
Towards Fine-Grained Compiler Identification with

Neural Modeling

Borun Xie1,2, Zhenzhou Tian1,2*, Cong Gao1,2, Lingwei Chen3
1School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi’an, China

2Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an, China
3College of Information Sciences and Technology, Pennsylvania State University, PA, USA

*Corresponding: tianzhenzhou@xupt.edu.cn

Abstract—Different compilers and optimization levels can be

used to compile the source code. Revealed in reverse from the

produced binaries, these compiler details facilitate essential

binary analysis tasks, such as malware forensics and binary code

similarity analysis. Most existing approaches adopt a signature

matching based or machine learning based strategy to identify

the compiler details, showing limits in either the detection

accuracy or granularity. In this work, we propose NeuralCI

(Neural modeling-based Compiler Identification) to perform the

identification of compiler family and optimization level on

individual functions. The basic idea is to formulate sophisticated

neural networks to process abstracted instruction sequences

generated using a lightweight function abstraction strategy. To

evaluate the performance of NeuralCI, a large dataset consisting

of 413,119 unique functions collected from real-world projects is

constructed. The experiments show that NeuralCI achieves over

99% and 90% accuracy in identifying the compiler family and

optimization level respectively, which outperforms most state-of-

the-art function level compiler identification methods. Also, we

explore for the first time the possibility of conducting compiler

identification on binary code snippets rather than complete

functions, where NeuralCI still achieves 96% accuracy,

indicating its ability of capturing subtle yet significant features.

Keywords-software forensics; binary code analysis; compiler

identification; neural network

I. INTRODUCTION

In the software production process, diverse toolchains and
toolchain settings can be adopted to transform the source code
to the final binary. For example, different compilers like GCC
and Clang as well as different compiler options like O0-O3 can
be used by the developers. Besides, it is also a common
practice to apply various kinds of code obfuscation techniques
[1, 2] and packers [3, 4] in the binary production process.

Usually binaries produced with these different toolchains
and toolchain settings exhibit significant differences when
viewed in a straight way [5-7]. These differences just indicate
that toolchain footprints are preserved during the source code
to binary code translation process, enabling the possibility of
revealing the toolchain and toolchain setting choices made
during the production process of a binary. This task, which in
the literature is called binary program provenance analysis,
provides ways to spy on the specifics of the binary production
process. A major subtask of it, compiler identification, which
focuses on the compilation phase, attempts to infer from a

piece of binary code the compiler-related details such as the
specific compiler family, the optimization options etc.

Overall, relatively few works have been conducted on
compiler identification, which mainly fall into two categories:
signature matching based methods [8-10] and learning based
methods [11-14]. The former, implemented in several reverse
engineering tools like IDA [8] and PEiD [9], performs whole
program level identification via exact matching of signatures
that are manually constructed for certain compilers. Drawbacks
of these kinds of methods lie in the stringent expertise in
constructing a good enough compiler-specific signature as well
as their coarse identification granularity. The latter formulates
compiler identification as a machine learning task, which trains
models to capture compiler-specific patterns, further with
which to infer the compiler details on previously unseen
binaries. For this kind of method, syntactic or structural
features are extracted based on artificially defined templates
such as idioms [11] which are short sequences of instructions
with wildcards or graphlets [12] which are small subgraphs
within the CFG (Control Flow Graph). The accuracy of these
methods greatly depends on the quality of manually-crafted
feature extraction strategies, where potential human-bias exists,
resulting in capturing lots of irrelevant or redundant features
for the compiler identification task meanwhile failing to
capture closely relevant ones.

In recent years, tremendous successes have been witnessed
of applying natural language processing techniques and deep
learning models to various program analysis tasks [16-21]. In
this paper, we attempt to adopt some of the most popular neural
network structures to achieve fast and accurate fine-grained
compiler identification on function level. Specifically, we feed
typical Recurrent Neural Network (RNN) and Convolutional
Neural Network (CNN) based structures with abstracted
assembly instruction sequences to train classification models
for inferring the compiler families and the optimization levels.
Our intuition is based on the observation that co-occurring
instructions together with their orderings that appear even in
short instruction sequences form good enough signals of
distinguishing different compliers or optimization levels, and
here we resort to the neural models to capture them.

