
Copy and Paste Behavior: A Systematic Mapping
Study

Luqi Guan
Dep. Ing. Informática, Escuela Politécnica Superior

Universidad Autónoma de Madrid
Madrid, Spain

luqi.guan@estudiante.uam.es

Xavier Ferre
Dep. Lenguajes y Sistemas Informáticos e Ingeniería de

Software, E.T.S. de Ingenieros Informáticos
Universidad Politécnica de Madrid

Boadilla del Monte, Spain
xavier.ferre@upm.es

John W. Castro*
Dep. Ing. Informática y Ciencias de la Computación

Universidad de Atacama
Copiapó, Chile

john.castro@uda.cl

Silvia T. Acuña
Dep. Ing. Informática, Escuela Politécnica Superior

Universidad Autónoma de Madrid
Madrid, Spain

silvia.acunna@uam.es

Abstract—Both novice and experienced developers rely more and
more in external sources of code to include into their programs by
copying and pasting code snippets. This behavior differs from the
traditional software design approach where cohesion was achieved
via a conscious design effort. Due to this fact, it is essential to know
how this copy and paste programming practices are actually
carried out, so that IDEs and code recommenders can be designed
to fit with developer expectations and habits. Our objective is to
identify the role of copy and paste programming or code clone in
current development practices. A Systematic Mapping Study
(SMS) has been conducted, searching the main scientific
databases. The search retrieved 1271 citations and 39 articles were
retained as primary studies. The primary studies were categorized
according to eight areas: General information of clone usage,
developer behavior, techniques and tools for clone detection,
techniques and tools for clone reuse, patterns of cloning, clone
evolution, effects of code cloning in software maintenance and
development, and tools for clone visualization. The areas,
techniques and tools of clone detection and developer behavior are
strongly represented in the sample. The areas that have been least
studied in the literature found in the SMS are tools of clone
visualization and patterns of cloning.

Keywords— Copy and Paste; Systematic Mapping Study

I. INTRODUCTION
The huge amount of source code available online has

changed coding practices. Both novice and experienced
developers rely more and more in external sources of code to
include into their programs by copying and pasting code snippets
[1][2], which is basically a term used in system engineering. To
copy the code and reuse the code, either by doing some
modifications or without doing any modification in the existing
code, are common activities in software development [3]. Copy
and paste is often done by inexperienced or student
programmers, who find the act of writing code from scratch
difficult or irritating and prefer to search for a pre-written
solution or partial solution they can use as a basis for their own

problem solving [1]. Copy and paste is also done by experienced
programmers, who often have their own libraries of well tested,
ready-to-use code snippets and generic algorithms that are easily
adapted to specific tasks [2]. This behavior differs from the
traditional software design approach, where cohesion was
achieved via a conscious design effort [4]. It also differs from
the code reuse attained through the usage of re-use repositories
built for such specific purpose. We need to know how this copy
and paste programming practices are actually carried out, so that
IDEs and code recommenders can be designed to fit with
developer expectations and habits. The research work aims to
identify the role of copy and paste programming or code clone
in current development practices, by identifying through a
Systematic Mapping Study [12] the current knowledge about
this topic in the existing literature.

Paper organization. In Sec. 2, we present related work. In
Sec. 3, we describe the research method of the SMS. Sec. 4
presents the results of the SMS. In Sec. 5, we discuss the results
and threats to validity, and finally Sec. 6 concludes.

II. RELATED WORKS
We found six systematic reviews related to copy and paste

[5]-[10]. The literature review by [5] presents various methods
that researchers have used to study clone evolution and
summarizes the advantages and disadvantages of relevant
research on clone evolution. The literature review by [6] has
studied code cloning and various techniques to detect code
clones. The SMS by [7] focuses on metric-based clone detection
techniques and various tools used in previous studies. The
literature review by [8] puts a light on all the types of clones and
various techniques for the detection of clones. The systematic
review by [9] analyzes how code clones can be detected and
which techniques and tools are used for this purpose. The
literature review by [10] presented comparative review of
various clone detection techniques. Most of these literature
reviews are related to code clone detection and code clone

DOI reference number: 10.18293/SEKE2020-130
* Corresponding Author.

evolution, they do not refer to developer behavior, techniques
and tools of clone reuse, patterns of cloning, tools for clone
visualization and effects of code cloning in software
maintenance and development. After analyzing papers that refer
to those areas mentioned above, we can confirm that there is no
SMS on these areas of code cloning, Therefore, we identify a
lack of systematic approaches to identify the state of the art in
these areas of code cloning.

