Identifying Security Concerns Based on a Use Case
Ontology Framework

Imano Williams, Xiaohong Yuan
Computer Science
North Carolina Agricultural and Technical State University
Greensboro, U.S.A
irwillil@aggies.ncat.edu, xhyuan@ncat.edu

Abstract— lIdentifying security concerns in an application can be
difficult, especially if the analysts lack security knowledge. We
propose a use case ontology that can help to identify security
concerns based on the use case specifications. We demonstrate the
feasibility of the ontology by systematically applying the ontology
to use case specifications expressed in Web Ontology Language
(OWL). The proposed approach can help model the
interrelationship of concepts in the use case and possibly use
queries to group use cases that may have similar security concerns.
This approach could allow analysts to identify parts of the use
cases with similar security concerns and could potentially reduce
reoccurrences of known vulnerabilities in software applications.
Lastly, we discuss future work about creating an automated tool
for recommending attack patterns for the security requirements
process.

Keywords-Domain Ontology; Security Concerns; Use Cases;
Secure Software Engineering

I. INTRODUCTION

Ontological modeling of software artifacts has been used in
the requirements and design phases to address security issues
[1]. Some ontologies have used software artifacts such as
security requirements [2] and use cases [3] to aid in knowledge
acquisition and the conceptualization of reusable domain-
specific software security information. According to Veres, et
al. [4], ontologies can be used to track the dependencies
between requirements as the project becomes realistically
complex. However, when ontologies are used to elicit security
requirements, the security requirements elicited depend on the
ontology that was used [5]. Furthermore, requirement analysts
may not have adequate security knowledge to choose the most
appropriate ontology and then use it correctly [6]. In addition to
security knowledge, requirement analysts also need domain
knowledge to identify security concerns. Therefore, the
modeling of the system based on an ontology can be difficult
for security requirement analysts.

In this paper, we introduce a use case ontology framework
to identify security concerns based on use case descriptions.
The following observations motivated us to build the ontology:
(1) Reports from Open Web Application Security Project
(OWASP) Top 10 [7] and Common Vulnerability Exposure!
(CVE) have shown the frequent reoccurrences of known

1 https://cve.mitre.org
DOl reference number: 10.18293/SEKE2020-136

vulnerabilities, such as SQL Injection and Cross-site Scripting.
(2) Many of the reported vulnerability exploits started from the
web interface of an application. (3) In a software development
team, different understandings of what to secure in software
under development (SUD) may lead to ambiguous, incomplete,
and inconsistent security concerns being identified by the
stakeholders.

We created the ontology framework for identifying security
concerns by (1) Identifying the Assets and Web Components of
a use case that can guide requirements analysts to raise security
concerns via use case steps; (2) Creating concepts and attributes
for the proposed ontology based on the results of steps (1); and
(3) Associate the use case steps (or flows) to specific security
concerns using semantic rules; (4) Based on this ontology,
semantic queries can be run to find similar use case flows that
may have similar concerns. This ontology framework can help
reduce reoccurrences of know vulnerabilities by identifying
similar security concerns across different functionalities of an
application and different applications.

The rest of the paper is organized as follows: Section Il
presents the proposed ontology. Section 11 defines rules for
identifying security concerns. Section IV discusses how the
ontology can be used to identify security concerns. Section V
demonstrates how the ontology framework is used with a
specific example. Section VI discusses related work. Finally,
Section VII concludes the paper and discusses future work.

II. THE PROPOSED USE CASE ONTOLOGY

The proposed ontology was developed using the steps
suggested by Noy and McGuinness [8] with an evolutionary
approach. These steps include defining the scope of the
ontology, reusing existing ontologies, enumerating important
terms, defining classes, defining properties, defining cardinality,
and creating instances (individuals). We adopted concepts that
are related to security concerns in [9], the Restricted Use Case
Model (RUCM) [10], and verb categories for web tasks from
[11-13] to develop the ontology. The RUCM is a use case
template that specifies 26 restriction rules on the natural
language, keywords for control structures, and that every flow
path in a use case should have a postcondition. In addition to
using a more restrictive use case template, we used a dialog
descriptive use case format. The dialog use case format includes
a graphical user interface (Ul) components in the use case flow.

