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Abstract

When developers fix a defect, they may change multiple
files. The number of files changed for resolving the defect
depends on how strongly the files are coupled with each
other. In earlier works, researchers leveraged this coupling
for better understanding and analyzing software as well as
for guiding developers to quickly find all probable code ar-
eas to complete fixing a defect. In some studies, researchers
generated association rules reflecting the coupling among
files and built tools to automate the discovery of the related
changes in the files. Such tools, however, do not consider
the type of defects resolved earlier for generating the rules
as a result of which many unrelated files may come up while
changing a file in later releases for resolving a specific type
of defect. Therefore, in our study, we consider only secu-
rity defects or vulnerabilities to generate the rules and then
automate the finding process of other related files while fix-
ing a vulnerability. Our tool “SecureChange” suggests the
developers a number of related files that might need to be
changed while fixing a particular vulnerability based on the
mined association rules from the revision history. This ap-
proach will have a significant role in guiding the developers
in fixing a vulnerability. Furthermore, this will be an effec-
tive endeavor for training new developers based on the vul-
nerability history of a system, which will in turn help them
to develop secure code. The proposed approach will also
be helpful in educating new developers about software vul-
nerabilities. Finding all the related files which have been
modified to fix a vulnerability, the new developers will be
able to learn how the faults in a file can be the root cause
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of a vulnerability and how it can propagate to other related
files and ultimately emerge as a vulnerability to the outside
world. As a demonstration of our approach, we generate
association rules based on the revision history of three sys-
tems: Android, Mozilla Firefox, and Apache Tomcat. The
average precision and recall of 44% and 44% respectively
for three systems indicate the feasibility of our approach.

1. Introduction

Coupling among files in a software becomes crucial for
program understanding and resolving issues in software
maintenance [1–3]. Developers fix some software issues
in every revision and record the related changes which are
stored as revision histories. Mining this revision history can
be a good source of discovering coupling among the files.
Revision history also tells us how the program evolves over
time, which can later be used for identifying the versions
having or not having a particular issue. Researchers have
used such historical data to support code navigation [4].
In [5,6], coupling has been used to analyze and get insights
of the program. In order to guide developers in fixing de-
fects, [7] suggested a technique to provide related changes
by mining revision histories.

The state of the art does not focus on the revision his-
tories that are targeted to fix particular types of issues
(general bugs or vulnerabilities or adding new functional-
ities) [1–3, 7]. Here, a potential drawback is that there is a
higher probability of increased false positives if the devel-
oper is not fixing the same type of issue compared to the
earlier versions. Therefore, following such a generalized
association rule based technique could be misleading for a
developer as he/she might end up wasting time concentrat-
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ing on irrelevant files considering the task at hand. In order
to address this gap, in this paper, we consider the revisions
that were made for resolving vulnerabilities and then ex-
tract the files that were changed together. We leverage the
extracted components to generate association rules so that
we can guide the developers later on fixing vulnerabilities.
Software vulnerability is a mistake in software that can be
directly used by a hacker to gain access to a system or net-
work1. As a vulnerability can put the security of a software
at risk, in our study, we considered software vulnerability
and applied the framework for fixing the security issues.

Let us consider an example. According to the revi-
sion log2 of Apache Tomcat (an open-source Java Servlet
Container developed by the Apache Software Founda-
tion (ASF)), NamingContextListener.java has been
modified 50 times since 2006 as a part of fixing dif-
ferent issues. But it was coupled with only one file
ResourceLinkFactory.java in Revision 17572713 where
the developer fixed the “Unrestricted Access to Global Re-
sources” vulnerability. This vulnerability4 has been fixed by
the developers in 2016. A developer does not need to con-
sider all files related to NamingContextListener.java
since 2006 for fixing a vulnerability in this file. This story
tells us that mining the revision log of a system could be
of no use if we do not consider the type of issue to be re-
solved. Therefore, we concentrate on the revisions related
to fixing vulnerabilities so that when the developers will try
to fix any vulnerability later, they can be guided based on
only the vulnerability-fixing related revisions of that file.

Another motivation of the paper comes from the need
to educate new developers on vulnerability for a specific
system. As a new developer may be unfamiliar with the
system she is working on, this can be an effective guidance
for her to fix the faults in all the related files and help her to
be acquainted to the new system.

This paper, primarily motivated by the work of Zimmer-
mann et al. [7], uses the concept of association rule mining
to produce the list of coupled files from the revision history.
In contrast to the state of the art, it focuses on quick fix-
ing software vulnerability and ensuring secure coding. The
objectives of the paper are as follows:

1. to obtain association rules reflecting the coupling
among the related vulnerable files so that programmers
can be guided in fixing vulnerability in later releases of
the same system.

