
Towards Fine-Grained Compiler Identification with 

Neural Modeling 

Borun Xie1,2, Zhenzhou Tian1,2*, Cong Gao1,2, Lingwei Chen3 
1School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi’an, China 

2Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an, China 
3College of Information Sciences and Technology, Pennsylvania State University, PA, USA 

*Corresponding: tianzhenzhou@xupt.edu.cn 

 

Abstract—Different compilers and optimization levels can be 

used to compile the source code. Revealed in reverse from the 

produced binaries, these compiler details facilitate essential 

binary analysis tasks, such as malware forensics and binary code 

similarity analysis. Most existing approaches adopt a signature 

matching based or machine learning based strategy to identify 

the compiler details, showing limits in either the detection 

accuracy or granularity. In this work, we propose NeuralCI 

(Neural modeling-based Compiler Identification) to perform the 

identification of compiler family and optimization level on 

individual functions. The basic idea is to formulate sophisticated 

neural networks to process abstracted instruction sequences 

generated using a lightweight function abstraction strategy. To 

evaluate the performance of NeuralCI, a large dataset consisting 

of 413,119 unique functions collected from real-world projects is 

constructed. The experiments show that NeuralCI achieves over 

99% and 90% accuracy in identifying the compiler family and 

optimization level respectively, which outperforms most state-of-

the-art function level compiler identification methods. Also, we 

explore for the first time the possibility of conducting compiler 

identification on binary code snippets rather than complete 

functions, where NeuralCI still achieves 96% accuracy, 

indicating its ability of capturing subtle yet significant features. 

Keywords-software forensics; binary code analysis; compiler 

identification; neural network 

I.  INTRODUCTION  

In the software production process, diverse toolchains and 
toolchain settings can be adopted to transform the source code 
to the final binary. For example, different compilers like GCC 
and Clang as well as different compiler options like O0-O3 can 
be used by the developers. Besides, it is also a common 
practice to apply various kinds of code obfuscation techniques 
[1, 2] and packers [3, 4] in the binary production process.  

Usually binaries produced with these different toolchains 
and toolchain settings exhibit significant differences when 
viewed in a straight way [5-7]. These differences just indicate 
that toolchain footprints are preserved during the source code 
to binary code translation process, enabling the possibility of 
revealing the toolchain and toolchain setting choices made 
during the production process of a binary. This task, which in 
the literature is called binary program provenance analysis, 
provides ways to spy on the specifics of the binary production 
process. A major subtask of it, compiler identification, which 
focuses on the compilation phase, attempts to infer from a 

piece of binary code the compiler-related details such as the 
specific compiler family, the optimization options etc. 

Overall, relatively few works have been conducted on 
compiler identification, which mainly fall into two categories: 
signature matching based methods [8-10] and learning based 
methods [11-14]. The former, implemented in several reverse 
engineering tools like IDA [8] and PEiD [9], performs whole 
program level identification via exact matching of signatures 
that are manually constructed for certain compilers. Drawbacks 
of these kinds of methods lie in the stringent expertise in 
constructing a good enough compiler-specific signature as well 
as their coarse identification granularity. The latter formulates 
compiler identification as a machine learning task, which trains 
models to capture compiler-specific patterns, further with 
which to infer the compiler details on previously unseen 
binaries. For this kind of method, syntactic or structural 
features are extracted based on artificially defined templates 
such as idioms [11] which are short sequences of instructions 
with wildcards or graphlets [12] which are small subgraphs 
within the CFG (Control Flow Graph). The accuracy of these 
methods greatly depends on the quality of manually-crafted 
feature extraction strategies, where potential human-bias exists, 
resulting in capturing lots of irrelevant or redundant features 
for the compiler identification task meanwhile failing to 
capture closely relevant ones. 

In recent years, tremendous successes have been witnessed 
of applying natural language processing techniques and deep 
learning models to various program analysis tasks [16-21]. In 
this paper, we attempt to adopt some of the most popular neural 
network structures to achieve fast and accurate fine-grained 
compiler identification on function level. Specifically, we feed 
typical Recurrent Neural Network (RNN) and Convolutional 
Neural Network (CNN) based structures with abstracted 
assembly instruction sequences to train classification models 
for inferring the compiler families and the optimization levels. 
Our intuition is based on the observation that co-occurring 
instructions together with their orderings that appear even in 
short instruction sequences form good enough signals of 
distinguishing different compliers or optimization levels, and 
here we resort to the neural models to capture them.  