The rationale for using dialog descriptive use case includes the
following: (1) the web components in the use case could guide
requirements analysts to raise security concerns; (2) use cases
are rudimentary software development artifacts that can
represent the system navigational structure from a graphical
user interface aspect; (3) according to Salini and Kanmani [14],
the user interface and navigational structure are the main
features of applications’ web interfaces that must be analyzed
and (4) currently, we focus on the constrained system where the
design of the interaction is more precise than just providing the
intent of the use case.

hasSpecitc (GG REUIBHER]

raise,
-‘hasActmn hasObJect’q\‘sA

\SA isA
-Baswc F\ow

hasFlow
xceptmn Flow| \ocatedOn ‘
Alt i hasPostCond located0 / uttoﬂ
endsAt | locatedOn isA
locatedOn Link

Web Ul cmpnnem

Basic Flow Group)
SA/,
Alternate Flow Group)

r~ _hasFlowGroup
hasnext

hasConflict locatedOn

startsAt

hasUseCase
hasActor EhasConfhct
support

Figure 1 The proposed use case ontology for identifying security concern

hasPreCond

Information Disclosure PR Rl
(o isA
raise

_*has’suecmc isA

isA
i Step Eif Dlsp\ay Confidentiality

Figure 2 Security concern subclasses

Authentication

In Fig. 1, we have shown some of the major concepts that
were taken from different sources to build the proposed

ontology. Fig. 2 shows the concepts related to security concerns.

These security concern concepts were adopted from ISO/IEC
27001:2013 [15], ISO/IEC 27000:20182, and [9]. Next, we
provide the definitions of some of the core concepts:

e Use Case: Represents the intended interactive steps
between an external entity and the system.

e Actor: Represents a human or an external system that
interacts with the system to accomplish the services of
the use case.

o Flow: It specifies the logical steps that an actor takes
to complete the services of the use case.

e Web Ul Component: An interface component of the
application that actors interact with to complete the
services of the use case. In our ontology, we created
concepts for the button, link, web page, and modal
box.

2 https://standards.iso.org/ittf/PubliclyAvailableStandards/

e Flow Action: This is an operation that is performed by
the Actor or the SUD to complete a Flow. Some
examples are “The user updates the username.” and
“The system displays the ‘login’ web page.”

e Asset/Message: An intangible valuable resource, such
as a password that is worth protecting. Here we focus
on data the user provides via some user input.

e Security Concern: Matters of interest related to
security exploits that may affect use case flows based
on the action, web components, and the asset. The
subclasses are authentication, authorization,
confidentiality, integrity, non-repudiation, identity,
and security auditing.

e Security Requirements: Conditions that must be
satisfied to address a security concern.

An object property is represented as “o (D — R)”, which
means a class D (domain) is related to another class R (range)
by o, the object property. Some of the object properties are:

e hasFlow (FlowGroup — Flow)
o hasFlowBefore (Flow — Flow),
hasFlowAfter (Flow — Flow)
e hasActor (Use Case — Actor)
e raise (Flow, Use Case, Post Condition — Security
Concern)
e display (System — Web Page, Modal Box, Message)
e validate (System — Asset)
hasFlowObject (Flow — Web Ul
Message, Asset)
A data property is represented as, “d (C — r)”, which
means that class C has data property, d, with range r. Some of
the data properties are:

an inverse of

Component,

e hasActionType (Action — [“passive”, “active”])

e hasLinkParameter (Link — ["non-sensitive",
"sensitive", “both”, “none”])

e hasIinformation (Asset, Web Page —
sensitive", "sensitive", “both”, “none”])

e hasAppLocation (Use Case — ["authenticated",
"unauthenticated”, "both"])

e hasPurpose (Use Case — ["create", "read", "update",
"delete"])

e haslnteractionFlow (Use Case — ["multi", "single"])

