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Abstract—Requirements analysis is an important step in a
software development process. Summarizing user reviews is an
efficient way of requirement elicitation. Nevertheless, it is difficult
to manually collect user reviews from app stores. In order to solve
this problem, we proposed a method that automatically elicits
requirements and establishes a goal model for visualization. To
improve the previous method, this paper proposes a method of
defining labels of goals. Experimental results demonstrate that
those labels can help developers understand requirements more
easily and precisely.

Index Terms—Requirements elicitation, goal modeling, user
reviews, labeling

I. INTRODUCTION

With the expansion of the mobile phone market, various
smartphone applications have been developed, such as SNS,
payment applications and social games. To ensure their at-
traction, developers have to collect feedbacks from application
users. In application stores, users can publish reviews to rate
applications, ask for a new function or report bug information.
Developers can investigate these reviews and extract important
requirements to improve applications from them. However, the
number of reviews is too large to extract requirements from
reviews.

In order to help developers understand user requirements,
we have reported a preliminary result of review clustering
and a goal model construction from user reviews [19]. The
goal model is one of requirements models, which describes
requirements as goals to be satisfied. In our previous paper,
the construction method structurally visualizes requirements
extracted from user reviews in a goal model. Nevertheless,
the tool has a problem: it is too difficult to understand what
these goals represent. To deal with this problem, we propose
a new labeling method in this paper.

The contribution of this paper is goal labels automatically
from user reviews. We use two methods to give weights
to user reviews and select useful sentences from reviews as
labels. Two experiments demonstrate the difference between
new labels and old ones. According to the results of the two
experiments, we report the evaluation of our method.

The structure of this paper is as follows. Section II explains
the background of our research; Section III describes the
previous construction method in detail; Section IV presents the
new labeling method; Section V evaluates the labeling method
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and reports the challenges to improve the method; Section VI
covers the conclusion and future work.

II. RELATED WORK

Requirements analysis has always been an important step in
the software development life cycle. This step analyzes what
kinds of requirements need to be satisfied by the system. After
analyzing the requirements, developers can make documents
which describe the system capability. For better requirements
analysis, many methods have been proposed. Palmieri et
al. [17] proposed a tool-supported method that integrates a
goal-oriented requirement language and feature modeling to
handle regulatory goal model families. Bettenburg et al. [2] re-
ported a study about what kinds of information from users are
required by developers. That method helps users to improve
the quality of bug reports. Higashi et al. [7] provided a method
of improving the accuracy of LDA review classification. Chen
et al. [4] developed a tool called AR-miner, which can help
developers to filter some useless reviews and classify useful
ones. As a result, this tool shows the groups of the most
“informative” reviews via an intuitive visualization method.
Maalej et al. [11] collected massive reviews from Google Store
and App Store, and tried to classify them. They compared
several types of technologies for language processing and
some machine learning methods. In those machine learning
methods, Naive Bayes classifier had the best result. Unlike
these papers we focus on how to represent user requirements
via a goal model. Our work includes eliciting useful sentences
through user reviews and labeling goals from the goal model.

Goal models include KAOS [6], i* [23], NFR [14],
AGORA [9] and Tropos [21]. In goal models, requirements
are described as goals that demand to be achieved. Goals are
linked based on the relationship between them. Abstract goals
become the parent goals and detailed goals will become the
subgoals. For example, the goal “file operations provided”
could be a parent goal of the goal “files edit function pro-
vided.”

To high quality goal models, the requirements from users
are necessary.

Users submit requirements or bugs by writing reviews in app
stores. Some of these reviews are valuable for developers[16].
Nevertheless, there are also meaningless and low-quality re-
views. Due to large numbers of reviews, it is hard to find
useful reviews manually[8]. We have reported a preliminary



result of finding useful reviews and building goal models. This
preliminary method still has disadvantages. Normally goals
have manual labels that describe requirements. The prelimi-
nary method labels each goal with a word that is automatically
extracted from reviews. The word that seems to be the most
relevant to the goal is chosen as a label. Unfortunately those
labels may not clearly describe requirements. To make labels
more easy to understand, we propose a new method for
labeling goals in this paper.