III. RESEARCH METHOD
We aim to answer the following research questions: (RQ1)

What is the state of the art of copy and paste? and (RQ2) How
do developers use copy and paste? To answer both questions, we
have carried out an SMS.

A. Define the Search Strategy
For the definition of the search string, we need to perform

the following steps: Conformation of the control group (CG),
identification and selection of the keywords, conformation of the
search strings, and specification of the inclusion and exclusion
criteria. To form the CG, we conducted a traditional search to
identify papers directly related to our research. As a result of this
search, we found a total of 10 papers: [3][13]-[21]. In the papers
of the CG the words that appear most frequently must be
identified. The keywords were obtained from a table with the
frequency of all the words that appear in the articles of the CG.
Once the keywords were identified, several options were built
for the search string. Finally, we opted for the following search
string: (“copy and paste code” OR “source code reuse” OR
“code reuse” OR “code snippets reuse” OR “code clone” OR
“code cloning” OR “software clones”) AND (analysis OR
design OR approach OR behavior OR habits OR intent OR
research OR patterns OR “usage patterns” OR method OR
techniques OR tools) AND ("software system" OR development
OR developer OR system OR programming). The criteria used
to retrieve the fundamental studies are summarized below. These
criteria were applied by 3 of the authors of the paper.

a) Inclusion criteria: The paper is related to copy and paste
behavior; OR the paper discusses aspects related to copy and
paste patterns; OR the paper is related to code clones; OR the
paper is about finding duplicated code.

b) Exclusion criteria: The paper is about traditional code
reuse; OR the paper discusses about creating repository for
future reuse; OR the paper is about programing for reuse; OR
the paper is about managing duplicated code; OR the paper is a
review; OR the paper is written in a language other than
English.

B. Select the Studies
The search for studies was carried out in the following digital

databases: Scopus, ACM Digital Library, and IEEE Xplorer.
Once the list of Retrieved Papers is obtained (1271), it is
necessary to eliminate duplicates between the databases and as a
result of this first debug the Non-Duplicate Candidate Papers
are obtained. Then, a first filter must be made applying the
inclusion and exclusion criteria on the title, summary and
keywords of each of the Candidate Papers (163). Studies

obtained from the first filter were evaluated again in a second
filter. In this second filter, each researcher applied the inclusion
and exclusion criteria to the full text of each of the studies. As a
result, the group of Primary Studies was obtained (39). The
search was conducted in November 2019.

C. Extract the Data and Perform Data Synthesis
Once the primary studies are obtained, the relevant

information is extracted to answer the research questions. Figure
1 provides an overview of the primary studies retrieved by the
SMS. It is made of three categories, determined by the year of
publication, type of paper and research areas.

Figure 1. Mapping showing the primary study distribution

The left-hand side is composed of two scatter (XY) charts
with bubbles at the intersections of each category. The size of
each bubble is determined by the number of primary studies that
have been classified as belonging to the respective category at
the bubble coordinates. The right-hand side of the figure shows
the number of primary studies by publication year. We can
observe that publications started to grow from 2016 and many
papers have been published since then, confirming the raising
interest in this research area.

IV. RESULTS
After analyzing the primary studies (see Figure 1) and papers

belonging to the CG, we identified eight different research areas:
General information of clone usage, developer behavior,
techniques and tools for clone detection, techniques and tools for
clone reuse, patterns of cloning, clone evolution, effects of code
cloning in software maintenance and development, and tools for
clone visualization. Next, we will describe each of these areas.

General Information of Clone Usage. This area deals with
clone types and high-level uses of clone information, as well
clone usage patterns [3][15][18]-[23].

Developer Behavior. This area is about how developers face
the use of clones (how they search, how they embed them in their
code, etc.) [13]-[16][19][20][24]-[30].

Techniques and Tools for Clone Detection. This area studies
the techniques and tools for clone detection, analysis and
management and the use of clone-aware tools [3][11][14][31]-
[43].