¢ isValidationFlow (Flow, — ["yes", "no"])

["non-

To formally specify the classes (concepts), along with their
object properties, data properties, and quantifier restriction, we
used the Web Ontology Language (OWL) [16]. We used the
second level OWL 2, OWL-DL, which provides maximum
expressiveness while retaining the inference capabilities of an
ontology [17] and semantic queries over the knowledge.

ITI. RULES FOR IDENTIFYING SECURITY CONCERNS

We defined rules using Semantic Web Rule Language
(SWRL) [18] to identify security concerns based on the assets,

web Ul components, and the actions in the use case flow.
Currently, we defined eight rules for identifying security
concerns that are listed below. These rules are not exhaustive.

Rules for the use case flow concepts:

1) Asset <sensitive> && Save > Storage
Confidentiality, which means that an Asset instance
with a “sensitive” data property value that should be
saved has storage confidentiality.

2) Asset <sensitive> && Display - Display
Confidentiality, which means that an Asset instance
with a “sensitive” data property value should have
display confidentiality.

3) Asset && Validate = Multi-Step Bypass, which
means that an Asset instance that is being validated by
the system multi-step bypass. This security concern
occurs when a user can bypass some validation logic
to get to another flow in the use case.

4) Button <active> && Click > Non-Repudiation &&
Transmission Confidentiality, which means that a
Button instance with an active data property (i.e., it
makes changes to the system file system) associated
with a click action have non-repudiation and
transmission confidentiality.

5) Link <sensitive> && Click -> Transmission
Confidentiality, which means that a click action on a
Link instance with “sensitive” parameter data property
value has transmission confidentiality.

6) Button, Link && Click - Information Disclosure,
which means when the system generates messages
(warning, error, or confirm) because of an action on a
link or button has Information Disclosure.

Rules for the use case concept:

7) hasAppLocation <authenticated or both> >
Authentication, which means a Use Case instance with
authenticated or both boundary type has of
authentication.

Rules for the actor concept:

8) Conflicting Use Cases && Actor > Separation of
Duties, which means a use case that is followed by a
conflicting use case, should not have the same Actor.
Conflicting meaning that the same Actor cannot use
two or more use cases. This rule is an extension of
Rule 2.

Apart from having these eight rules, we can create informal
rules (not in SWRL) to be used as SPARQL Protocol, and RDF
Query Language (SPARQL) query, such as:

1) Non-Permitted Actor && Web Pages = Inaccessible
Web Pages means that a user role is not permitted to
view restricted web pages.

IV. THE PROPOSED ONTOLOGY FRAMEWORK APPROACH

In this section, we describe how the ontology could be in a
framework to identify security concerns. Fig. 3 shows the three
major phases, along with the respective sub-phases.

3 https://protegewiki.stanford.edu/wiki/ProtegeReasonerPlugin

In the first phase, Identifying Instances, the instances based
on the use case concepts are identified along with their object
and data properties. We start by identifying the name of the use
case along with its data properties, and then we find the
instances that are related to the use case via its object properties.

Identifying Instances

““Use Case Identified Use Case |
Description(s) .. Instances

Creating Use Case Model l

~Semi-Formal
~Use Cases

Formal Use Case
‘ Model

Running SPARQL Query l
p=

Formal Use Cas:
. ~Model ‘

Figure 3 The Proposed Ontology Framework

- Query Results

For example, we identify the Actor instance and then find
its data and object properties. Overall, we perform a depth-first
identification of the instances (via concepts) with the data and
object properties, then recursively perform a depth-first
identification on the next instance that is related to the current
instance via the object property. As a result, we identify the
Asset, Action, and Web Ul Component from the flows of the
use cases along with their inter-relationships. For example, we
can specify the hasFlowBefore and hasFlowBefore object
properties for the current flow or the web pages that an asset is
located.