Our main contributions are summarized as following: 

 We propose to reveal fine-grained compiler details for 
individual functions by designing a lightweight 
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function abstraction strategy and adapting typical 
sequence-oriented neural networks. It alleviates the 
task complexity and human bias impacts by handing 
over the professional process of extracting and 
selecting features significant for compiler identification 
from the domain experts to the less human intervened 
neural networks. 

 We have implemented the proposed methods as a tool 
called NeuralCI (Neural modeling based Compiler 
Identification), and evaluated its performance of 
revealing either the compiler family or the optimization 
level on a large dataset consisting of 413,119 unique 
functions that we constructed via processing a set of 
diverse real world projects. The experiments show that 
NeuralCI outperforms most state-of-the-art function 
level compiler identification methods. It achieves 
above 99% and 90% accuracy in identifying compiler 
family and optimization level respectively.  

 We explore for the first time the possibility of 
conducting compiler identification on arbitrary binary 
code snippets rather than complete functions. It shows 
that NeuralCI achieves 96% accuracy, indicating that it 
can capture very subtle yet significant features. 

The remainder of this paper is organized as follows: Section 
Ⅱ summarizes the related works. Section Ⅲ describes in detail 
our proposed approach. The experimental evaluation conducted 
are presented in Section IV. Finally, we conclude the paper in 
Section Ⅴ. 

II. RELATED WORK 

In general, existing works on compiler identification can be 
divided into two classes: signature matching based methods 
and learning based methods. 

A. Signature Matching Based Methods 

The signature matching based methods [8-10] search the 
binary program against a corpus of manually constructed 
signatures for exact matching, and attribute to the whole 
program the compiler label corresponding to the matched 
signature string. This kind of method has been implemented in 
several reverse engineering tools, such as IDA Pro [8], PEiD [9] 
and LANGUAGE 2000 [10], in consideration of its high 
detection efficiency and low cost. Drawbacks of these methods 
lie in the stringent expertise and labor work in constructing a 
good enough compiler-specific signature, as well as the easily 
affected accuracy due to slight differences between signatures. 
Besides, the signatures usually depend on the metadata or 
details of program headers, which can be easily altered or 
become unavailable in stripped binaries. Moreover, these tools 
identify compilers on the whole binary, while a program can be 
produced with multiple compilers in scenarios such as statically 
linking library code to produce the final binary program.  

B. Learning Based Methods 

This type of method formulates compiler identification as a 
machine learning task performed on (in most instances stripped) 
binaries, based on the belief that the resulting binaries implicit 

features reflecting design and implementation decisions of the 
certain compiler which are used to produce the binaries. 
Specifically, they train models that capture compiler-specific 
patterns, further with which to infer the compiler provenance 
on previously unseen binaries.  

The pioneering work [11] adopting this type of approach was 
conducted by Rosenblum et al. that manually defined a set of 
idioms (short sequences of instructions with wildcards) and 
utilized mutual information calculation to capture and select 
significant patterns indicative of the source compiler of the 
program binaries. High accuracy is observed for inferring the 
compiler families, but we have no idea of its performance on 
optimization levels identification as no evaluation was 
conducted. ORIGIN [12] achieved superior accuracy in 
recovering the compiler details by introducing graphlets (small 
and non-isomorphic subgraphs within the CFG) in addition to 
idioms so as to capture additional structural features. Hidden 
Markov models were learnt via observing the differences in the 
type and frequency of instructions comprising the binaries 
compiled with different compilers, and proved to be accurate in 
identifying the compiler family for a whole program [14, 15]. 
However, for each individual compiler family a corresponding 
separate model needs to be learnt. Also, these models do not 
extract information regarding the optimization levels. To 
improve efficiency in terms of computational resources and 
detection time, BinComp [13] adopted a stratified approach to 
infer different compiler details on different granularity. It 
identifies compiler family for the whole program via exact 
matching of signatures, and conducts compiler version and 
optimization level detection for compiler-related functions. 
However, the compiler-related functions constitute only a very 
small portion of all functions, making it largely impractical in 
handling real world programs where user defined functions 
hold the principal status. Basically, accuracy of these methods 
greatly depends on the quality of manually-crafted feature 
extraction strategies, where potential human-bias exists, 
resulting in capturing lots of irrelevant or redundant features 
for the compiler provenance task meanwhile failing to capture 
closely relevant ones. 