III. GOAL MODEL CONSTRUCTION METHOD

In this section, we will briefly introduce the goal model
construction method that we have previously proposed in [19].
This modeling method is mainly composed of two steps:
clustering and goal labeling.

Step 1: Clustering. Algorithm 1 shows the process of clus-
tering. First, user reviews are broken down into text. Second,
we delete stopwords which appear frequently in reviews but do
not have meaning, such as “is, are, a, an, the”. Deleting those
stopwords is a common approach to process natural language.
This approach can help us to find words that show users’
requirements more easily. In this method, we added some other
words like “ur” (your) and “dis” (this) into the stopwords from
NLTK[3]. These words come from users’ oral habit and have
no relationship with users’ requirements.

Next, filtered words are added to a dictionary, and then
lists representing bag-of-words (BoW) [12] are generated from
the dictionary. BoW represents words in a document and the
number of their occurrences. Then, the generated lists of BoW
are stored in a matrix as vectors. For example, suppose a
document contains following two sentences:

• I cannot open any of my company documents now from
the app.

• It won’t let me open any preexisting documents.
Lists of BoW after lemmatization and filtering stopwords
are [“open”: 1, “company”: 1, “document” : 1, “app” : 1]
and [“open”: 1, “preexist”: 1, “document”: 1]. Finally, these
lists are stored in a matrix. After data preparation, Ward’s
method [22], a hierarchical clustering method, is applied to
the matrix and the result of review clustering is obtained. In
Ward’s method, the minimum variance criterion is used to
couple clusters:

dij = d({Xi}, {Xj}) = ‖Xi −Xj‖2 (1)

Since two BoWs have the same words “open” and “doc-
ument” in the above example, the distance between two
sentences becomes close by clustering.

Step 2: Labeling. We have reported a preliminary method
to label goals. Algorithm 2 shows the process of goal labeling.
In this step, we used document frequency to define goal labels.
For leaf goals, the goals that do not have subgoals, their
labels are clustered words’ weight. The weight comes from the
document frequency, which means that if a word frequently
appears in this cluster, it probably appears in the goal label.
For parent goals, their labels come from the words that appear
frequently in every subgoal. Through this way we can ensure

Algorithm 1 Clustering
1: Input: titles and texts of user reviews
2: array = array ofnumber of reviews ×

size of vocabulary
3: for review in reviews do
4: wordlist← lemmatized words not in stopwords
5: bows← bag-of-words (BoW) of wordlist /* generate

BoW */
6: for {word id, frequency} in bows do
7: array[# review][word id] ← frequency

8: apply Ward method to array
9: Output: a clustering result

Algorithm 2 Goal labeling
1: Input: a coupled cluster
2: cluster = cluster of reviews
3: wordlist = map of {review[word], DF} /* DF : docu-

ment frequency */
4: for review in cluster do
5: for word in review do
6: /* word does not occur in review yet */
7: if word is not in stopword and word is not counted

then
8: wordlist[word] += 1
9: exclude words that occur in two sibling goals

10: sort wordlist by DF of word
11: select top words from sorted wordlist
12: Output: a goal description

that parent goals are labeled with words which are from each
subgoal.

The previous method applies a clustering method for group-
ing reviews and constructing a hierarchical structure. However,
the goal labels obtained by the previous labeling method are
still hard to understand. For example, it is hard to know the
meaning of the generated label ”never, device, book, version,
day”. In order to solve this problem, we propose a new labeling
method in this paper.

IV. NEW LABELING METHOD

The new labeling method utilizes sentences as goal la-
bels. There are two approaches for automatically generating
sentences. One approach generates sentences directly from
documents. However, this approach has too many limitations,
which makes this approach difficult to use in practice. So this
paper adopts the second approach, which selects the sentences
contained in the documents as a representative. To prevent
from containing too many requirements in one goal, we select
only one sentence for one goal as the label.