In the second phase, Creating Use Case Model, the output
of the first phase is used to create the semi-formal Resource
Description Framework (RDF) triples (subject, predicate,
object) of use case descriptions. Next, Protégé [19], the OWL 2
editor, is used to create the instances and their object and data
properties that were identified in the first phase. During the
second phase, the Pellet® reasoner is run regularly to continually
check the consistency of the asserted facts being added in the
[20] ABox (asserted facts about the use cases) of the ontology.

In the third phase, Running SPARQL Query, SPARQL is
used to query the ABox to find security concerns based on the
inferred facts using the SWRL rules in Section I11. For example,
if several Flow instances can be affected by Multi-Step Bypass,
the query will return those Flow instances. We used the
approach proposed by Uschold and Gruninger [21] to evaluate
the ontology based on motivating scenarios, informal
competency queries, and formal competence queries to help
identify security concerns for the modeled application. To run
SPARQL queries, we use Snap-SPARQL [22] plugin* in
Protégé that supports reasoner inferences using the Pellet
plugin. Pellet, an OWL reasoner plugin in Protégé, is used to
assist in answering the queries about the security concerns.

4 https://github.com/protegeproject/snap-spargl-query

V. DEMONSTRATING THE ONTOLOGY FRAMEWORK

A. A Case Study

We used a mock online® shopping web application to
demonstrate the ontology framework. The total number of
instances (individuals) modeled were 11 use cases, four actors,
22 web pages, 24 assets, 17 links, eight buttons, 90 flows, and
14 actions in the proposed ontology. We had to edit the use
cases to conform to the standards of the Restricted Use Case
Model [10]. The edited use cases and ontology files are located
at Use_Case_Ontology_for_Security_Concern®. Fig. 4 shows a
description of the “Create New Account” use case. In the use
single underline to mark the object in the sentence to be
modeled in the ontology as triples.

USE CASE UC3: Create New Account

Actors: Primary — Unregistered Customer

Preconditions: The system is displaying a ‘Home’ Webpage to the user.

Basic flow:

1. The user clicks on ‘Create New Account’ link.

2. The system displays the ‘New Account Information” screen.

3.The user enters the FirstName, Last Name, Street Address, City, State, Country,

Postal Code, Card Number, Card Type, and Card Expiry Date.
4. The user clicks on the ‘Create’ button.

Country, Postal Code, Card Number, Card Type, and Card Expiry Date are correct.
6. The system displays the ‘Signup Information’ webpage.
7. The user enters the username and password.

8. The user clicks on the “Sign Up” Button.

10. The system displays the ‘Account Confirmation” webpage along with the
FirstName, Last Name, Street Address, City, State or Province, Country, Postal
Code, Telephone Number, Card Number, Card Type, and Card Expiry Date.

11. The user clicks on the “Verification” button.

12. The system displays the ‘Account Information’ Page.

Post Condition: The system saves the FirstName, Last Name, Street Address, City,
State or Province, Country, Postal Code, Telephone Number, Card Number, Card
Type, and Card Expiry Date. The system is displaying the ‘Account Information’
Page to the user.

Bounded Alternate Flow: N/A

Global Flow: N/A

Specific Flow: N/A

Figure 4 The Create New Account Use Case

In the Identifying Concepts phase, we identify the concepts
in the sequence of Use Cases - Actors - Preconditions -
Flow Groups -> Flow (subject, predicate, object) ->
Postconditions along with their data and object properties. The
has Boundary data property of the “Create New Account” use
case is on the “unauthenticated” side of the application. There
is only one Actor, Unregistered Customer, for this use case. To
initiate the use cases, the Actor would start from the “Home”
page. Next, we move onto the basic flow to identify the
predicate and object. The user is sending account information
that the system must validate in basic flow four before the user
can supply the signup username and password to complete the
use case (basic flow 5). Therefore, the interaction is a “multiple-
step” (temporal expression). We determine the Asset instance
based on the data the actor supplied to the system or vice versa.
The use case’s purpose is “active (inserting)” since the use case
is making changes to the file system to create the new account.
Fig. 5 shows the representation of basic flow six, along with its
object and data properties in the Protégé editor. The object
property hasFlowBefore has value basic flow five. Additionally,