Developer Behavior

Techniques and tools of clone
detection

2017

2018

0 2 4

2019

2016

2015

Workshop
6 8 10 12

3

Book
chapter

3

Effect of the code clone in the software
maintenance and development

Clone evolution

Techniques and tools of clone
reuse

General information of usage of
clone

Patterns of cloning

Tools of clone visualization

4

SymposiumJournalConference

1

23

1

1

4 4

1

2

3

1

2

2

2

1

1

1

1

1

1

1

1

2

4

6 5

2

2 2

5 5

Techniques and Tools for Clone Reuse. This area studies the
techniques and tools for clone reuse. Such as the interactive
approach for recommending where and how to modify the
pasted code, the approach to merge similar pieces of code by
creating suitable abstractions, etc. [44]-[48].

Patterns of Cloning. This area describes several patterns of
cloning, such as forking, templating and customization; the pros
and cons of cloning; and methods for managing code clones
[17][49].

Clone Evolution. In this area the clone community focuses
on how cloned code evolves over time [15][24][50]-[54]. As this
code changes, it exhibits various patterns and characteristics.

Effects of Code Cloning in Software Maintenance and
Development. This area studies the effects of code cloning. It
deals with the maintenance problems that clone codes can cause,
as well as the clone display tools and clone patterns and
refactoring recommendations to solve such problems [18][55]-
[57].

Tools for Clone Visualization. This area studies tools for
code clone visualization. These code clone visualization tools
are used for checking code and analyzing code clones [58][59].

V. DISCUSSION AND VALIDITY THREATS
The analysis reveals that clone detection areas, techniques

and tools, and the related developer behavior are strongly
represented in the sample. Whereas techniques and tools for
clone detection are represented by 14 publications (35.9% of the
total), developer behavior is the second largest group of primary
studies, with a total of 8 publications, that is, 20.5% of all of the
primary studies retrieved in the SMS (39). The areas that have
been least studied in the literature found in the SMS are tools for
clone visualization and patterns of cloning. Judging by the
increase in the number of publications since 2016, the practice
of copy and paste is of notable interest.

We identify as possible threats to validity: (i) coverage of
research questions (RQs), (ii) bias towards certain publications,
(iii) quality of the evaluation, and (iv) lack of knowledge of the
area. It is probable that the proposed RQs could partially cover
the study theme, which we try to mitigate by defining a work
objective and raising several RQs in consensus, with the purpose
of making the objective attainable. It is possible that in an SMS
the process is directed towards a specific group of studies, which
we avoid by forming a literature CG and by consensus building
a search chain with explicit terms obtained from the CG. It is
likely that the quality of the evaluation of the studies was not
adequate due to lack of expertise in the research area, which we
mitigate by including in the team an investigator with experience
in the subject of code clone.

VI. CONCLUSIONS
This paper describes the SMS conducted to answer the

following research questions. In this section, we have considered
the 39 primary studies plus the 10 papers of the control group
where one of them has been obtained in the set of primary
studies, making a total of 48 papers analyzed.

RQ1. The research on copy and paste or code clone deals
with eight areas: General information of clone usage, developer
behavior, techniques and tools for clone detection, techniques
and tools for clone reuse, patterns of cloning, clone evolution,
effects of code cloning in software maintenance and
development, and tools for clone visualization. Most primary
studies and papers belonging to the CG (33.3%) focus on
techniques and tools for clone detection, followed by the ones
about developer behavior (27.1%) and the studies dealing with
general information of clone usage (18.8%).

RQ2. Several patterns for using copy and paste have been
defined: Elementary patterns (between, within, within and
between, external paste) and complex patterns (repeat,
distribution, relay, unknown). On the one hand, the elementary
patterns are composed of a single copy and paste interaction
involving one or more files. On the other hand, complex patterns
are composed of two or more copy and paste incidents involving
more than two files [13].

ACKNOWLEDGMENT
Work funded by FEDER/Spanish Ministry of Science and

Innovation – Research State Agency: project MASSIVE,
RTI2018-095255-B-I00, the R&D programme of Madrid
(project FORTE, P2018/TCS-4314), and project PGC2018-
097265-B-I00, also funded by: FEDER/Spanish Ministry of
Science and Innovation – Research State Agency.