The overview of our new construction method is illustrated
in Figure 1. Since the clustering method is the same as
the previous method (the green part), this section mainly
introduces the labeling method (the blue part). The overview
of our new labeling method is illustrated in Figure 1. The
labeling method is mainly composed of two methods: selecting
by TFIDF and selecting by cosine similarity. Those two have



Fig. 1. Overview of the construction method. The green part shows the
clustering method and the blue part illustrates the new labeling method.

Algorithm 3 Selecting by TFIDF
1: Input: titles and texts of user reviews
2: for review in reviews do
3: sentencelist ← divided sentences in reviews /*

segment reviews with periods, exclamation marks, and
question marks*/

4: for sentence in sentencelist do
5: for words in sentence do
6: TFIDFwordslist ← calculate TFIDF of words
7: TFIDFlist ← calculate TFIDF of sentence
8: sort TFIDFlist by TFIDF of sentencelist
9: Output: sentences list

different pretreatment process and effects. In pursuit of better
results, we decide to combine these two methods.

Step A: Selecting by TFIDF. TFIDF stands for term
frequency–inverse document frequency, which is the most
frequently applied weighting scheme [1] in text mining. This
technique can reflect the importance of a word to a document
in a corpus [20]. The importance of a word increases propor-
tionally with the times that this word appears in the document,
but it decreases inversely with the frequency that this word
appears in the corpus. TFIDF is appropriate for our purpose
to select keywords, as it gives a high weight to a word that
only appears in one cluster.

Fig. 2 illustrates the overview of step A. Algorithm 3
shows the algorithm for selection by TFIDF. First of all, with
preprocessing, these reviews are divided into sentences. The
general sentences end with periods, exclamation marks and
question marks. In order to prevent sentences from being too

Fig. 2. Overview of labeling by TFIDF.

long and containing more than one requirement in one goal
label, we segment reviews also with commas that separate
sentences in a compound sentence. Next, the TFIDF score for
each word is calculated, and then we average them to get the
score of the sentence:

TFIDFs =

ns∑
i=1

TFIDFi

ns
(2)

ns means the number of words of one sentence. TFIDFi

means TFIDF score of the ith word order. Finally, we sort
these sentences and select the sentence with the highest TFIDF
score.

Step B: Selecting by cosine similarity. In the previous step,
TFIDF score used to sort sentences. However, in some cases,
the first two sentences have the same score. We require to
find the one that is more similar to the cluster. For this we
use word embedding techniques. Word embedding is a general
name for a set of technologies to process natural language. One
method of word embedding is dimensionality reduction in the
word co-occurrence matrix [10]. According to this method,
a space with many dimensions per word is embedded into
a continuous vector space with a lower dimension, and each
word or phrase is mapped to a vector on the real number field.
Now there are some tools to achieve this method, for example,
the word2vector [13] and doc2vector. After getting the word
vector, we apply the cosine similarity, which is a measure of
similarity between two non-zero vectors of an inner product
space, to calculate the similarity between vectors, words or
sentences.

First, reviews were filtered by stopwords. Then, we ap-
ply doc2vec to achieve sentence embedding. According to
doc2vec, vectors of all sentences synthesize the vector of the



cluster so that the cosine similarity between sentences and the
cluster can be calculated. The vector with the highest cosine
similarity to the cluster will be selected.

V. EXPERIMENT AND EVALUATION

A. Purpose of Experiment

We focus on answering the following two research ques-
tions:

• RQ1: Do the labels correctly reflect the intent of the
goals?

• RQ2: Can the labels be properly understood by the
developers?

To answer the research questions, we made the goal models
first. Reviews for making models were taken from Google
Docs with the App Store. Due to the numerous reviews, goal
models contain a large number of goals. In order to facilitate
the experiment, we extracted a part of the goal model. In this
experiment, we used the part corresponding to reviews about
the cross-platform function of Google Docs. Three goal mod-
els’ labels came from manual, the previous labeling method
and the new labeling method. As we mentioned in Section IV,
we segmented reviews with commas that separate sentences in
a compound sentence. In this experiment, sentences that have
less than five words were not treated as independent sentences
in a compound sentence. The result of modeling and manual
labeling is illustrated in Figure 3. Those labels are correct
labels. To answer our research questions, two experiments
were conducted. We explained the detail of each experiment
below.