2. to assist the developers in finding and fixing vulnera-
bilities in an efficient and effective way, thereby ensur-
ing secure software evolution.

1https://cve.mitre.org/about/terminology.html
2https://svn.apache.org/viewvc/tomcat/trunk/java/org/apache/catalina

/core/NamingContextListener.java?view=log&pathrev=1757271
3https://svn.apache.org/viewvc?view=revision&revision=1757271
4http://cve.mitre.org/cgi-bin/cvename.cginame=CVE-2016-6797

3. to identify coupling among vulnerable files and thus
increase the ability to understand and analyze vulnera-
ble code for software maintenance.

4. to evaluate the proposed approach that suggests related
changes that might be needed for fixing a particular
type of vulnerability in a system.

Section 2 shows the related works. In Section 3, we dis-
cuss Apriori algorithm which we used to generate associ-
ation rules from the vulnerability revision histories. Sec-
tion 4 presents the methodology followed in SecureChange
to perform the experiments. Finally, Section 5 presents the
results and Section 6 concludes the study.

2. Related Work

In [8], Ying et al. applied data mining techniques in the
change history and determined sets of files that were fre-
quently changed together in the past. They hypothesized
that the change patterns (pertinent set of files) can be recom-
mended to the developers performing a modification task.
They revealed valuable dependencies among the files in the
Eclipse and Mozilla open source projects and evaluated the
performance of the recommendations that were produced by
their approach for actual modification tasks. Xing et al. [9]
used association rule mining at the design level on ver-
sions of UML diagrams to detect class co-evolution. They
presented three potential applications of class co-evolution
discovery in the context of software maintenance: finding
the scope of future maintenance activities, guiding refactor-
ing activities and identifying system instabilities. Although
they showed promising initial results of their approach, it
still lacks in large scale evaluation. In [10], the authors in-
vestigated how a change in one source code entity propa-
gates to other entities. They applied several heuristics to
predict change propagation and validated their approach in
five open source software systems. Gall et al. [2] first used
release history of a system to uncover logical dependencies
and common change patterns among modules in order to de-
tect potential structural shortcomings. The CVS history has
also been used to detect more fine-grained logical coupling
between classes [5], files, and functions [6]. In [11–13],
authors used inductive learning (a relevance relation identi-
fying two files that are updated together) to learn different
concepts between logically coupled files.

Michail [14, 15] applied data mining technique to dis-
cover library reuse patterns (for example, how library func-
tions are used together or how library functions are over-
written by the applications classes). [15] considered the in-
heritance relationship and generated generalized associa-
tion rules to find how the descendent classes have been in-
voked or instantiated. In SecureChange, we use association



rule mining for mining vulnerability revision histories and
guiding developers in secure software development.

3. Introducing the Apriori Algorithm

In order to suggest relevant co-occurring changes for a
particular change, SecureChange leverages an association
rule learning technique known as Apriori algorithm [16].
Let us assume that we have a set of transactions, T =
{T1, T2, T3, ..., Tn}, where each transaction records a set of
co-occurring change items, C = {C1, C2, C3, ...}. Apriori
algorithm generates a set of frequent items based on a sup-
port threshold. The frequent item set is then leveraged to
learn association rules among individual items, Ci, in the
set of all transactions. A rule is denoted as follows:

X → Y where X, Y ⊆ C

Here, X is called antecedent and Y is called consequent.
In other words, if X occurs, then Y follows. The rules are
derived based on some parameters:

• Support Count: Support count indicates the popular-
ity of an item. It measures how frequently a particular
item appears in all transactions. It can be expressed as:

Support(X) =
|{t ∈ T,X ⊆ t}|

|T |

• Confidence: Confidence measures the relative impor-
tance of the consequent in a rule. It indicates how fre-
quently a consequent appears in all transactions that
contain antecedent.

Confidence(X → Y ) =
Support(X ∪ Y )

Support(X)

Higher the confidence, better the likelihood of occur-
ring Y, given X.

• Lift: Lift takes the popularity of both antecedent and
consequent into account. It is possible that an item is
generally very popular. It may occur in many transac-
tions without maintaining a particular pattern with any
antecedent. In such a case, confidence provides a poor
feedback on a rule. However, lift resolves this prob-
lem by considering popularity of both the antecedent
and consequent. In other words,

Lift(X → Y ) =
Support(X ∪ Y )

Support(X)× Support(Y )

A lift value of 1 indicates that item-sets are indepen-
dent of each other. Whereas, a value higher than 1
indicates a tie between item-sets. In other words, the
higher the lift, the stronger the tie. On the other hand,
lift value lower than 1 indicates a negative tie.

Table 1: Datasets

System # Transactions
# Curated

Transactions Versions

Tomcat 76 48 5 - 8.5.38
Firefox 595 249 3.6 - 62.0.2
Android 1485 381 4.4 - 9.0

4. Methodology

This section describes the methodology of Se-
cureChange in details.