In recent years, significant successes have been witnessed of 
applying deep learning techniques to the domain of binary 
program analysis [16-21]. BinEye [16] is one of the few works 
that utilize neural models to achieve compiler identification. It 
combines word embedding and position embedding to encode 
the raw bytes of an object file, and then utilizes CNN to learn a 
model that supports optimization level recognition on each 
individual object file. Our work differs in that we achieve finer 
grained identification of both the compiler family and the 
optimization level for each individual function by adopting an 
abstraction strategy that operates on assembly instructions 
rather than the raw bytes. Structure2Vec [19] utilizes a graph 
embedding network to transform the function CFGs into 
vectors, which are then fed into a dense layer to train a 
classifier for compiler family identification. Compared to this 
work, we operate directly on the instructions comprising a 
function with a lightweight abstraction strategy, and adopt the 
much faster sequence-oriented neural networks to train models 
for identifying the optimization level besides just the compiler 
family as did by Structure2Vec. 
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Figure 1.  The basic framework of NeuralCI 

III.   THE APPROACH 

Figure 1 depicts the overall architecture of NeuralCI, which 
consists of two phases: the training phase as illustrated in the 
top half subfigure, and the detection phase as illustrated in the 
half bottom subfigure. The training phase consists of three 
steps. As a deep learning-based method, the first step is to 
construct a high-quality database comprised of labeled 
functions which shall be discussed in detail in Section IV.A. 
The second step takes as input each raw function and outputs 
an abstracted instruction sequence via a light-weight 
abstraction strategy implemented in the function abstraction 
module. Then these abstracted sequences together with their 
ground truth labels are fed into the neural network based 
classification module to train compiler identification models. 
The detection phase is much simpler, which takes in an 
individual function, processes it with the function abstraction 
and utilizes the trained model to produce a predicted output. In 
the following, we discuss the details of the function abstraction 
module and neural network based classification module 
respectively. 

A. Function Abstraction 

A function must be represented in certain forms such that it 
can be processed for further analysis. The typical ways include 
using the raw byte sequence, the assembly instruction sequence 
or the control flow graph [19] to depict a function. According 
to the findings in [15], different compilers tend to use 
distinguishable assembly instructions. For example, call 
instruction occurs frequently in GCC-generated assembly code, 
while the Clang assembly uses callq instead. Also, as indicated 
by the pretty good compiler family identification accuracy in 
[12], short assembly instruction sequences successfully capture 
compiler-related features. Thus, in this work we choose to use 
the assembly instruction sequence as the representation of each 
function, and we use IDA Pro for the parsing 1 . That is, a 

function f will be represented as  1 2, , , nf ins ins ins , where 

n denotes the number of instructions within the function, and 

each instruction iins consists of an opcode (i.e. mnemonic) and 

a list of operands.  

                                                           
1 We assume a reliable way of identifying the function boundaries, 

the instruction boundaries, as well as the correct parsing of each 

instruction, by using the best commercial reverse engineering tool 

IDA Pro. The correct disassembly of binaries is still a complex and 

open problem, but are beyond the scope of this paper. 

However, as has been confirmed in many existing binary 
analysis tasks [19, 20], it is usually not wise to work directly on 
the raw assembly instructions. For our case, we want to capture 
features reflecting the compiler details rather than the 
functionality of the function. That is, we do not care whether a 
value 6 is assigned to register eax or a value 10 is assigned. So 
the two instructions “mov eax, 6” and “mov eax, 10” should be 
considered the same. Besides, the memory addresses (e.g. the 
target of jmp instructions) are meaningless but just noises that 
bring adverse impacts. Meanwhile, to prevent introducing too 
much human bias, we choose to process the raw instruction 
sequence with a light-weight abstraction strategy. 

Specifically, we do abstraction to each assembly instruction 
in a function with the following rules: 

 The mnemonics remain unchanged. 

 All registers in the operands remain unchanged. 