Our main contributions are summarized as following:

 We propose to reveal fine-grained compiler details for
individual functions by designing a lightweight

DOI reference number: 10.18293/SEKE2020-141.

function abstraction strategy and adapting typical
sequence-oriented neural networks. It alleviates the
task complexity and human bias impacts by handing
over the professional process of extracting and
selecting features significant for compiler identification
from the domain experts to the less human intervened
neural networks.

 We have implemented the proposed methods as a tool
called NeuralCI (Neural modeling based Compiler
Identification), and evaluated its performance of
revealing either the compiler family or the optimization
level on a large dataset consisting of 413,119 unique
functions that we constructed via processing a set of
diverse real world projects. The experiments show that
NeuralCI outperforms most state-of-the-art function
level compiler identification methods. It achieves
above 99% and 90% accuracy in identifying compiler
family and optimization level respectively.

 We explore for the first time the possibility of
conducting compiler identification on arbitrary binary
code snippets rather than complete functions. It shows
that NeuralCI achieves 96% accuracy, indicating that it
can capture very subtle yet significant features.

The remainder of this paper is organized as follows: Section
Ⅱ summarizes the related works. Section Ⅲ describes in detail
our proposed approach. The experimental evaluation conducted
are presented in Section IV. Finally, we conclude the paper in
Section Ⅴ.

II. RELATED WORK

In general, existing works on compiler identification can be
divided into two classes: signature matching based methods
and learning based methods.

A. Signature Matching Based Methods

The signature matching based methods [8-10] search the
binary program against a corpus of manually constructed
signatures for exact matching, and attribute to the whole
program the compiler label corresponding to the matched
signature string. This kind of method has been implemented in
several reverse engineering tools, such as IDA Pro [8], PEiD [9]
and LANGUAGE 2000 [10], in consideration of its high
detection efficiency and low cost. Drawbacks of these methods
lie in the stringent expertise and labor work in constructing a
good enough compiler-specific signature, as well as the easily
affected accuracy due to slight differences between signatures.
Besides, the signatures usually depend on the metadata or
details of program headers, which can be easily altered or
become unavailable in stripped binaries. Moreover, these tools
identify compilers on the whole binary, while a program can be
produced with multiple compilers in scenarios such as statically
linking library code to produce the final binary program.

B. Learning Based Methods

This type of method formulates compiler identification as a
machine learning task performed on (in most instances stripped)
binaries, based on the belief that the resulting binaries implicit

features reflecting design and implementation decisions of the
certain compiler which are used to produce the binaries.
Specifically, they train models that capture compiler-specific
patterns, further with which to infer the compiler provenance
on previously unseen binaries.

The pioneering work [11] adopting this type of approach was
conducted by Rosenblum et al. that manually defined a set of
idioms (short sequences of instructions with wildcards) and
utilized mutual information calculation to capture and select
significant patterns indicative of the source compiler of the
program binaries. High accuracy is observed for inferring the
compiler families, but we have no idea of its performance on
optimization levels identification as no evaluation was
conducted. ORIGIN [12] achieved superior accuracy in
recovering the compiler details by introducing graphlets (small
and non-isomorphic subgraphs within the CFG) in addition to
idioms so as to capture additional structural features. Hidden
Markov models were learnt via observing the differences in the
type and frequency of instructions comprising the binaries
compiled with different compilers, and proved to be accurate in
identifying the compiler family for a whole program [14, 15].
However, for each individual compiler family a corresponding
separate model needs to be learnt. Also, these models do not
extract information regarding the optimization levels. To
improve efficiency in terms of computational resources and
detection time, BinComp [13] adopted a stratified approach to
infer different compiler details on different granularity. It
identifies compiler family for the whole program via exact
matching of signatures, and conducts compiler version and
optimization level detection for compiler-related functions.
However, the compiler-related functions constitute only a very
small portion of all functions, making it largely impractical in
handling real world programs where user defined functions
hold the principal status. Basically, accuracy of these methods
greatly depends on the quality of manually-crafted feature
extraction strategies, where potential human-bias exists,
resulting in capturing lots of irrelevant or redundant features
for the compiler provenance task meanwhile failing to capture
closely relevant ones.