B. Experiment 1

Design of experiment 1. In the experiment 1, we enu-
merated the ideal labels made by hand, the labels of the
new method and the labels of the previous method. We
comprehend the gap between the two kinds of automatically
generated labels and the ideal labels and whether automatically
generated labels can be understood. This experiment used the
correctness rate with ideal labels and understanding rate to
evaluate both methods. The evaluation of the correctness rate
and understanding rate in the table was completed by the
authors.

Results of experiment 1. Table I demonstrates the difference
between the previous labels and the current labels. Experiment
1 illustrates that the correctness rate of the previous method
is 54%, while the understanding rate is 30%. As for the new
method, the correctness rate is 77% and the understanding rate
is 100%.

C. Experiment 2

Design of experiment 2. Experiment 2 aims at people
other than authors. To comprehend the effect of labels on
other people, we produced questionnaires for the examinees.
In each questionnaire, examinees were asked about what kind
of requirements were reflected. These examinees included four
professionals and four non-professionals. The answering order
of the questionnaires was random; some examinees were asked

to complete the previous labels questionnaires first, while
others were the opposite. As for the correctness rate of labels,
we also use correct labels to compare the labels obtained by
two methods.

Results of experiment 2.
The results of experiment 2 are illustrated in Table II. This

figure indicates that new labels have a higher correctness rate
in total.

D. Discussion

First, we answer RQ1: “Do the labels correctly reflect
the intent of the goals? ”. The experiment and questionnaire
results demonstrate that labels generated by using this method
have a higher accuracy rate. But there is one thing to be
noted. For abstract goals at the top layers of the goal models,
the correctness rate of new labels is lower. Normally, the
close to the root goal the label is, the more unreliable the
label is. We believed the reason is that we directly select
the sentences in the reviews as labels. Users prefer to give
feedbacks in detail, such as BUG reports and requirements, so
our method could accurately capture the sentences that express
these requirements as labels. In terms of sentences that can be
used as abstract goals’ labels, it is difficult to find them in
user reviews. To build more precise labels, we could use other
requirements mining methods. Conneau et al. [5] proposed
several probing tasks designed to capture simple linguistic
features of sentences. We can utilize different methods to deal
with top goals and bottom goals. When it comes to bottom
goals, we still extract sentences from user reviews as labels.
In terms of top goals, we could extract keywords and logical
relationships from sentences, and use word embedding and
vector synthesis to construct labels.

Here, we answer RQ2: “Can the labels be properly under-
stood by the developers?”. Compared to previously generated
labels, Table II demonstrates that examinees can better under-
stand the labels, but it is still difficult for non-experts. The
following improvements should be considered:

• Construction method needs improvement:
To classify reviews in more detail, we require to improve
our construction method. Our method uses the cluster
distance for determining the goal refinement level. When
the developers set the threshold to a small value, the
size of each coupled cluster becomes small, and then the
total number of goals increases in a model generated. In
other words, the proportion of the number of detail goals
becomes larger.

• Logical relationships need to be refined:
In this method, the relationship between the two sibling
goals is limited to AND-refinement. In other words, all
sibling goals demand to be achieved. But actually, there
are many logical relationships and they may be mentioned
in the reviews. Extracting these words from reviews will
help us improve the goal model construction method.

VI. CONCLUSION

In this paper, we reported the experience of an automated
labeling method on the basis of user reviews. Our method



Fig. 3. Labels generated by manual.