 All base memory addresses in the operands are 
substituted with the symbol MEM. 

 All immediate values in the operands are substituted 
with the symbol IMM. 

As an example, with the above abstraction rules, the 
instruction “add eax, 6” will become “add eax, IMM”, the 
instruction “mov ebx, [0x3435422]” will become “mov ebx, 
MEM”, while the instruction “mov eax, [ebp-20]” will become 
“mov eax, [ebp-IMM]”. 

B. Neural Models for Compiler Identification  

Given a set of abstracted assembly instruction sequences, it 
is promising to utilize skip-gram [22] to learn the embedding 
for each instruction, explore max-pooling, averaging or 
concatenation to aggregate the embeddings for each sequence, 
and then feed them to any classification model for compiler 
identification. However, it still faces the following two 
limitations: (1) skip-gram assigns each instruction a static 
embedding vector, which is not context-aware to different 
sequences it interacts with; this may fail to learn the compiler-
related features; (2) since instruction sequences are abstracted 
from functions, they may not only enjoy local instruction 
associations and correlations, but also global or long-range 
instruction dependency; in this respect, it calls for sequence 
learning models to better capture the representative compiler-
specific patterns and features from instruction sequences for 
compiler identification. As advanced neural network structures, 



both RNN and CNN have achieved great success in sequence 
learning. As such, in this work, we design an RNN model and a 
CNN model respectively to learn the semantic and structural 
information of instruction sequences and thus leverage these 
advances to identify their compilers. 

1) RNN Model: RNN is known to learn the sequential 
dependency, and strict to align the positions and contexts for 
the instances in the input sequences. Considering that some 
instructions may play more significant roles in the function or 
some instructions may be uniquely generated by specific 
compilers, RNN is able to attend such instructions and learn a 
comprehensive and contextualized embedding for the whole 
instruction sequence. In this work, we employ Long Short-term 
Memory (LSTM) or Gated Recurrent Unit (GRU), either of 
which is an architecture designed for RNN to address the 
vanishing and exploding gradient issue. The structure of our 
RNN model is shown in Figure 2. Each instruction in the input 
sequence is first embedded in vector space. Afterwards, the 
model reads the input instruction sequence through 
LSTM/GRU units to obtain the summary vector, which is then 
fed to a Softmax layer to predict the real compiler. The training 
loss is adopted to measure the correctness of sequence learning 
and compiler prediction. During the training process, dropout is 
also applied to prevent the neural network from overfitting.   

  2) CNN Model: Different from RNN, CNN is known to 
learn the local correlations with shared weights and utilize 
pooling mechanism to greatly reduce the number of parameters 
needed to find important local patterns. In other words, CNN is 
able to attend those frequently co-occurring instructions in the 
short sequences. In our model formulation, we further take 
advantage of different kernel-size filters to thoroughly extract 
interacted salient features among different instruction grams to 
capture the behaviors of compilers. The structure of our CNN 
model is shown in Figure 3. Each instruction sequence is first 
transformed into a matrix, where each row of the matrix is the 
instruction’s embedding. We take such an embedding matrix as 
input fed to the CNN architecture to learn the higher-level 
concept. In the convolutional layer, the raw instruction feature 
matrix gets convoluted by different kernels of size 2, 3 and 4 
such that different views of feature patterns can be extracted in 
parallel, which are then passed through 1-maxpooling layers 
for dimensionality reduction. The resulting representations are 
concatenated through a dense layer to be fed to a Softmax layer 
for compiler prediction. The CNN model is trained using the 
instruction sequences with ground truth. 

IV. EXPERIMENTS AND EVALUATION 

A. Dataset Construction 

To evaluate the performance of NeuralCI, we collected 9 
widely used C/C++ open source projects, including coreutils 
8.31, curl 7.65.3, FreeImage 3.17, git 2.22, libpng 1.6.3, pigz 
2.4, x264, vim 8.1.19 and sqlite 3.22, as the basics to construct 
the dataset. To be specific, we process these projects with the 
following steps: 

 Two different compilers involving multiple versions 
including GCC (4.6.3, 4.7.4, 4.8.5, 4.9.4, 5.5.0, 6.5.0, 
7.4.0) and Clang (3.8, 5.0, 6.0), as well as varying 

compiler optimization levels (O0, O1, O2, O3) are 
used as the toolchain settings to compile each project. 

