Also, it outperforms most of the existing works.  

• It provides the top significant API Calls list in Android 
malware detection.  



 

 

The rest of the paper is organized as follows. Section II 
presents the significant API Calls identification approach in 
detail. Section III gives the evaluation of the approach. Section 
IV gives the limitation. Section V gives related works. Section 
VI concludes the paper and guides future work. 

II. SIGNIFICANT API CALLS IDENTIFICATION APPROACH 

The overall approach of significant API Calls identification 
consists of five steps. The overview of the approach is depicted 
in Fig. 1.  The details of each step are as follow:   

Figure 1.  Significant API Calls Identification Approach 

A. Data Preprocessing 

The dataset is preprocessed using traditional data 
preprocessing techniques. Other features are excluded from the 
dataset except for the API Calls. Subsequently, missing value 
treatment and label encoding are incorporated. For, incremental 
feature selection, the dataset is split into training and validation 
sets. 

B. Incremental Feature Selection (IFS) 

In identifying the significant API Calls, two aspects are 
considered. First, how many numbers of API Calls should we 
choose? In this regard, it is avoided to set any predefined 
parameters like a certain number of API Calls to be selected. 
Rather, it is intended to determine the optimal/minimal number 
of API Calls by analyzing performance metrics for different 
numbers of API Calls. In doing so, a feature selection technique 
is employed in an incremental way. For each feature selection 
technique, from one to the highest number of API Calls are 
assessed separately based on performance metrics.   

Second, which feature selection technique is more suitable in 
reducing API Calls while maintaining the performance in 
Android malware detection? Again, various feature selection 
techniques are analyzed to figure out the most suitable 
technique, rather than imposing a predetermined feature 
selection technique. In this study, the following feature selection 
techniques are examined:  

1. Feature Selection using Mutual Information Gain (Entropy-
Based): Mutual Information is a non-negative value 
between two random variables, which measures 
dependency between variables. It measures the quantity of 

information gained by analyzing the other random variable 
involving one random variable. It is equal to zero if there 
are two independent random variables, and higher values 
mean higher dependence. The function is based on 
nonparametric methods based on entropy estimation of the 
distances from k-nearest neighbors as defined in [2] and [3].  

2. Feature Selection Based on Univariate ROC-AUC Score: A 
ROC curve (receiver operating characteristic curve) is a 
graph representing a classification model output at all 
classification thresholds. This curve maps two parameters: 
True Positive Rate and False Positive Rate. AUC stands for 
"Area under the ROC Curve," meaning that AUC measures 
the whole two-dimensional space under the ROC Curve. 
The region under the curve (AUC) is proportional to the 
probability that a classifier ranks a randomly selected 
positive instance higher than a randomly selected negative 
one by using normalized units [4]. Univariate ROC-AUC 
involves the analysis of a single variable. An AUC equal to 
0.5 corresponds to a type of random classification. For a 
model to be acceptable AUC will be greater than 0.5. 

3. Feature Selection using Recursive Feature Elimination 
(RFE): The goal of recursive feature elimination (RFE) is 
to pick features by recursively considering smaller and 
smaller sets of features, given an external estimator that 
assigns weights to features. First, the estimator is trained on 
the initial collection of features and the importance of each 
function is obtained. The least significant characteristics are 
then pruned from the present range of characteristics. The 
process is repeated recursively on the pruned collection 
before finally achieving the required number of features to 
be chosen [5]. In this work, two classifiers are used as the 
estimators of the RFE. 

3.1. RFE with Gradient Boosting Classifier: As the base 
estimator of the RFE, Gradient Boosting Classifier is 
employed. Gradient Boosting Classifier builds an 
additive model in forward-stage-wise fashion; enables 
arbitrary differentiable loss functions to be optimized. 
Regression trees are fit on the negative gradient of the 
function of binomial or multinomial loss of deviance 
in each point [6]. 