5https://personal.utdalIas.edu/~chung/RE/PresentationsO7SlT eam_3/

the inferred flows before and after are shown through the
dependsOnFlowBefore and subsequentFlow object properties.

Property assertions: UC3_BasicFlowGroup BF_6

Object property assertions
== hasAction UC1BF_6display
== hasFlowBefore UC3_BasicFlowGroup_BF_5
== hasObject Web_ Signing_Information
== dependsOnFlowBefore UC3_BasicFlowGroup BF_1
== dependsOnFlowBefore UC3_BasicFlowGroup BF_2
== dependsOnFlowBefore UC3_BasicFlowGroup BF_3
== dependsOnFlowBefore UC3_BasicFlowGroup BF_4
== dependsOnFlowBefore UC3_BasicFlowGroup BF_S
== hasFlowAfter UC3_BasicFlowGroup_BF_7
== subseguentFlow UC3_BasicFlowGroup_BF_10
== subseguentFlow UC3_BasicFlowGroup BF_11
== subseguentFlow UC3_BasicFlowGroup _BF_7T
== subsequentFlow UCS_BasicFlowGroup_BF_g
= subsequentFlow UCS_BasicFlowGroup_BF_g

Data property assertions
== pasName ~“UC1_BasicFlowGroup_BF_6"~~xsd:string
= rulesR20R23 "NO"~Axsd:string
== pasEventNum &

Figure 5 Basic Flow in Protégé

Property assertions: Web_Signing_Information

Object property assertions

B connectedBy Button_Create

Data property assertions

B hasName "Web_Signing_Information"**xsd:string

Figure 6 Signup Information Web Page in Protégé

Fig. 6 shows the Signup Information Web Page from basic
flow six. The object property connectedBy shows the
navigational path to get to the web pages. In this case, it is the
“Create” button located in basic flow four. It could also be a
Link instance. Furthermore, the “Sign Up” button in flow eight
in Fig. 4 would have a buttonLocatedOn object property of
Signup Information Web Page in the ontology.

Once we have completed the Creating Use Case Model
phase for all the use cases, the next phase is Running SPARQL
Queries based on the defined SWRL rules. We used
SNAPSPAQRL to run the queries since it supports inferring
once a reasoner is running. The SWRL rule for rule 3, Multi-
Step Bypass is Flow (?f), Asset(?a), Action (Validate), has
Asset(?f, ?a), has Action(?f,Validate), Mult_Step_ByPass(?m)
= raise (?f, ?m). We can then query ontology to find the
consequent of the SWRL rule once the antecedent is true. So,
we can have informal and formal queries to search:

1. Informal Query: Which flows are affected by the Multi-
Step Bypass security concern?

2. Formal Query SELECT ?useCase ?flow WHERE {
?useCase uc:hasFlowGroup ?flowGroup.
?flow uc:isPartOfGroup ?flowGroup.
?flow uc:raise uc:MultiStepBypass. }

TABLE | shows the partial results of running the above
formal query.