REFERENCES
[1] G. Yarmish, and D. Kopec, “Revisiting novice programmer errors”, ACM

SIGCSE Bulletin, vol. 39(2), pp.131-137, 2007.
[2] R. Pittenger, “Building ASP.NET web pages dynamically in the code-

behind”, 2019, https://www.codeproject.com/Articles/25573/Building-
ASP-NET-Web-Pages-Dynamically-in-the-Code.

[3] A. Vashisht, A. Sukhija, A. Verma, and P. Jain, “A detailed study of
software code cloning”, IIOAB J.-Special Issue: Comp. Science, vol. 9(2),
pp. 20-32, 2018.

[4] R.N. Taylor, N. Medvidovic, and E. Dashofy, “Software architecture:
Foundations, theory, and practice”, John Wiley & Sons, First Ed., 2009.

[5] K. Wang, L. Zhang, and S. Yann, “A study on code clone evolution
Analysis”, in Proc. ICSESS’17. Beijing, China, pp. 340-345, 2017.

[6] K. Solanki, and S. Kumari, “Comparative study of software clone
detection techniques”, in Proc. MITicon’16. Bang-San, Thailand, pp. 152-
156, 2016.

[7] D. Rattan, and J. Kaur, “Systematic mapping study of metrics based clone
detection techniques”, in Proc. AICTC’16. XBikaner, India, art. 76, pp. 1-
7, 2016.

[8] G. Chatley, S. Kaur, and B. Sohal, “Software clone detection: A review”,
Int. J. Cont Theory and Applic., vol. 9(41), pp. 555-563, 2016.

[9] Q.U. Ain, W.H. Butt, M.W. Anwar, F. Azam, and B. Maqbool, “A
systematic review on code clone detection”, IEEE Access, vol. 7, pp.
86121-86144, 2019.

[10] N. Saini, S. Singh, and Suman, “Code clones: Detection and
management”, Procedia Computer Science, vol. 132, pp. 718-727, 2018.

[11] V. Saini, H. Sajnani, J. Kim, and C. Lopes, “SourcererCC and
SourcererCC-I: Tools to detect clones in batch mode and during software
development”, in Proc. ICSE-C'16. Austin, TX, USA, pp. 597-600, 2016.

[12] B. Kitchenham, and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering”, Tech. rep., Keele University
and Department of Computer Science University of Durham, 2007.

[13] T.M. Ahmed, W. Shang, and A. E. Hassan, “An empirical study of the
copy and paste behavior during development”, in Proc. 12th Working
Conf. on Mining Soft. Repositories. Florence, Italy, 2015, pp. 99-110.

[14] M. Balint, R. Marinescu, and T. Girba, “How developers copy”, in Proc.
ICPC'06. Athens, Greece, pp. 1-10, 2006.

[15] D. Chatterji, J. C. Carver, and N.A. Kraft, “Claims and beliefs about code
clones: Do we agree as a community? A survey”, in Proc. IWSC'12.
Zurich, Switzerland, pp. 15-21, 2012.

[16] D. Chatterji, J.C. Carver, and N.A. Kraf, “Cloning: The need to
understand developer intent”, in Proc. IWSC'13. San Francisco, CA,
USA, pp. 14-15, 2013.

[17] C. Kapser, and M.W. Godfrey, “Cloning considered harmful considered
harmful”, in Proc. WCRE'06. Benevento, Italy, pp. 645-692, 2006.

[18] M. Kim, L. Berman, T. Lau, and D. Notkin, “An ethnographic study of
copy and paste programming practices in OOPL”, in Proc. ISESE’04.
Redondo, Beach, USA, pp. 83-92, 2004.

[19] T.D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: A
study of developer work habits”, in Proc. ICSE'06. Shanghai, China, pp.
492-501, 2006.

[20] K.T. Stolee, S. Elbaum, and G. Rothermel, “Revealing the copy and paste
habits of end users”, in Proc. VL/HCC'09. Corvallis, OR, USA, pp. 59-
66, 2009.

[21] G. Zhang, X. Peng, Z. Xing, and W. Zhao, “Cloning practices: Why
developers clone and what can be changed”, in Proc. ICSM'12. Trento,
Italy, pp. 285-294, 2012.