3.2. RFE with Random Forest Classifier: Random Forest 
Classifier is also used as the base estimator of the RFE. 
It is a meta-estimator that fits multiple decision tree 
classifiers on various dataset sub-samples and uses an 
average to improve predictive [7]. 

4. Feature Selection using SelectKBest with chi2: SelectKBest 
scores the features according to the k highest scores. It takes 
a score function as a parameter, which would be specific to 
a pair. The score function retains the features of the first k 
with the highest scores [8]. In this study, the chi2 scoring 
function is employed. This scoring function computes the 
chi-squared stats between each non-negative feature and 
class scores accordingly. It tests for which the distribution 
of the test statistic approaches the χ2 (Chi-Squared) 
distribution asymptotically [9]. 

5. Feature Selection using SelectFromModel (Tree-Based): 
SelectFromModel is a meta-transformer that can be used 

 

 



 

 

along with any tree-based estimator. It calculates the feature 
importance of each feature according to fitting the estimator 
into the data. Based on the feature importance it selects the 
top N features, where N is predefined [10]. Tree-based 
estimators are used here as it can classify the significant 
features by selecting the classification features on the basis 
of how well they boost the node's purity [11]. In this case, 
every possible value of N is evaluated. Also, two tree-based 
estimators are incorporated here: Random Forest Classifier 
and Extra Trees Classifier.  

C. Determining Feature Selection Technique using the 

Minimal Range of Features 

After implementing the incremental feature selection using 
different feature selection techniques, analysis of performance 
metrics is carried out to identify the minimal range of features. 
The minimal range of features implies a range of features from 
which segment the performances of Android malware detection 
are not increased significantly with respect to the increase of 
features. In other words, before the minimal range, the 
performances are increased. But, after the minimal range, the 
performances are quite unchanged with the increase in the 
number of features. To draw a conclusion from the analysis, a 
self-explanatory plot is generated using the performance metrics 
(accuracy, precision, recall, f-1 score) with respect to the 
increasing number of features. According to the plots for 
different techniques, the minimal range of features are deduced.  

These minimal ranges are conducive to determine the best 
feature selection technique. The feature selection technique with 
the lowest minimal range is carefully chosen for identifying 
significant API Calls in Android Malware Detection.  

D. Correlation-based Feature Elimination 

After selecting the important features using the suitable 
feature selection technique, a final feature elimination strategy 
is performed for further reduction of API Calls without affecting 
the performances notably. Here, a correlation-based feature 
elimination strategy is applied.  

A pair-wise Pearson correlation coefficient is calculated for 
all pairs of important API Calls. It is a measure of the linear 
correlation between two variables X and Y. It is calculated using 
the following equation [12]:  

 

𝜌𝑥𝑦 =
Cov(x,y)

𝜎𝑥 𝜎𝑦
               (1) 

Where,  

𝜌𝑥𝑦 = Pearson correlation coefficient 

Cov (x,y) = covariance of variable x and y  

𝜎𝑥 = standard deviation of x  

𝜎𝑦 = standard deviation of y  

Then all the pairs with a Pearson correlation coefficient 
greater than 0.85 are filtered out for the feature elimination 
process. As the two features in each pair are highly correlated, 
so removing one of them would not affect the classification 
performances.  

The elimination strategy here is to remove the less important 
feature from each pair. To measure the relative importance of the 
features, a tree-based estimator – Random Forest Classifier is 
used. According to the relative feature importance, the more 
important feature in each pair is intact, and the less important 
feature is eliminated.  

E. Evaluating Significant API Calls 

Finally, the reduced set of API Calls are evaluated according 
to five performance metrics – accuracy, precision, recall, f-1 
score, AUC. Here, the minimal range of features derived from 
the best feature selection technique is assessed. In the final 
assessment, the Random Forest classifier is trained and 
evaluated with 10-fold cross-validation. Along with the five-
performance metrics, execution time, and comparison with the 
existing approach are also evaluated. Also, significant API Calls 
are determined and reported.  