 IDA Pro is then used to identify and extract functions 
from each binary. Also, we get rid of trivial functions 
(functions containing just a few instructions, such as 
the stub functions) that are meaningless to analyze. We 
consider functions containing less than 10 instructions 
as trivial in our current setting. 

 To avoid the neural models see during the training 
phase functions that are really similar to the ones in the 
testing phase, which if not properly accounted for can 
inflate the performance metrics, we only keep unique 
functions. Specifically, a function is considered 
redundant if it has the same abstracted instructions as 
any other functions’. Then we label each remaining 
function with the compiler settings used to compile the 
binary that the function resides in. 

With these settings, we finally construct a dataset comprised 
of totally 413,119 unique functions. 
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Figure 2.  RNN-based model 
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Figure 3.  CNN-based model 



B. Implementation Details and Experimental Settings 

We have implemented NeuralCI as a prototype tool. It 
utilizes IDA Pro for the parsing of binaries to obtain functions 
as well as the raw assembly instructions. The function 
abstraction module is implemented in Java, and the neural 
modeling module is implemented using Python and the 
Tensorflow framework. Skip-gram model provided by gensim 
is used to generate the instruction embedding vectors with the 
embedding size setting to 100.  

For the experimental settings, we randomly split the whole 
dataset into training set, validation set and testing set according 
to a percentage of 70%, 15% and 15% respectively. The neural 
models are trained with a RTX2080Ti GPU card using a batch 
size of 500, learning rate 0.001 and Adam optimizer for 100 
epochs (Note that for each epoch the training samples are 
shuffled and accuracy on the validation set is calculated). Then 
we take the model with the best validation accuracy as the final 
model to be further evaluated on the testing set with respect to 
performance metrics including accuracy, precision, recall and 
f1-score. 

C. Evaluation 

In the following parts, firstly we evaluate the performance of 
NeuralCI in identifying the compiler family and optimization 
level respectively and get it compared against state-of-the-art 
function level compiler identification methods. Then we further 
explore for the first time the applicability of NeuralCI on 
compiler identification of arbitrary binary code snippets which 
can be just a part of a complete function. Considering that 
several different neural structures are implemented in NeuralCI, 
we use NeuralCIx where x can be LSTM, GRU or CNN to get 
them distinguished.  

1) Performance of Identifying Compiler Family: In this 

experiment, we take the compiler family that each function is 

compiled with as the ground-truth, and get the NeuralCI 

models trained and evaluated by adopting the experimental 

settings as described in Section IV.B. Also, we compare them 

against existing methods including Structure2Vec, Idioms, 

Graphlets and BinComp that support function level compiler 

family identfication. Table I summarizes the experimental 

results2. As it shows, the three NeuralCI models achieve nearly 

perfect accuracy and f1-score in identifying the compiler 

family and they all outperform existing methods in terms of 

detection accuracy. Also, the CNN based one NeuralCNN 

exhibits the best performance with an accuracy of 99.5% and 

f1-score of 0.995, an improvement of 6.3% against Idioms and 

the least improvement of 0.7% against Graphlets. 

2) Performance of Identifying Optimization Level: In this 

experiment, the optimization levels of certain compilers are 

                                                           
2 It should be noted that most existing methods do not provide a 

public access to their source code implementation or the dataset they 

used. So we give the best performance exhibited in their original 

evaluations rather than conducting a direct comparison with them. 

Also, not all performance metrics as we evaluated against are used in 

their original work, we mark these missing data with a symbol ‘-’ in 

Table I as well as the following tables. 

taken as the ground-truth to train and evaluate NeuralCI. We 

do not use the default 4-level optimization option setting, but 

adopt the same strategy as in works [12, 13] that condense the 

4 optimization levels to 2 classes ‘low’ and ‘high’, considering 

the findings presented in existing studies [12, 13] that it is 

difficult to distingush between O2 and O3 compiled binaries. 