In recent years, significant successes have been witnessed of
applying deep learning techniques to the domain of binary
program analysis [16-21]. BinEye [16] is one of the few works
that utilize neural models to achieve compiler identification. It
combines word embedding and position embedding to encode
the raw bytes of an object file, and then utilizes CNN to learn a
model that supports optimization level recognition on each
individual object file. Our work differs in that we achieve finer
grained identification of both the compiler family and the
optimization level for each individual function by adopting an
abstraction strategy that operates on assembly instructions
rather than the raw bytes. Structure2Vec [19] utilizes a graph
embedding network to transform the function CFGs into
vectors, which are then fed into a dense layer to train a
classifier for compiler family identification. Compared to this
work, we operate directly on the instructions comprising a
function with a lightweight abstraction strategy, and adopt the
much faster sequence-oriented neural networks to train models
for identifying the optimization level besides just the compiler
family as did by Structure2Vec.

Corpus
of

Functions
Function Abstraction

Compiler Family &
Optimization Level

. .

Individual
Function

Neural Networks

Neural Network based
Classification

Function Abstraction Trained Models

Ground Truth

Compiler Family &
Optimization Level

Predicted Output

Figure 1. The basic framework of NeuralCI

III. THE APPROACH

Figure 1 depicts the overall architecture of NeuralCI, which
consists of two phases: the training phase as illustrated in the
top half subfigure, and the detection phase as illustrated in the
half bottom subfigure. The training phase consists of three
steps. As a deep learning-based method, the first step is to
construct a high-quality database comprised of labeled
functions which shall be discussed in detail in Section IV.A.
The second step takes as input each raw function and outputs
an abstracted instruction sequence via a light-weight
abstraction strategy implemented in the function abstraction
module. Then these abstracted sequences together with their
ground truth labels are fed into the neural network based
classification module to train compiler identification models.
The detection phase is much simpler, which takes in an
individual function, processes it with the function abstraction
and utilizes the trained model to produce a predicted output. In
the following, we discuss the details of the function abstraction
module and neural network based classification module
respectively.

A. Function Abstraction

A function must be represented in certain forms such that it
can be processed for further analysis. The typical ways include
using the raw byte sequence, the assembly instruction sequence
or the control flow graph [19] to depict a function. According
to the findings in [15], different compilers tend to use
distinguishable assembly instructions. For example, call
instruction occurs frequently in GCC-generated assembly code,
while the Clang assembly uses callq instead. Also, as indicated
by the pretty good compiler family identification accuracy in
[12], short assembly instruction sequences successfully capture
compiler-related features. Thus, in this work we choose to use
the assembly instruction sequence as the representation of each
function, and we use IDA Pro for the parsing 1 . That is, a

function f will be represented as 1 2, , , nf ins ins ins , where

n denotes the number of instructions within the function, and

each instruction iins consists of an opcode (i.e. mnemonic) and

a list of operands.

1 We assume a reliable way of identifying the function boundaries,

the instruction boundaries, as well as the correct parsing of each

instruction, by using the best commercial reverse engineering tool

IDA Pro. The correct disassembly of binaries is still a complex and

open problem, but are beyond the scope of this paper.

However, as has been confirmed in many existing binary
analysis tasks [19, 20], it is usually not wise to work directly on
the raw assembly instructions. For our case, we want to capture
features reflecting the compiler details rather than the
functionality of the function. That is, we do not care whether a
value 6 is assigned to register eax or a value 10 is assigned. So
the two instructions “mov eax, 6” and “mov eax, 10” should be
considered the same. Besides, the memory addresses (e.g. the
target of jmp instructions) are meaningless but just noises that
bring adverse impacts. Meanwhile, to prevent introducing too
much human bias, we choose to process the raw instruction
sequence with a light-weight abstraction strategy.

Specifically, we do abstraction to each assembly instruction
in a function with the following rules:

 The mnemonics remain unchanged.

 All registers in the operands remain unchanged.

 All base memory addresses in the operands are
substituted with the symbol MEM.

 All immediate values in the operands are substituted
with the symbol IMM.

As an example, with the above abstraction rules, the
instruction “add eax, 6” will become “add eax, IMM”, the
instruction “mov ebx, [0x3435422]” will become “mov ebx,
MEM”, while the instruction “mov eax, [ebp-20]” will become
“mov eax, [ebp-IMM]”.