III. EVALUATION  

In the evaluation of this study, two benchmark datasets are 

used. The experimental results are analyzed based on five 

performance metrics - accuracy, precision, recall, f-1 score, and 

AUC. These metrics are widely used in performance measure 

of Android malware detection. Besides, the execution time of 

detection is considered for evaluation. Three research questions 
are being answered here regarding significant API Calls in 

malware detection.  

A. Dataset  

In this study, the Drebin [13] and the Android Malware 
Genome Project [14] datasets are used. The datasets are used 
separately to ensure the applicability and generalizability of the 
approach.  

The Drebin dataset contains 5,560 malware applications 
from 179 different malware families. Also, 9470 benign 
applications derived from the Google Play Store are 
incorporated here for classifying the malware properly.  

The Android Malware Genome Project dataset contains 
1,200 malware samples that cover most existing Android 
malware families. Here, 2539 benign applications derived from 
the Google Play Store are incorporated. In the rest of the paper, 
this dataset is referred to as Malgenome.   

Only the API Calls are considered in this work. In total, 73 

API Calls are found in the Drebin dataset and 69 API Calls are 

found in the Android Malware Genome Project dataset. 

B. RQ1: How can we sort out the significant API Calls 

(features) in Android malware detection? 

According to the different incremental feature selection 
techniques, the minimal ranges are analyzed to determine the 
best feature selection technique in identifying significant API 
Calls. The near minimal ranges are as depicted in Table I.  

From the experiments, the best feature selection technique 
for API Calls reduction is Recursive Feature Elimination (RFE) 

with Random Forest Classifier as it has the lowest minimal 

range among other techniques for both datasets (see Table I).  



 

 

 

TABLE I.  MINIMAL RANGE OF FEATURES FOR DIFFERENT FEATURE 

SELECTION TECHNIQUES 

Feature Selection 

Technique 

Minimal Range 

for Drebin 

Minimal Range 

for Malgenome 

Mutual Information Gain 37-42 23-28 

Univariate ROC-AUC 

Score 
35-38 25-30 

RFE with Gradient 

Boosting Classifier 
23-28 20-25 

RFE with Random Forest 

Classifier 
18-25 18-21 

SelectKBest with chi2 47-50 30-33 

SelectFromModel with 

Random Forest Classifier 
25-30 17-22 

SelectFromModel with 

Extra Trees Classifier 
28-33 20-23 

 

The minimal range of features using RFE with 

Random Forest Classifier for the Drebin dataset can be 

deduced from Fig.2 and Fig. 3. According to Fig. 2., with the 

number of features, are increased, the performance metrics 

are also increased initially. However, in the range between 

18-25 features (approximately), the performance metrics are 

going to be stable and remain constant (the lines are almost 

horizontal) for the following selected features. So, it can be 
inferred that by taking those 18-25 features, the 

performances are close enough to the actual performances of 

all the 73 features. In the next research question, this minimal 

range of features are evaluated. 

 

Figure 2.  Recursive Feature Elimination (RFE) using Random Forest 

Classifier (Performance Metrics vs Number of Features) 

Before proceeding to the performance evaluation, the 

correlation-based feature elimination (CFE) is performed on 

the minimal range of features. And, experiments show that 

CFE can reduce the features as depicted in Table II. For 

instance, CFE can reduce 18 features to 15 and 16 features 

respectively for the Drebin and Malgenome datasets. 

TABLE II.  CORRELATION-BASED FEATURE ELIMINATION (CFE) ON THE 

MINIMAL FEATURE SETS 

Number of API Calls 

Minimal Feature Sets 

 

With CFE for 

Drebin 

With CFE for 

Malgenome 

18 15 16 

19 15 17 

20 17 18 

21 19 19 

22 20 20 

23 21 21 

24 21 21 

25 22 22 

 

C. RQ2: How do the significant API Calls perform in 

detecting Android Malware? 

In this research question, the reduced set of Significant API 
Calls (SigAPI) are evaluated based on the performance metrics, 
execution time, and comparison with existing works. 