TABLE I
LABELS EVALUATION

No. Correct label Label type Label content Evaluation

1 operates across platforms Previous never, device, book, version, day -/-
New Also I never lose anything cause I can access it on any device C/U

2 text operation provided Previous apps, note, time, user, text -/-
New I just hope Google keeps these apps free -/U

3 file operation provided Previous download, platform, live, fact, weird -/-
New Download I hate the fact that you have to buy this -/U

4 highlight function problem Previous text, highlight, browser, copy/cut, superior -/-
New you can’t highlight your text C/U

5 useful in everywhere Previous work, school, docs, keep, save -/-
New School I use this for school and it works good -/U

6 can operate files everywhere Previous anywhere, allow, open, document, share C/U
New Easy to access your files anywhere and share with others C/U

7 difficult to download files Previous download, right, template, weird, number C/-
New Templates are annoying I have to download a template C/U

8 useful at school Previous school, ms, finish, right, box C/-
New Use it for school I love it honestly C/U

9 convenient but still have problems Previous note, time, life, feature, helpful C/U
New convenient and a great time saver C/U

10 edit anywhere Previous allow, open, document, share, platform C/-
New edit my documents everywhere that I go C/U

11 difficult to move files Previous live, updates, yesterday, move, adobe -/-
New can’t move over files adobe C/U

12 app need keeps free Previous keep, free, save, note, time C/U
New I just hope Google keeps these apps free C/U

13 spell check problem Previous spell, check, belittle, -i, become C/U
New Spell check I can’t right-click to fix a word underlined red (spell check) using

my chrome book
C/U

C: correct U: understandable -: incorrect or incomprehensible

TABLE II
LABELS CORRECTNESS RATE

Method & examinee type Labels correctness rate
Pervious method & non-professionals 26%

Pervious method & professionals 40%
New method & non-professionals 66%

New method & professionals 80%

weights each sentence and selects one of the sentences as
a label for a goal. In the evaluation part, we conducted on
experiment to evaluate the correctness of the previous method
and this method. Then, we used questionnaires to investigate

the developer’s understanding of the goal model. As for the
result of labeling, it is easier and more precise to understand
than the previous method generated labels. The correctness
rate of labels decreased from the bottom to the top, but the
general labels can correctly reflect the intent of the goal model.

For future work, we identify the following improvement
points:

• Abstract label readability:
To improve the goal description readability, first, we
should refine stopwords. If the number of stopwords is
too large or too small, we might miss some requirements.
Next, labels require to contain more useful information.



The experiment shows that this method works well with
the bottom goals, but as for some top goals, it is hard
to find one sentence to represent the goal. After all, it
is hard to find abstract sentences from user reviews, and
users prefer to report practical things. Furthermore, the
AND refinements are not clear from reading the goal
labels. For making more effective labels, we can make
a sentence instead of selecting a sentence from reviews.
Rolland et al. [18] provided a method in order to help
developers understand long documents. In that method,
some keywords and logical relationships are extracted
and used to generate sentences with some rules. We
believe that this is a feasible method to make labels.
Keywords and logical relationships also can be found in
user reviews. Keywords can help us to make labels while
logical relationships can help us to clear refinements.

• Other elements in the goal model need to be consid-
ered:
In the actual goal models, goals are not the only type of
goal model elements. Functional requirements have been
described as goals, while non-functional requirements
can be described as soft goals. A functional require-
ment defines a system or its component whereas a non-
functional requirement defines the performance attribute
of a software system. The goal models generated by this
method only have goals, which means that we cannot
classify goals, soft goals and bug reports. The final
objective of our research is to improve the automated
goal modeling method and to visualize not only goals
but also bugs and soft goals. To accomplish this objective,
we should introduce a mechanism for visualizing the goal
type, such as requirements or bug reports. Now we are
trying to find a method to judge goal type based on word
combinations. Maalej et al. [11] proposed the method
to classify reviews into four types, i.e., bug report, user
request, user experience, and rating. In users’ views, some
words combinations can help us to conduct this work. For
example, the words combining “can” and “not” often in
bug reports. If we can give enough weight to these word
combinations, perhaps we can allow types of labels to be
recognized more easily. To embed entities into the goal
model and to classify goals into hard goals and soft goals,
we plan to consider a goal model refinement process, such
as one described in [15].
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