
Analyzing the Performance of Apps Developed by
using Cross-Platform and Native Technologies

Lucas Pugliese Barros
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil

lucas.pugliese.barros@gmail.com

Flávio Medeiros
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil

flavio.medeiros@ifal.edu.br

Eduardo Moraes
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil

ecmoraes@gmail.com

Anderson Feitosa Júnior
Informatics Coordination

Federal Institute of Alagoas
Maceió, Alagoas, Brasil
andersonmfjr@gmail.com

Abstract—The number of mobile devices are increasing world-
wide and there are a number of new mobile apps being delivered
daily. When developing mobile applications, developers need to
support a number of platforms, such as iOS and Android. Many
cross-platform technologies appeared, including Flutter and React
Native, to avoid the need of developing different applications for
every platform. In this context, companies and developers have to
analyze different issues when selecting a cross-platform or native
technology. Both strategies have positive and negative points, and
one important aspect when choosing a technology is performance.
In this study, we perform a comparative study to analyze the
performance of mobile applications developed by using Flutter,
React Native, and iOS and Android native technologies. The
results show that native technologies are still a little faster for
most functionalities, but there are also a number of cases in
which Flutter and React Native perform statically equivalent
when compared to native technologies. Our study complements
previous work by including these two modern cross-platform
technologies that have not be considered in comparative studies
previously.

Index Terms—Mobile Development, Performance Analysis

I. INTRODUCTION

Mobile devices are currently a crucial part of our daily life.
We find mobile applications for a wide range of domains,
such as health, tourism, planning, and sports. There are many a
number of platforms that uses different Software Development
Kits (SDK) to build mobile applications, including iOS, and
Android. In this context, developers should provide their
solutions across those platforms. A number of cross-platform
technologies appeared, allowing developers to support differ-
ent platforms by using a single source code, such as React
Native, and Flutter [1–4].

In particular, when using native development, companies
need to develop different mobile applications for every
supported platform. Thus, the cost of native development
gets higher. For this reason, cross-platform development has
emerged as a potential alternative. On the other hand, cross-
platform technologies also have negative points [3, 5, 6]:

• Performance: it is one of the most important requirement
of an application, and it might be slower in applications
developed by using cross-platform technologies;

DOI reference number: 10.18293/SEKE2020-122

• Harder code design: developers have to adapt their design
and functionalities to handle the specific peculiarities of
every platform;

• Longer time for new features: every new feature for
Android or iOS takes some time to be available in cross-
platform frameworks.

To help developers and companies to select a technology for
their mobile applications, we performed a comparative study
to analyze the performance of cross-platform applications de-
veloped by using Flutter and React Native when compared to
native applications written in Java and Swift, for Android and
iOS devices respectively. This study complements previous
work by including two modern cross-platform technologies not
considered before [6–8]. The first on is Flutter, which has ap-
peared as a promising cross-platform technology that aims to
bundle mobile applications with performance improvements.
This technology has been used by many companies, including
Alibaba, and Google Ads. The second is React Native, which
is the most popular technology currently and it is also used by
many enterprises, such as Facebook, Airbnb, Tesla, Walmart,
and Uber.

To perform this comparative study, we define a set of
functionalities that are present in most mobile applications.
Then, we implemented these functionalities by using different
languages and technologies: (1) in Flutter by using the Dart
language; (2) in JavaScript with React Native; (3) in Java
for Android devices; and (4) in Swift for iOS devices. In all
implementations we use the same functionalities and layout,
and we strictly follow the documentation of each technology
to get the best benefits of each one. The functionalities
implemented include storing and retrieving information of
local storage, making HTTP calls, and rendering data as lists.
To answer our research questions, we use User Interface (UI)
Test [9, 10] to automatically run every implementation and
execute each functionality 100 times to compute the time of
execution in the different technologies.

Our study reveals that the applications developed by using
native technologies, i.e., Swift and Java, are still a little faster
for most functionalities. However, there are also cases in which
Flutter and React Native are statistically equivalent in terms
of performance, such as storing and retrieving data by using
local storage in Android and iOS devices.