1) Performance Evaluation of the SigAPI 

The performance evaluation for the significant API 

Calls is based on five metrics. The evaluation is described in 

Table III and Table IV for the number of API Calls– 15, 17, 

19, 21, 23, 25, and all API Calls to sidestep redundancy.  

Table III shows that for the Drebin dataset, the 

performance metrics using significant API Calls are close to 

the performance metrics of using all the API Calls (73).  

Table IV also shows that for the Malgenome dataset, 

the significant API Calls performs almost identically to the 

full feature set of API Calls (69). 

Specifically, how many significant API calls should be 
selected? - It depends on the requirement of the stakeholders. 

However, it is suggested to use the range of 15-25 significant 

API Calls based on the prerequisite of performance metrics.  

TABLE III.  PERFORMANCE EVALUATION OF THE SIGNIFICANT API CALLS 

(DREBIN) 

Feature 

Selection 

Technique 

# of 

API 

Calls 

Acc 

(%) 

Pre 

(%) 

Rec 

(%) 
F-1 AUC 

All Features 73 98.32 98.62 96.17 0.974 0.996 

RFE with 

Random 

Forest Clas-

sifier 

25 97.07 97.41 94.60 0.960 0.993 

23 96.69 96.92 94.06 0.955 0.993 

21 96.26 96.64 93.15 0.949 0.992 

19 96.17 96.26 93.27 0.947 0.991 

17 95.62 95.58 92.43 0.940 0.988 

15 95.38 96.03 91.29 0.936 0.986 

 

 



 

 

TABLE IV.  PERFORMANCE EVALUATION OF THE SIGNIFICANT API CALLS 

(MALGENOME) 

Feature 

Selection 

Technique 

# of 

API 

Calls 

Acc 

(%) 

Pre 

(%) 

Rec 

(%) 
F-1 AUC 

All 

Features 
69 98.71 98.87 97.22 0.980 0.998 

RFE with 

Random 

Forest 

Clas-sifier 

25 98.12 98.16 96.19 0.972 0.998 

23 98.03 98.15 95.87 0.970 0.998 

21 98.10 98.07 96.10 0.971 0.996 

19 96.16 97.92 96.51 0.972 0.996 

17 97.97 97.82 96.03 0.969 0.995 

15 97.26 97.62 94.05 0.958 0.993 

 

2) Execution Time of the SigAPI 

Table V shows the comparative execution time of 

malware detection. The result shows that using the 

significant API Calls (ranges between 15-25), the execution 
time of the malware detection is considerably lower than 

using all the features. For large data sets, this time would be 

substantially higher. 

TABLE V.  EXECUTION TIME OF THE SIGNIFICANT API CALLS  

# of 

API 

Calls 

Execution Time (s) 

for Drebin 

Execution Time (s) 

for Malgenome 

All 6.48 5.76 

25 4.15 4.02 

23 4.11 3.98 

21 4.11 3.88 

19 3.95 3.85 

17 3.91 3.78 

15 3.90 3.74 

 

3) Comparison with Existing Works 

Table VI shows the comparative analysis of the 

detection rate using significant 20 API Calls – SigAPI (20) 

for the Drebin dataset with respect to some existing works on 

Android malware detection. The result shows that SigAPI 

(20) outperformed all the existing works except two. 

TABLE VI.  COMPARISON WITH THE EXISTING WORKS 

Works Detection Rate (%) 

SigAPI (20) 96.30 

Drebin [10] 93.90 

SigPID [15] 93.62 

Yerima et al. [11] 92.1% 

Yerima et al. [12] 97.5% 

Peiravian et al. [13] 95.75% 

DroidAPIMiner [14] ~99% 

Altaher et al. [16] 91% 

A. RQ3: Which API Calls are Significant in Android 

Malware Detection? 