TABLE | MULTI-STEP BYPASS QUERY RESULTS

Use Case Flow Affected
UC11 Login UC11l MF5
UC3 Create_New_Account UC3MF5
UC3 Create New_ Account UC3MF9

6 https://figshare.com/projects/Use_Case_Ontology_for_Security_Concern/80330

The rules in Section 111 are not the complete SWRL ruleset.
Apart from running the queries based on the defined SWRL
rules, an analyst can also create and run new queries based on
reported CVEs. For example, CVE-2018-14398’, an issue was
discovered in Creme CRM 1.6.12. The value of the cancel
button uses the content of the HTTP Referrer header and could
be used to trick a user into visiting a fake login page to steal
credentials. This vulnerability is related to a user clicking a
button component on the web page. Therefore, we can create a
SPARQL query to find the pages that involve users clicking a
button. The query would be the following:

1. Informal Query: Which flows display a button, and
which pages are these buttons located?

2. SPARQL Query: SELECT ?flow ?button ?webpage

WHERE {?useCase uc:hasFlowGroup ?flowGroup.

?flow uc:isPartOfGroup ?flowGroup.

?flow uc:hasFlowObject ?button .

?button a uc:Button ;

uc:buttonLocatedOn ?webpage . }

From the query results in TABLE Il, UC2_Search Catalog

— basic flow three, UC9_Make Online Payment — basic flow
(success path) six, UC3_Create New Account — basic flow four,
UC4 _Update Account Information — basic flow five, and
UC8_Apply for Financing — basic flow six are affected by Rule
6 (information disclosure) when a user clicks a button. We can
run similar queries to find other parts of the system that could
be exposed to other CVEs.

TABLE I BUTTON IN USE CASE MODEL SIMILAR TO CVE-2018-

14398
Flow Button Web Page
UC9 BF6 Button _Submit Webh Make Payments Page
UC2 BF3 Button_Search Web_Main_Page
UC3 BF4 Button Update Webh_New_Acct_Information_Page
UC4 BF5 Button_Finish Web_Update Acct_Information_Page
UC8 BF6 Button_Submit | Web_Make__Payments_Page
B. Discussion

In section V.A, we demonstrate how the ontology
framework can be applied to a specific use case. The object and
data properties show that specific rules could be used to find
similar parts of different use cases that may share the same
security concern. So, we focus more on providing a modeling
process to find common security concerns through specific
scenarios inspired by reports from OWASP and CVE, where
the interface of the application is concerned.

In terms of performance, the instance Identification and Use
Case Model Creation phases of the framework are task
intensive. We had to take precautionary steps so that we did not
miss sub-tasks, such as extracting the information from the use
case description that is related to the concepts in the ontology.
Manually populating the ontology by copying the semi-model
from the document to the ontology via Protégé is tedious and
time-consuming. Also, it is easy for the ontology to become
inconsistent when using the wrong individual for the range of
an object property. Furthermore, an analyst may forget to add
information from the semi-model. It took more than 2 hours to
populate the ABox of the ontology for the 11 use cases. As a

7 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14398

result, an automated process to identify what to populate the
ABox of the ontology is needed to make the process take less
effort by a user.

V1. RELATED WORK

Gartner, et al. [3] developed an integrative security
knowledge model that identifies vulnerabilities from software
requirements (use cases) based on reported security incidents.
They conducted a case study that showed how different use cases
were related to a similar misuse case, but their proposed
knowledge structure was not able to identify interrelationship
between use cases that may have the same misuse case. Rago, et
al. [23] used text mining to identify quality attributes such as
modifiability, performance, availability, security from use case
description. Their work aimed to help requirements engineers
skim through requirements documentation efficiently, in order
to identify potential quality attributes such as performance,
security, mobility, and testability. However, in terms of security
quality attributes, they did not delve into security concerns.
Woulters, et al. [24] proposed a semi-formal ontology for the
reuse of similar use cases by defining labels, concepts and
relations to create rules and queries in an inference machine to
find similar use cases. Our work is similar to theirs in the
conceptual model of user interaction with Ul in use case.
However, our ontology includes more detailed Ul components
concepts such as button, web page, URL. Couto, et al. [25]
automated the extraction of requirements patterns based on
stakeholders formalizing use case specification by using OWL
inference capabilities to address typical implementation
solutions. Dermeval, et al. [26] suggested that ontologies could
be used for representing requirements and architectural
knowledge and support reasoning through traceable links
between them. This paper does not focus on bridging the gap
between requirement and architectural design phases, but the
concepts such as web page, button, other web Ul components
can be linked to artifacts in architectural design and subsequent
phases, which help with traceability. Decker, et al. [27] represent
use cases in a requirements document ontology to semi
formalize the representation of actors interacting with the system
through user story descriptions. Kang and Liang [9] developed a
security ontology for software development, a model-driven
approach, where security concerns play a role in the analysis,
design, implementation, testing, and maintenance stages of the
SDLC. Our approach is different from Kang and Liang [9] since
we focus on applying security concerns to use case instead of
representing use cases as ontologies for development.