B. Neural Models for Compiler Identification

Given a set of abstracted assembly instruction sequences, it
is promising to utilize skip-gram [22] to learn the embedding
for each instruction, explore max-pooling, averaging or
concatenation to aggregate the embeddings for each sequence,
and then feed them to any classification model for compiler
identification. However, it still faces the following two
limitations: (1) skip-gram assigns each instruction a static
embedding vector, which is not context-aware to different
sequences it interacts with; this may fail to learn the compiler-
related features; (2) since instruction sequences are abstracted
from functions, they may not only enjoy local instruction
associations and correlations, but also global or long-range
instruction dependency; in this respect, it calls for sequence
learning models to better capture the representative compiler-
specific patterns and features from instruction sequences for
compiler identification. As advanced neural network structures,

both RNN and CNN have achieved great success in sequence
learning. As such, in this work, we design an RNN model and a
CNN model respectively to learn the semantic and structural
information of instruction sequences and thus leverage these
advances to identify their compilers.

1) RNN Model: RNN is known to learn the sequential
dependency, and strict to align the positions and contexts for
the instances in the input sequences. Considering that some
instructions may play more significant roles in the function or
some instructions may be uniquely generated by specific
compilers, RNN is able to attend such instructions and learn a
comprehensive and contextualized embedding for the whole
instruction sequence. In this work, we employ Long Short-term
Memory (LSTM) or Gated Recurrent Unit (GRU), either of
which is an architecture designed for RNN to address the
vanishing and exploding gradient issue. The structure of our
RNN model is shown in Figure 2. Each instruction in the input
sequence is first embedded in vector space. Afterwards, the
model reads the input instruction sequence through
LSTM/GRU units to obtain the summary vector, which is then
fed to a Softmax layer to predict the real compiler. The training
loss is adopted to measure the correctness of sequence learning
and compiler prediction. During the training process, dropout is
also applied to prevent the neural network from overfitting.

 2) CNN Model: Different from RNN, CNN is known to
learn the local correlations with shared weights and utilize
pooling mechanism to greatly reduce the number of parameters
needed to find important local patterns. In other words, CNN is
able to attend those frequently co-occurring instructions in the
short sequences. In our model formulation, we further take
advantage of different kernel-size filters to thoroughly extract
interacted salient features among different instruction grams to
capture the behaviors of compilers. The structure of our CNN
model is shown in Figure 3. Each instruction sequence is first
transformed into a matrix, where each row of the matrix is the
instruction’s embedding. We take such an embedding matrix as
input fed to the CNN architecture to learn the higher-level
concept. In the convolutional layer, the raw instruction feature
matrix gets convoluted by different kernels of size 2, 3 and 4
such that different views of feature patterns can be extracted in
parallel, which are then passed through 1-maxpooling layers
for dimensionality reduction. The resulting representations are
concatenated through a dense layer to be fed to a Softmax layer
for compiler prediction. The CNN model is trained using the
instruction sequences with ground truth.

IV. EXPERIMENTS AND EVALUATION

A. Dataset Construction

To evaluate the performance of NeuralCI, we collected 9
widely used C/C++ open source projects, including coreutils
8.31, curl 7.65.3, FreeImage 3.17, git 2.22, libpng 1.6.3, pigz
2.4, x264, vim 8.1.19 and sqlite 3.22, as the basics to construct
the dataset. To be specific, we process these projects with the
following steps:

 Two different compilers involving multiple versions
including GCC (4.6.3, 4.7.4, 4.8.5, 4.9.4, 5.5.0, 6.5.0,
7.4.0) and Clang (3.8, 5.0, 6.0), as well as varying

compiler optimization levels (O0, O1, O2, O3) are
used as the toolchain settings to compile each project.

 IDA Pro is then used to identify and extract functions
from each binary. Also, we get rid of trivial functions
(functions containing just a few instructions, such as
the stub functions) that are meaningless to analyze. We
consider functions containing less than 10 instructions
as trivial in our current setting.

 To avoid the neural models see during the training
phase functions that are really similar to the ones in the
testing phase, which if not properly accounted for can
inflate the performance metrics, we only keep unique
functions. Specifically, a function is considered
redundant if it has the same abstracted instructions as
any other functions’. Then we label each remaining
function with the compiler settings used to compile the
binary that the function resides in.