[22] A. Khan, H.A. Basit, S.M. Sarwar, and M.M. Yousaf, “Cloning in popular
server side technologies using agile development: An empirical study”,
Pakistan J. Eng. and Applied Sciences, Vol. 22, pp. 1-13, 2018.

[23] J.F. Islam, M. Mondal, and C.K. Roy, “Bug replication in code clones: An
empirical study”, in Proc. SANER'16. Suita, Japan, pp. 68-78, 2016.

[24] S. Bharti, and H. Singh, “An industrial study on developers’ prevalent
copy and paste activities”, in Proc. ICNGCIS'17. Jammu, India, pp. 147-
152, 2017.

[25] D. Chatterji, J.C. Carver, and N.A. Kraft, “Code clones and developer
behavior: Results of two surveys of the clone research community”, Emp.
Soft. Eng., vol. 21(4), pp. 1476-1508, 2016.

[26] A. Ciborowska, N.A. Kraft, and K. Damevski, “Detecting and
characterizing developer behavior following opportunistic reuse of code
snippets from the web”, in Proc. MSR'18. Gothenburg, Sweden, pp. 94-
97, 2018.

[27] L. Müller, M.S. Silveira, and C.S. de Souza, “Do I know what my code is
saying?: A study on novice programmers’ perceptions of what reused
source code may mean”, in Proc. IHC'18. Belém, Brazil, pp. 1-10, 2018.

[28] T. Ohta, H. Murakami, H. Igaki, Y. Higo, and S. Kusumoto, “Source code
reuse evaluation by using real/potential copy and paste”, in Proc.
IWSC'15. Montreal, pp. 33-39, 2015.

[29] B. Van Bladel, A. Murgia, and S. Demeyer, “An empirical study of clone
density evolution and developer cloning tendency”, in Proc. SANER'17.
Klagenfurt, Austria, pp. 551-552, 2017.

[30] B. Xu, L. An, F. Thung, F. Khomh, and D. Lo,“Why reinventing the
wheels? An empirical study on library reuse and re-implementation”,
Empirical Software Engineering, pp. 1-35, 2019.

[31] M.S. Aktas, and M. Kapdan, “Structural code clone detection
methodology using software metrics”, IJSEKE, vol. 26(2), pp. 307-332,
2016.

[32] M. Gharehyazie, B. Ray, M. Keshani, M.S. Zavosht, A. Heydarnoori, and
V. Filkov, “Cross-project code clones in gitHub”, Empirical Software
Engineering, vol. 24, pp. 1538-1573, 2019.

[33] T.A.D. Henderson, and A. Podgurski, “Rethinking dependence clones”,
in Proc. IWSC'17. Klagenfurt, Austria, pp. 66-74, 2017.

[34] B. Joshi, P. Budhathoki, W.L. Woon, and D. Svetinovic, “Software clone
detection using clustering approach”, in: Arik S., Huang T., Lai W., Liu
Q. (eds). Neural Information Processing. ICONIP 2015 (pp. 520-527).
Lecture Notes in Computer Science, vol 9490. Springer, 2015.

[35] T. Kamiya, “An execution-semantic and content-and-context-based code-
clone detection and analysis”, in Proc. IWSC'15. Montreal, Canada, pp.
1-7, 2015.

[36] K. Kim, D. Kim, T.F. Bissyandé, E. Choi, L. Li, J. Klein, and Traon,
“FaCoY: A code-to-code search engine”, in Proc. ICSE'18. Gothenburg,
Sweden, pp. 1-12, 2018.

[37] M. Mondal, C.K. Roy, and K.A. Schneider, “SPCP-Miner: A tool for
mining code clones that are important for refactoring or tracking”, in Proc.
SANER'15. Montreal, Canada, pp. 484-488, 2015.

[38] A.-F. Mubarak-Ali, S. Sulaiman, S.M. Syed-Mohamad, and Z. Xing,
“Code clone detection and analysis in open source applications”, Comp.
Syst. Softw. Eng.: Conc., Meth., Tools, and Appl., pp. 1112-1127, 2018.

[39] B. Priyambadha, and S. Rochimah, “Behavioral analysis for detecting
code clones”, Telkomnika, vol. 16(3), pp. 1264-1275, 2018.

[40] S. Reddivari, and M.S. Khan, “A topic modeling approach for code clone
detection”, in Proc. SEKE'18. San Francisco Bay, USA, pp. 486-491,
2018.