Our work is different from the related literature in that it
mapped specific flows in use cases to security concerns based on
data and object properties.

VII.CONCLUSION AND FUTURE WORK

This paper introduced a preliminary work on using an
ontology framework during the early software development
phases to identify security concerns based on use cases. We have
manually and effectively created relationships between different
use case concepts. These relationships have the potential to
relate use case concepts to security concerns. Even though we

can use the ontology to identify security concerns, manually
representing the user case in the ontology can be time inefficient
for many use cases.

Also, this ontology currently works with a predefined set of
rules for identifying security concerns. CVE provides
information on many security attacks that are based on different
CVE scenarios. For example, different parts of the use case can
be exploited with XSS. New rules and queries can be developed
to find where in the use case that could be affected XSS.

In future work, we intend to develop a web-based tool to
automatically extract and populate the relevant information from
use cases into the ontology. As a result, the tool will semi-
automatically query ontology the parts of the use case that
matches the security concerns rule. The work presented in this
paper is a part of a larger project to help recommend relevant
attack patterns as part of the security requirements process. We
will evaluate the usability of the ontology framework in a user
study with the participants in software engineering courses and
the security requirements community.

ACKNOWLEDGMENT

This work is partially supported by NSF under grant CNS-
1900187. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the NSF.

REFERENCES

[1]. A. Souag, R. Mazo, C. Salinesi, and I. Comyn-Wattiau, "Reusable
knowledge in security requirements engineering: a systematic mapping
study," Requirements Engineering, vol. 21, pp. 251-283, 2016.

[2]. C. Schmitt and P. Liggesmeyer, "Getting grip on security requirements
elicitation by structuring and reusing security requirements sources,"
Complex Systems Informatics and Modeling Quarterly, pp. 15-34, 2015.

[3]. S. Gértner, T. Ruhroth, J. Blrger, K. Schneider, and J. Jirjens,
"Maintaining requirements for long-living software systems by
incorporating security knowledge," in Requirements Engineering
Conference (RE), 2014 IEEE 22nd International, 2014, pp. 103-112.

[4]. C. Veres, J. Sampson, S. J. Bleistein, K. Cox, and J. Verner, "Using
semantic technologies to enhance a requirements engineering approach
for alignment of IT with business strategy,” in Complex, Intelligent and
Software Intensive Systems, 2009. CISIS'09. International Conference on,
2009, pp. 469-474.

[5]. A. Souag, C. Salinesi, R. Mazo, and |. Comyn-Wattiau, "A Security
Ontology for Security Requirements Elicitation,” in ESSoS, 2015, pp.
157-177.

[6]. H.Guan, H. Yang, and J. Wang, "An ontology-based approach to security
pattern selection,” International Journal of Automation and Computing,
vol. 13, pp. 168-182, 2016.

[7]. T.OWASP, "102017," OWASP Top 10 Application Security Risks—2017,
2018.

[8]. N.F.Noyand D. L. McGuinness, "Ontology development 101: A guide
to creating your first ontology," ed: Stanford knowledge systems

(9]

[10].

[11].

[12].

[13].

[14].