The remainder of this paper is organized as follows. In
Section II, we present the settings of our comparative study
to analyze the performance of mobile applications. Section III
shows the results of our study with regards to Flutter, React
Native, and iOS and Android development. In Section IV,
we depict the threats to validity of our study, and Section V
discusses some implications to practice. In Section VI, we
present the related work, and we discuss the concluding
remarks in Section VII.

We provide all information about this comparative study,
including the source codes, and the result data in a comple-
mentary website.1

II. STUDY SETTINGS

In this section, we present the settings of our comparative
study to analyze the performance of mobile applications
developed by using cross-platform and native technologies.
To better structure our study, we use the Goal, Question, and
Metrics (GQM) approach [11].

A. Definition

The goal of this comparative study is to analyze implemen-
tations of a mobile application for the purpose of evaluation
with respect to verifying the performance of cross-platform
and native mobile technologies in the context of the languages
Dart (Flutter), JavaScript (React Native), Java, and Swift.
In particular, this study addresses the following research
questions:

• RQ1. What is the difference in terms of performance for
Android applications developed by using Java, Flutter
(Dart), and React Native (JavaScript)?

• RQ2. What is the difference in terms of performance for
iOS applications developed by using Swift, Flutter (Dart),
and React Native (JavaScript)?

To answer these two research questions included in our
study, we define four metrics:

• REMOTE: this metric computes the processing time to
make a request to an external Application Programming
Interface (API). It computes the time of the HTTP re-
quest, that is, the time to make the request and receive
all data by using the JavaScript Object Notation (JSON);

• RENDER: it computes the time to render the first five
items of a list by showing them on the screen for the
users;

• STORE: this metric computes the time to save one item
of a list in the local database;

• RETRIEVE: it computes the time necessary to retrieve
the information of five items from the local database.

B. Planning and Operation

In this section, we describe the subjects, instrumentation,
and operation of our study.

Our study uses Flutter (Dart) and React Native (JavaScript)
as the cross-platform technologies, and Java and Swift as

1http://cpsoftware.com.br/performance-study

the natives ones. The reason to select Flutter is because
it has appeared as a promising cross-platform technology
that aims to bundle mobile applications with performance
improvements. As performance is a negative point of cross-
platform applications, it makes sense to include Flutter in our
study. We choose React Native because it is the most common
framework in practice. In addition, both frameworks are used
by known companies, such as Alibaba, Facebook, Airbnb,
Walmart, and Uber. We select Android and iOS because they
are the two most common platforms for mobile devices.

To perform this comparative study, we developed four
implementations of an application by using different technolo-
gies: (1) Flutter; (2) React Native; (3) Java; and (4) Swift. The
implementations contain the same functionalities and layout,
and we developed the applications by strictly following the
documentation of each technology.

To compute metric REMOTE, we select the Google APIs
Explorer service because there is no authentication restriction
to access it, and because it is possible to return a considerable
amount of information (258 items) through a single request.
As the local database, we use the SQLite database because it
is compact as well as available in the Android, IOS, Flutter,
and React Native SDKs. In addition, the documentations of
the technologies recommend to use this database in practice.

In Figure 1, we can see one implementation of the appli-
cation written in Swift for iOS. On the left-hand side, we
see the list of items returned by the API. On the right-
hand side, we present the items retrieved from the SQLite
database. In Figure 2, we show the screens but considering
the implementation for Android, written in Java.

Fig. 1. Interface of one implementation of the application in iOS.

To answer our research questions, we created user interface
tests to execute the applications 100 times and to compute
the time to perform each functionality in the different tech-
nologies. The user interface tests repeat a sequence of steps
100 times on real devices, simulating the behavior of users.
Thus, instead of run the experiment manually, it was possible
to automate the complete process.

http://cpsoftware.com.br/performance-study


To compute the processing time for each metric, we create
a class in Java, Swift, JavaScript, and Dart, respectively
for Android, iOS, React Native, and Flutter. So that, the
logic was the same for all four implementations with the
purpose of avoiding influences on the processing time of
the metrics. These classes are responsible for managing all
metrics, calculating the processing time in milliseconds, and
formatting and printing the processing time of the metrics.
With the data collected, the next step was to format the data in
the Comma Separated Values (CSV) format to run the statistics
by using the R Project for Statistical Computing.