[41] M. Sudhamani, and L. Rangarajan, “Code similarity detection through
control statement and program features”, Expert Systems with
Applications, vol. 132, pp. 63-75, 2019.

[42] J. Svajlenko, and C.K. Roy, “Fast and flexible large-scale clone detection
with cloneworks”, in Proc. ICSE-C'17. Buenos Aires, Argentina, pp. 27-
30, 2017.

[43] C. Wijesiriwardana, and P. Wimalaratne, “Component-based
experimental testbed to facilitate code clone detection research”, in Proc.
ICSESS'17. Beijing, China, pp. 165-168, 2017.

[44] S. Abid, S. Javed, M. Naseem, S. Shahid, H.A. Basit, and Y. Higo,
“CodeEase: Harnessing method clone structures for reuse”, in Proc.
IWSC’17. Klagenfurt, Austria, pp. 24-30, 2017.

[45] Y. Lin, X. Peng, Z. Xing, D. Zheng, and W. Zhao, “Clone-based and
interactive recommendation for modifying pasted code”, in Proc.
ESEC/FSE'15. Bergamo, Italy, pp. 520-531, 2015.

[46] K. Narasimhan, C. Reichenbach, and J. Lawall, “Cleaning up copy–paste
clones with interactive merging”, Automated Software Engineering, vol.
25, pp. 627-673, 2018.

[47] A. Ohtani, Y. Higo, T. Ishihara, and S. Kusumoto, “On the level of code
suggestion for reuse”, in Proc. IWSC'15. Montreal, Canada, pp. 26-32,
2015.

[48] T. Zhang, and M. Kim, “Poster: Grafter: Transplantation and differential
testing for clones”, in Proc. ICSE-Companion'18. Gothenburg, Sweden,
pp. 422-423, 2018.

[49] J. Kanwal, K. Inoue, and O. Maqbool, “Refactoring patterns study in code
clones during software evolution”, in Proc. IWSC'17. Klagenfurt, Austria,
pp. 45-46, 2017.

[50] J. Kanwal, H.A. Basit, and Maqbool, “Structural clones: An evolution
perspective”, in Proc. IWSC'18. Campobasso, Italy, pp. 9-15, 2018.

[51] M. Mondal, C.K. Roy, and K.A. Schneider, “Bug-proneness and late
propagation tendency of code clones: A Comparative study on different
clone types”, J. of Systems and Softw., vol. 144, pp. 41-59, 2018.

[52] T.L. Nguyen, A. Fish, and M. Song, “An empirical study on similar
changes in evolving software”, in Proc. EIT'18. Rochester, USA, pp. 560-
563, 2018.

[53] J.R. Pate, R. Tairas, and N.A. Kraft, “Clone evolution: A systematic
review”, J. Softw.: Evol. Proc., vol. 25(3), pp. 261-283, 2013.

[54] F. Zhang, X. Su, W. Zhao, and T. Wang, “An empirical study of code
clone clustering based on clone evolution”, J. of Harbin Institute of
Technology (New Series), vol. 24(2), pp. 10-18, 2017.

[55] A. Lerina, and L. Nardi, “Investigating on the impact of software clones
on technical debt”, in Proc. TechDebt'19. Montreal, Canada, pp. 108-112,
2019.

[56] M. Mondal, C.K. Roy, and K.A. Schneider, “Does cloned code increase
maintenance effort?”, in Proc. IWSC'17. Klagenfurt, Austria, pp. 1-7,
2017.

[57] S. Wagner, A. Abdulkhaleq, K. Kaya, and A. Para, “On the relationship
of inconsistent software clones and faults: An empirical study”, in Proc.
SANER'16. Suita, Japan, pp. 79-89, 2016.

[58] D. Mondal, M. Mondal, C.K. Roy, K.A. Schneider, S. Wang, and Y. Li
“Towards visualizing large scale evolving clones”, in Proc. ICSE-
Companion'19. Montreal, Canada, pp. 302-303, 2019.

[59] H. Murakami, Y. Higo, and S. Kusumoto, “ClonePacker: A tool for clone
set visualization”, in Proc. SANER'15. Montreal, Canada, pp. 33-39,
2015.