[15].

[16].

[17].

[18].

[19].
[20].

[21].

[22].

[23].

[24].

[25].

[26].

[27].

laboratory technical report KSL-01-05 and Stanford medical informatics
technical report SMI1-2001-0880, Stanford, CA, 2001.

W. Kang and Y. Liang, "A security ontology with MDA for software
development,” in Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2013 International Conference on, 2013, pp. 67-74.
T. Yue, L. C. Briand, and Y. Labiche, "Facilitating the transition from use
case models to analysis models: Approach and experiments,” ACM
Transactions on Software Engineering and Methodology (TOSEM), vol.
22,p.5, 2013.

D. Ko, S. Kim, and S. Park, "Automatic recommendation to omitted steps
in use case specification," Requirements Engineering, pp. 1-28, 2018.

J. Jurkiewicz and J. Nawrocki, "Automated events identification in use
cases," Information and Software Technology, vol. 58, pp. 110-122, 2015.
S. Tena, D. Diez, P. Diaz, and I. Aedo, "Standardizing the narrative of use
cases: A controlled vocabulary of web user tasks," Information and
Software Technology, vol. 55, pp. 1580-1589, 2013.

P. Salini and S. Kanmani, "Security requirements engineering process for
web applications," Procedia engineering, vol. 38, pp. 2799-2807, 2012.
1. O. f. Standardization, ISO/IEC 27001: 2013: Information Technology--
Security Techniques--Information Security Management Systems--
Requirements: International Organization for Standardization, 2013.

I. Horrocks, P. F. Patel-Schneider, and F. VVan Harmelen, "From SHIQ
and RDF to OWL: The making of a web ontology language,” Journal of
web semantics, vol. 1, pp. 7-26, 2003.

C. Welty, D. L. McGuinness, and M. K. Smith, "Owl web ontology
language guide,” W3C recommendation, W3C (February 2004)
http://www.w3. org/TR/2004/REC-owl-guide-20040210, 2004.

1. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M.
Dean, "SWRL: A semantic web rule language combining OWL and
RuleML," W3C Member submission, vol. 21, p. 79, 2004.

M. A. Musen and T. the Protégé, "The Protégé Project: A Look Back and
a Look Forward," Al matters, vol. 1, pp. 4-12, 2015.

G. De Giacomo and M. Lenzerini, "TBox and ABox reasoning in
expressive description logics," KR, vol. 96, p. 10, 1996.

M. Uschold and M. Gruninger, "Ontologies: Principles, methods and
applications,” The knowledge engineering review, vol. 11, pp. 93-136,
1996.

M. Horridge and M. Musen, "Snap-SPARQL: a java framework for
working with SPARQL and OWL," in International Experiences and
Directions Workshop on OWL, 2015, pp. 154-165.

A. Rago, C. Marcos, and J. A. Diaz-Pace, "Uncovering quality-attribute
concerns in use case specifications via early aspect mining," Requirements
Engineering, vol. 18, pp. 67-84, 2013.

B. Wouters, D. Deridder, and E. Van Paesschen, "The use of ontologies
as a backbone for use case management," in European Conference on
Object-Oriented Programming (ECOOP 2000), Workshop: Objects and
Classifications, a natural convergence, 2000.

R. Couto, A. N. Ribeiro, and J. C. Campos, "Application of ontologies in
identifying requirements patterns in use cases,” arXiv preprint
arXiv:1404.0850, 2014.

D. Dermeval, J. Vilela, 1. I. Bittencourt, J. Castro, S. Isotani, P. Brito, et
al., "Applications of ontologies in requirements engineering: a systematic
review of the literature," Requirements Engineering, vol. 21, pp. 405-437,
2016.

B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht, "Self-organized reuse
of software engineering knowledge supported by semantic wikis," in
Proceedings of the Workshop on Semantic Web Enabled Software
Engineering (SWESE), 2005, p. 76.