With these settings, we finally construct a dataset comprised
of totally 413,119 unique functions.

S1 SNS2 S3
...

Embedding

LSTM/GRU LSTM/GRULSTM/GRU...

Function Vectors

256 Units

Softmax

Dropout

Figure 2. RNN-based model

S1 SNS2 S3
...

Embedding

CNN CNNCNN ...

Softmax

1-Max Pooling

...

Function Vectors

3 Region Size (2,3,4)

128 Units

Figure 3. CNN-based model

B. Implementation Details and Experimental Settings

We have implemented NeuralCI as a prototype tool. It
utilizes IDA Pro for the parsing of binaries to obtain functions
as well as the raw assembly instructions. The function
abstraction module is implemented in Java, and the neural
modeling module is implemented using Python and the
Tensorflow framework. Skip-gram model provided by gensim
is used to generate the instruction embedding vectors with the
embedding size setting to 100.

For the experimental settings, we randomly split the whole
dataset into training set, validation set and testing set according
to a percentage of 70%, 15% and 15% respectively. The neural
models are trained with a RTX2080Ti GPU card using a batch
size of 500, learning rate 0.001 and Adam optimizer for 100
epochs (Note that for each epoch the training samples are
shuffled and accuracy on the validation set is calculated). Then
we take the model with the best validation accuracy as the final
model to be further evaluated on the testing set with respect to
performance metrics including accuracy, precision, recall and
f1-score.

C. Evaluation

In the following parts, firstly we evaluate the performance of
NeuralCI in identifying the compiler family and optimization
level respectively and get it compared against state-of-the-art
function level compiler identification methods. Then we further
explore for the first time the applicability of NeuralCI on
compiler identification of arbitrary binary code snippets which
can be just a part of a complete function. Considering that
several different neural structures are implemented in NeuralCI,
we use NeuralCIx where x can be LSTM, GRU or CNN to get
them distinguished.

1) Performance of Identifying Compiler Family: In this

experiment, we take the compiler family that each function is

compiled with as the ground-truth, and get the NeuralCI

models trained and evaluated by adopting the experimental

settings as described in Section IV.B. Also, we compare them

against existing methods including Structure2Vec, Idioms,

Graphlets and BinComp that support function level compiler

family identfication. Table I summarizes the experimental

results2. As it shows, the three NeuralCI models achieve nearly

perfect accuracy and f1-score in identifying the compiler

family and they all outperform existing methods in terms of

detection accuracy. Also, the CNN based one NeuralCNN

exhibits the best performance with an accuracy of 99.5% and

f1-score of 0.995, an improvement of 6.3% against Idioms and

the least improvement of 0.7% against Graphlets.

2) Performance of Identifying Optimization Level: In this

experiment, the optimization levels of certain compilers are

2 It should be noted that most existing methods do not provide a

public access to their source code implementation or the dataset they

used. So we give the best performance exhibited in their original

evaluations rather than conducting a direct comparison with them.

Also, not all performance metrics as we evaluated against are used in

their original work, we mark these missing data with a symbol ‘-’ in

Table I as well as the following tables.

taken as the ground-truth to train and evaluate NeuralCI. We

do not use the default 4-level optimization option setting, but

adopt the same strategy as in works [12, 13] that condense the

4 optimization levels to 2 classes ‘low’ and ‘high’, considering

the findings presented in existing studies [12, 13] that it is

difficult to distingush between O2 and O3 compiled binaries.

That is, O0 and O1 will be considered as the low optimization

class, while O2 and O3 will be considered as the high

optimization class. Similarly, we compare NeuralCI with

methods having function-level compiler optmization level

identification results. As summarized in Table II the detection

results on GCC optimzation levels, relatively good detection

accuracy of above 90% are observed for the NeuralCI models,

while the Graphlets method achieves the best accuracy of

97.1% according to their original evaluation result. But as the

reproduction evaluation conducted by BinComp on a different

dataset shows, the Graphlets method achieves an f-score of

just 0.62, much lower than those of NeuralCI’s. Similar results

can be observed for evaluation on the Clang optimization

levels in Table III, where an accuracy of above 90% is

achieved for the NeuralCI models. There’s no data for other

methods, as they didn’t evaluate on the Clang compiler.