Table VII shows the top 25 significant API Calls in 

Malware Detection for the Drebin dataset. These API Calls 

are derived from the feature selection technique – RFE with 

Random Forest Classifier. Also, these 25 API Calls are 

almost identical to the Malgenome dataset except 3 API 

Calls. More data instances would be conducive to generating 

identical API Calls. Yet, as this study primarily suggests a 

feature reduction approach for significant API Calls, the 

dataset to dataset it may slightly vary due to the inconsistency 
and time period of datasets.  

TABLE VII.  TOP 25 SIGNIFICANT API CALLS (DREBIN) 

TOP 25 SIGNIFICANT API CALLS (DREBIN) 

transact ClassLoader 

onServiceConnected Landroid.content.Context.register

Receiver 

bindService Ljava.lang.Class.getField 

attachInterface android.content.pm.PackageInfo 

ServiceConnection TelephonyManager.getLine1Num

ber 

android.os.Binder Ljava.lang.Class.getMethod 

Ljava.lang.Class.getCanonicalNa

me 

android.telephony.gsm.SmsMana

ger 

Ljava.lang.Class.getMethods TelephonyManager.getSubscriber

Id 

Ljava.lang.Class.cast Ljava.lang.Object.getClass 

Ljava.net.URLDecoder TelephonyManager.getDeviceId 

android.content.pm.Signature HttpUriRequest 

android.telephony.SmsManager Runtime.exec 

 

IV. LIMITATION 

In this study, only the Drebin and Malgenome datasets have 
been analyzed, which is subject to bias and lack of 
generalizability, threatening external validity. In terms of threats 
to internal validity, the parameters of different techniques and 
algorithms, execution time measurement are susceptible to bias 
and can be examined differently by different analysts and 
machines. 

V. RELATED WORK 

Several works dealt with API Calls in Android malware 
detection. For instance, Drebin incorporated API Calls with 
other features and obtained an accuracy of 93.90% in malware 
detection [13]. Yerima et al. combined API Calls and 
Permissions with Bayesian Classifier and attained 92.1% 
accuracy [15]. In another work, they achieved an accuracy of 
97.5% and an AUC of 0.953 by using a composite parallel 
classifier approach [16]. Using API Calls modeled with SVM 
(Support Vector Machine), Peiravian et al. gained an accuracy 
of 95.75% and an AUC of 0.957 [17]. Likewise, DroidAPIMiner 
integrated API level features and reached an accuracy as high as 
99% using the KNN classifier [18]. 



 

 

Though a handful number of works employed API Calls, 
none dealt with reducing API Calls or identifying important API 
Calls. However, feature reduction technique is applied in 
Permission features previously. Li et al. successfully reduced 
135 Permission features to 22 features. They used Permission 
ranking with negative rate, support based Permission ranking, 
and Permission mining with association rules for feature 
selection. Their reduced Permission features have higher recall 
value, close enough accuracy value with the full features set. But 
their precision was lower and false positive rate (FPR) was 
higher significantly with respect to all Permission features [19]. 

 Altaher et al. proposed an approach based on ANFIS with 
fuzzy c-means clustering using significant application 
permissions. Their classification accuracy was 91%, with the 
lowest false positive and false negative rates of 0.5% and 0.4%, 
respectively [20]. 

Wang et al. evaluated individual permissions and collective 
permissions and implemented three measures of scoring on the 
permission features. They discovered dangerous permission 
subsets using Sequential Forward Selection (SFS) and Principal 
Component Analysis (PCA). They got a 94.62% detection rate 
[21].  

To the best of our knowledge, there is no such work on 
feature reduction of API Calls in Android malware detection. 

VI. CONCLUSION 

In this study, a feature reduction approach is proposed for 
identifying significant API Calls in Android Malware detection. 
Evaluation of the significant API Calls shows that API Calls can 
be reduced without affecting performance so much. Therefore, 
reduced features set of significant API Calls would be 
convenient in classifying Android malware considering 
performance and computational complexity.     

In the future, the approach will be evaluated using different 
and large datasets. Also, other feature selection techniques using 
deep learning, ensemble learning, etc. will be employed. 
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