4.1 Research Question

The primary challenge with mining association rules for
secure development is that the occurrence of a vulnerability
is very infrequent compared to regular bugs. As a result,
vulnerability-fixing transactions are less in amount com-
pared to other general transactions. Abundance of data is
very crucial for the success of a data mining technique such
as association rule mining. Therefore, in this study, we at-
tempt to answer the following research question (RQ):

Given the limited availability of the vulnerability-
fixing transactions, is association rule mining for secure
software development as effective as it has been shown
in guiding general software change tasks [7]?

4.2. Training Data Preparation

To evaluate SecureChange, we have performed case
studies on three widely known real world open-source soft-
ware systems, namely, Apache Tomcat5, Mozilla Firefox6,
and Android Open Source Project (AOSP)7. The vulnera-
bilities detected and fixed in these systems are publicly ac-
cessible. We begin by mining respective security advisories
of all the systems. A security advisory typically records
detailed information of past vulnerabilities, including the
source code changes for fixing the vulnerability and time of
the fix. We treat set of all files changed for fixing a vulner-
ability as a single transaction.

Table 1 shows the demography of the collected data. We
found that most of the transactions have only one change.
These transactions can be easily identified by Apriori al-
gorithm, hence leading to a bloated estimation of the per-
formance. For instance, in our experiment, SecureChange
provided two or three times better performance estimation
than the one trained without such transactions. Therefore,
we further curated the dataset to eliminate transactions with

5http://tomcat.apache.org/
6https://www.mozilla.org/
7https://source.android.com/

http://tomcat.apache.org/
https://www.mozilla.org/
https://source.android.com/


a single change and then assessed the effectiveness of Se-
cureChange in predicting co-occurring changes.

4.3. Validation Technique

We have validated SecureChange in a repeated valida-
tion setup. The experiment has been repeated 100 times on
a randomly shuffled dataset for each project. In each ex-
periment, Apriori algorithm was trained with 90% of the
data and remaining 10% was retained for testing. The data
were randomly shuffled before each experiment. The ran-
dom shuffling and repeating many times minimized the bias
in the reported result. During every experiment, we per-
formed the following steps:

1. Shuffle dataset randomly and split into two 90%-10%
folds.

2. Train SecureChange with Apriori algorithm on the fold
with 90% data.

3. After generating the rules or training, iterate through
every transaction in the test dataset. For every trans-
action in the test dataset, we evaluate every pair of
rules. For instance, if a certain transaction contains
three files which have been changed to fix a vulner-
ability, Ti = {File1, F ile2, F ile3} , then following
rules are evaluated: File1 → File2, File2 → File3,
File1 → File3, File2 → File1, File3 → File2, and
File3 → File1. Then we obtain the average of the
performance metrics for all queries in the test dataset.

4. Final performance metrics (i.e., Recall, Precision and
Feedback) are reported by taking average over all re-
peated experiments.

4.4. Performance Metrics

The performance of SecureChange is evaluated based on
the following three metrics:

• Precision: For a given transaction, precision refers
to the percentage of rules predicted correctly out of all
predictions. For instance, consider, a transaction con-
tains two files, Ti = {File1, F ile2}. This transaction
suggests two rules:

File1 → File2 (1)

File2 → File1 (2)

Rule 1 tells us that if File1 is changed, then File2
changes and the impact is bidirectional; therefore, we
have the rule 2.

Assume, following rules have been predicted by Se-
cureChange for File1 and File2:

File1 → File2 (3)

File1 → File3 (4)

File2 → File4 (5)

The rules 3 and 4 basically tell us that with a certain
support, confidence and lift, if File1 is changed, then
File2 and File3 are also changed. The rule 5 can be
interpreted similarly.

A transaction containing N items or files will have
N number of queries. For example, we have two
queries to validate: File1 and File2 as in the rules 1
and 2 generated from the transaction Ti. For query 1,
only the rule 3 is correct out of two predictions made
for File1. Therefore, the precision, in this case, is
50%. Similarly, the precision for query 2 is 0 since
the prediction is wrong for File2. Finally, an aver-
age precision for all queries (25%) is reported by Se-
cureChange. If SecureChange generates no rules for a
query, the precision is considered to be 100%. How-
ever, considering such queries distorts the average pre-
cision. Therefore, we did not measure precision and
recall for such queries and also did not consider them
in performance evaluation.

• Recall: For a given transaction, recall refers to
the percentage of rules predicted correctly out of all
ground truth rules. In the example, for query 1, the
recall is 100% as one out of one possible original
changes for File1 has been correctly predicted. Sim-
ilarly, for query 2, it is 0. Finally, an average recall
(50%) is reported by SecureChange.