TABLE Ⅰ
COMPILER FAMILY IDENTIFICATION RESULTS

Model Accuracy Precision Recall F1-Score

NeuralCILSTM 99.4% 0.994 0.993 0.994

NeuralCIGRU 99.3% 0.994 0.99 0.994

NeuralCICNN 99.5% 0.995 0.995 0.995

Structure2Vec 98.2% 0.98 0.98 0.98

Idioms 93.2% - - -

Graphlets 98.7% - - -

BinComp 97.0% - - -

TABLE Ⅱ
OPTIMIZATION LEVEL IDENTIFICATION RESULTS FOR GCC

Model Accuracy Precision Recall F1-Score

NeuralCILSTM 91.3% 0.914 0.912 0.914

NeuralCIGRU 91.2% 0.913 0.916 0.914

NeuralCICNN 90.9% 0.914 0.907 0.910

Graphlets 97.1% - - -

BinComp 91.0% - - -

TABLE Ⅲ
OPTIMIZATION LEVEL IDENTIFICATION RESULTS FOR CLANG

Model Accuracy Precision Recall F1-Score

NeuralCILSTM 0.914 0.920 0.917 0.908

NeuralCIGRU 0.903 0.925 0.912 0.924

NeuralCICNN 0.900 0.915 0.905 0.903

3) Evaluation on Isolated Binary Code Snippet: The

prologue (the preparation of stacks and registers to be used)

and epilogue (the lines of code appearing at the end of a

function for restoring the stack and registers to the state before

the function is called) of a function play important roles in

many binary analysis tasks. Also, as shown by the analysis

presented in the works of Austin[15] and Toderici [16], push,

mov and pop instructions (which are the main components of

prologues and epilogues) show significant effect in

distingushing different compilers. So in this experiment we

explore whether NeuralCI still works on arbitrary binary code

snippets that may not contain function prologue and epilogue.

To achieve that, we apply NeuralCI to identify compiler

family for each basic block containing no less than 10

instructions. As depicted in Table IV, reduced performance is

observed compared with the results on individual functions,

but still pretty good accuracy (around 96%) and f1-score

(around 0.96) are achieved. It indicates that NeuralCI can

capture very subtle yet significant features which may

otherwise be missed by artifically crafted feature extraction

and selection strategies.

TABLE Ⅳ
COMPILER FAMILY IDENTIFICAITON ON INDIVIDUAL BASIC BLOCKS

Model Accuracy Precision Recall F1-Score

NeuralCILSTM 0.962 0.962 0.961 0.961

NeuralCIGRU 0.960 0.959 0.959 0.960

NeuralCICNN 0.961 0.960 0.960 0.961

V. CONCLUSION

In this work, we attempt to solve the problem of fine-grained
compiler identification by feeding in typical neural networks
with abstracted instruction sequences generated with a light-
weight function abstraction strategy. We implement our
methods in a prototype tool NeuralCI, and get its performance
evaluated on a large dataset consisting of totally 413,119
unique functions. As the experimental evaluation shows,
NeuralCI outperforms most state-of-the-art function level
compiler identification methods. It achieves above 99% and
90% accuracy in identifying compiler family and optimization
level respectively. Moreover, the evaluation we conducted of
applying NeuralCI for the tougher task that infers compiler
family from arbitrary binary code snippet achieves rather good
accuracy of 96% and f1-score of 0.96. Future works will focus
on the model interpretability as well as designing more
powerful neural nets such as network structures with attention
mechanism.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China (61702414), the Natural Science
Basic Research Program of Shaanxi (2018JQ6078, 2020GY-
010), the Science and Technology of Xi’an
(2019218114GXRC017CG018-GXYD17.16), the International
Science and Technology Cooperation Program of Shaanxi
(2018KW-049, 2019KW-008), and Key Research and
Development Program of Shaanxi (2019ZDLGY07-08).

REFERENCES

[1] Schrittwieser S, Katzenbeisser S, Kinder J, Merzdovnik G, Weippl, E.
Protecting software through obfuscation: Can it keep pace with progress
in code analysis?[J]. ACM Computing Surveys (CSUR), 2016, 49: 1-37.