That is, O0 and O1 will be considered as the low optimization 

class, while O2 and O3 will be considered as the high 

optimization class. Similarly, we compare NeuralCI with 

methods having function-level compiler optmization level 

identification results. As summarized in Table II the detection 

results on GCC optimzation levels, relatively good detection 

accuracy of above 90% are observed for the NeuralCI models, 

while the Graphlets method achieves the best accuracy of 

97.1% according to their original evaluation result. But as the 

reproduction evaluation conducted by BinComp on a different 

dataset shows, the Graphlets method achieves an f-score of  

just 0.62, much lower than those of NeuralCI’s. Similar results 

can be observed for evaluation on the Clang optimization 

levels in Table III, where an accuracy of above 90% is 

achieved for the NeuralCI models. There’s no data for other 

methods, as they didn’t evaluate on the Clang compiler. 

TABLE Ⅰ 
COMPILER FAMILY IDENTIFICATION RESULTS 

Model Accuracy Precision Recall F1-Score 

NeuralCILSTM 99.4% 0.994 0.993 0.994 

NeuralCIGRU   99.3% 0.994 0.99 0.994 

NeuralCICNN  99.5% 0.995 0.995 0.995 

Structure2Vec 98.2% 0.98 0.98 0.98 

Idioms 93.2% - - - 

Graphlets 98.7% - - - 

BinComp 97.0% - - - 

TABLE Ⅱ 
OPTIMIZATION LEVEL IDENTIFICATION RESULTS FOR GCC 

Model Accuracy Precision Recall F1-Score 

NeuralCILSTM  91.3% 0.914 0.912 0.914 

NeuralCIGRU    91.2% 0.913 0.916 0.914 

NeuralCICNN  90.9% 0.914 0.907 0.910 

Graphlets 97.1% - - - 

BinComp 91.0% - - - 

TABLE Ⅲ 
OPTIMIZATION LEVEL IDENTIFICATION RESULTS FOR CLANG 

Model Accuracy Precision Recall F1-Score 

NeuralCILSTM 0.914 0.920 0.917 0.908 

NeuralCIGRU     0.903 0.925 0.912 0.924 

NeuralCICNN  0.900 0.915 0.905 0.903 

3) Evaluation on Isolated Binary Code Snippet: The 

prologue (the preparation of stacks and registers to be used) 



and epilogue (the lines of code appearing at the end of a 

function for restoring the stack and registers to the state before 

the function is called) of a function play important roles in 

many binary analysis tasks. Also, as shown by the analysis 

presented in the works of Austin[15] and Toderici [16], push, 

mov and pop instructions (which are the main components of 

prologues and epilogues) show significant effect in 

distingushing different compilers. So in this experiment we 

explore whether NeuralCI still works on arbitrary binary code 

snippets that may not contain function prologue and epilogue. 

To achieve that, we apply NeuralCI to identify compiler 

family for each basic block containing no less than 10 

instructions. As depicted in Table IV, reduced performance is 

observed compared with the results on individual functions, 

but still pretty good accuracy (around 96%) and f1-score 

(around 0.96) are achieved. It indicates that NeuralCI can 

capture very subtle yet significant features which may 

otherwise be missed by artifically crafted feature extraction 

and selection strategies. 

TABLE Ⅳ 
COMPILER FAMILY IDENTIFICAITON ON INDIVIDUAL BASIC BLOCKS 

Model Accuracy Precision Recall F1-Score 

NeuralCILSTM 0.962 0.962 0.961 0.961 

NeuralCIGRU 0.960 0.959 0.959 0.960 

NeuralCICNN 0.961 0.960 0.960 0.961 

V. CONCLUSION 

In this work, we attempt to solve the problem of fine-grained 
compiler identification by feeding in typical neural networks 
with abstracted instruction sequences generated with a light-
weight function abstraction strategy. We implement our 
methods in a prototype tool NeuralCI, and get its performance 
evaluated on a large dataset consisting of totally 413,119 
unique functions. As the experimental evaluation shows, 
NeuralCI outperforms most state-of-the-art function level 
compiler identification methods. It achieves above 99% and 
90% accuracy in identifying compiler family and optimization 
level respectively. Moreover, the evaluation we conducted of 
applying NeuralCI for the tougher task that infers compiler 
family from arbitrary binary code snippet achieves rather good 
accuracy of 96% and f1-score of 0.96. Future works will focus 
on the model interpretability as well as designing more 
powerful neural nets such as network structures with attention 
mechanism. 
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