• Feedback: A query can be left unreported by Se-
cureChange. For instance, consider the transaction
consisting of two files in the above example. Assume,
following rules have been predicted by SecureChange:

File1 → File2 (6)

File1 → File3 (7)

As we can see, rule 2 has not been predicted by Se-
cureChange. The precision, in this case, is 100% since
no false positive reported and recall is 0 since no ac-
tual change has been picked. Similarly, there can be
many queries for which SecureChange may not re-
spond. It would take a toll on the final average preci-
sion and recall and undermine the actual performance
of the SecureChange. Therefore, we omit such queries
in the final performance evaluation and instead in-
corporate another complementary performance metric,



Table 2: Performance Overview

System Feedback Precision Recall

Firefox 42% 20% 24%
Android 37% 49% 56%
Tomcat 44% 62% 51%

Average 41% 44% 44%

feedback. Feedback informs us about the fraction of
queries that have been responded to by SecureChange.
It allows us to evaluate the actual performance of the
SecureChange even in the case of inadequate training
data. It also highlights the overall responsiveness of
the framework. The feedback for this example is 50%
since one query out of two queries has been responded.

5. Results and Implications

To answer the research question mentioned in Sec-
tion 4.1, we have conducted case studies on three open-
source software systems, Firefox, Tomcat, and Android
Open Source Project, which publicly report vulnerabili-
ties detected and fixed in their system. For three systems,
SecureChange achieved approximately 41% feedback and
44% precision and recall on average as in Table 2. Different
values for support, confidence, and lift parameters provide
different results in each system as shown in Figure 1.

Zimmermann et al. [7] achieved 66% feedback in trans-
actions where any kind of changes by the developers were
considered. Although their feedback is better than the feed-
back we found for vulnerability-fixing transactions, they
achieved 33% precision and 29% recall on average. The
feedback found in our study can be explained from the fact
that, considering all kind of changes allowed them to in-
clude more transactions in the experiments. On the other
hand, security-related transactions are less frequent, and
therefore, our curated security transactions are significantly
less than the transactions considered in [7]. Intuitively,
more the transactions, better the response rate would be.

However, the better recall and precision we obtained on
a comparatively smaller set of transactions suggest that the
vulnerability fixes often involve same set of files, hence they
are frequently co-occurring. It implies that correlation stud-
ies on finer-granularities (e.g. statements, functions, classes
etc.) is worth-exploring which could provide more precise
vulnerability localization in the source code.

Figure 1 presents a comparative overview of the preci-
sion, recall, and feedback at different minimum supports
and confidences for Firefox, Android, and Tomcat respec-
tively. A general observation is that precision and recall
tend to increase as the support and confidence increase.
Feedback, on the other hand, tends to decrease as the sup-

Figure 1: Precision, Recall, and Feedback for varying sup-
port and confidence (First row showing result for Firefox,
second row for Android, and third row for Tomcat)

port and confidence increase. A higher support and con-
fidence ensures that only highly relevant rules are consid-
ered, therefore, as these parameters go up, the number of
queries responded decreases for stricter filtering conditions.
However, on the positive side, it only returns highly likely
changes with lower false positives. Therefore, there is an
obvious trade-off between the provided results and the ac-
curate results.

Our results imply that we can effectively apply associ-
ation rule mining to guide developers in secure software
development.

6. Threats to Validity and Conclusion

In this study, we first analyzed vulnerability revision his-
tories of three large systems: Android, Firefox, and Tomcat.
Then we generated association rules to figure out which files
are frequently changed together in a vulnerability fix. When
a developer starts to fix a vulnerability by making changes
in a vulnerable file, our approach will suggest relevant set
of files to be modified based on the generated association
rules. We found precision and recall of 44% and 44% re-
spectively on an average for three systems.

In our experiment, a threat to internal validity could be,
to what extent, the reported result can be trusted or whether
it is biased. To mitigate this threat, we have introduced
randomization in the experimental procedure and repeated



the experiments 100 times. On the other hand, an external
threat to SecureChange is whether it generalizes across ap-
plication domains. In order to mitigate this threat, we have
performed experiments on three different kinds of open-
source systems, namely a web server (Tomcat), a desktop
application (Firefox), and an operating system (Android).
However, it is possible that SecureChange might not repli-
cate the similar performance in closed-source systems for
different architecture or other open-source systems for the
quality of the captured vulnerability data. Also, a reason-
able amount of preexisting vulnerability data has to be avail-
able to have useful feedback from SecureChange.

In future, we plan to extend this research for other sys-
tems so that our proposed framework, SecureChange, can
be used by the developers of all systems. In addition, we
will work on building a plug-in of the proposed framework
for different source code editors (e.g., Eclipse, Netbeans) so
that developers can find it more useful for secure coding.
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