[2] Schrittwieser S, Katzenbeisser S. Code obfuscation against static and
dynamic reverse engineering[C]//International workshop on information
hiding. Springer, Berlin, Heidelberg, 2011: 270-284.

[3] Roundy K A, Miller B P. Binary-code obfuscations in prevalent packer
tools[J]. ACM Computing Surveys (CSUR), 2013, 46(1): 1-32.

[4] Ugarte-Pedrero, X, Balzarotti, D, Santos, I, & Bringas, P. G. SoK: Deep
packer inspection: A longitudinal study of the complexity of run-time
packers[C]//2015 IEEE Symposium on Security and Privacy. IEEE,
2015: 659-673.

[5] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang. Neural machine
translation inspired binary code similarity comparison beyond functions
pairs[J].arXiv preprint arXiv:1808.04706,2018.

[6] Z. Z. Tian, T. Liu, Q. H. Zheng, E. Zhuang, M. Fan, and Z. J. Yang.
Reviving sequential program birthmarking for multithreaded software
plagiarism detection[J]. IEEE Transactions on Software Engineering,
2017, 44(5): 491-511.

[7] Z. Z. Tian, Q. H. Zheng, T. Liu, M. Fan, E. Y. Zhuang, and Z. J. Yang,
Software plagiarism detection with birthmarks based on dynamic key
instruction sequences[J]. IEEE Transactions on Software Engineering,
2015, 41(12): 1217-1235.

[8] IDA. Available: https://www.hexrays.com/products/ida/index.shtml.

[9] PEiD. Available: https://www.aldeid.com/wiki/PEiD.

[10] LANGUAGE 2000. Available: https://farrokhi.net/language/.

[11] Rosenblum N E, Miller B P, Zhu X. Extracting compiler provenance
from program binaries[C]//Proceedings of the 9th ACM SIGPLAN-
SIGSOFT workshop on Program analysis for software tools and
engineering. 2010: 21-28.

[12] Rosenblum N, Miller B P, Zhu X. Recovering the toolchain provenance
of binary code[C]//Proceedings of the 2011 International Symposium on
Software Testing and Analysis. 2011: 100-110.

[13] Rahimian A, Shirani P, Alrbaee S, Wang L, & Debbabi M. Bincomp: A
stratified approach to compiler provenance attribution[J]. Digital
Investigation, 2015, 14: S146-S155.

[14] Toderici A H, Stamp M. Chi-squared distance and metamorphic virus
detection[J]. Journal of Computer Virology and Hacking Techniques,
2013, 9(1): 1-14.

[15] Austin T H, Filiol E, Josse S, et al. Exploring hidden markov models for
virus analysis: a semantic approach[C]//2013 46th Hawaii International
Conference on System Sciences. IEEE, 2013: 5039-5048.

[16] Yang S, Shi Z, Zhang G, et al. Understand Code Style: Efficient CNN-
Based Compiler Optimization Recognition System[C]//2019 IEEE
International Conference on Communications (ICC). IEEE, 2019: 1-6.

[17] Shin E C R, Song D, Moazzezi R. Recognizing functions in binaries
with neural networks[C]//24th USENIX Security Symposium (USENIX
Security 15). 2015: 611-626.

[18] Chua Z L, Shen S, Saxena P, & Liang Z. Neural nets can learn function
type signatures from binaries[C]//26th USENIX Security Symposium
(USENIX Security 17). 2017: 99-116.

[19] Massarelli L, Di Luna G A, Petroni F, et al. Investigating graph
embedding neural networks with unsupervised features extraction for
binary analysis[C]//Proceedings of the 2nd Workshop on Binary
Analysis Research (BAR). 2019.

[20] Zuo F, Li X, Young P, et al. Neural machine translation inspired binary
code similarity comparison beyond function pairs[C]//Proceedings of the
Network and Distributed Systems Security Symposium (NDSS), 2019.

[21] G. Zhao and J. Huang, "Deepsim: deep learning code functional
similarity," in Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2018, pp. 141-151: ACM.

[22] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word
representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.

https://www.hexrays.com/products/ida/index.shtml
https://www.aldeid.com/wiki/PEiD
https://farrokhi.net/language/