We execute the study on a MacBook Pro 2.4GHz dual-core
Intel Core i5 8GB, running Mac OS X 10.8 Mountain Lion.
Furthermore, we run the applications by using an iPhone 7
32GB 3GB RAM and a Samsung Galaxy S8 64GB 4GB RAM.
That is, we run the Android native application and the Flutter
and React Native versions for Android by using the Samsung
Galaxy, and the iOS native application and the Flutter and
React Native versions for iOS by using the iPhone. We perform
all the analyses by using the same network connection.

To run the experiment, we need several tools. We use
Android Studio 3.6, Android 10, Java 1.8, Flutter version
1.12.13, Xcode 11.3.1, Visual Studio Code 1.42, React Native
0.61, Volley 1.1.1, SQLite 3.31.1, Espresso 3.1.1, XCTest 5.2,
and Detox 15.4.2.

Fig. 2. Interface of one implementation of the application in Android.

Next, we interpret and discuss the results of this study to
analyze the performance of mobile applications developed by
using cross-platform and native technologies.

III. RESULTS

In the next subsections, we present the results of our
comparative study. Section III-A presents the results related
to the Android platform, and in Section III-B, we show the
results of the iOS platform.

A. Android

In this section, we answer RQ1 by presenting the results
for each metric by considering the applications running on
the Android device.

REMOTE: In Figure 3a, we show the mean and the con-
fidence interval (95%) for each technology regarding metric
REMOTE. The means are 1772, 1818, and 2295 milliseconds
for React Native, Android native, and Flutter respectively.

To check if the data is normal distributed, we use the
Shapiro-Wilk normality test (95%). The null-hypothesis of this
test is that the population is normally distributed. Thus, if the
p-value is less than the chosen alpha level (0.05), then the null
hypothesis is rejected and there is evidence that the data tested
are not normally distributed [12, 13].

• Null Hypothesis (H0): it tests if the population is normally
distributed;

• Alternative Hypothesis (H1): there is evidence that the
population is not normally distributed.

By running the Shapiro-Wilk normality test (95%), we find
that the data is not normal. Thus, we compare the groups of
data by using the Wilcoxon test [12, 13], which considers:

• Null Hypothesis (H0): there is not any difference in the
data sets, that is, the medians are equal;

• Alternative Hypothesis (H1): there is evidence that the
data sets are different in terms of median.

The results show that the performances of Android native
and React Native are statistically faster than the performance
of the application developed by using Flutter. That is, the
median values are different according to the statistical test.
In Table I, we present the statistical tests we run and their
respective results.

Test p-value (H0)
Shapiro-Wilk for Android 9.9e−13 rejected
Shapiro-Wilk for Flutter 2.9e−08 rejected
Shapiro-Wilk for React Native 5.7e−11 rejected
Wilcoxon for Android and Flutter 2.3e−13 rejected
Wilcoxon for Android and React 6.9e−04 rejected
Wilcoxon for Flutter and React 2.2e−16 rejected

TABLE I
STATISTICAL TESTS FOR METRIC REMOTE IN ANDROID APPLICATIONS.

RENDER: In Figure 3b, we present the mean and the con-
fidence interval (95%) for each technology regarding metric
RENDER. The means are 173, 247, and 277 for Android
native, Flutter, and React Native respectively.

The data is not normal here also according to the Shapiro-
Wilk test, as we can see in Table II. Android native is the tech-
nology with better performance with statistical significance.
It has the lowest median, which is different from the other
data sets according to the Wilcoxon test. On the other hand,
there is no statistical difference between the performance of
the technologies React Native and Flutter.

STORE: In Figure 3c, we show the results for metric Store.
We present the mean and the confidence interval (95%) for



Fig. 3. Results for metrics in Android.

Test p-value (H0)
Shapiro-Wilk for Android 0.3 accepted
Shapiro-Wilk for Flutter 9.2e−12 rejected
Shapiro-Wilk for React Native 1.1e−12 rejected
Wilcoxon for Android and Flutter 2.2e−16 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 1.3e−14 rejected

TABLE II
STATISTICAL TESTS FOR METRIC RENDER IN ANDROID APPLICATIONS.

each technology. The means are 15.59, 16.43, and 16.96 for
Flutter, Android native, and React Native respectively.

In Table III. we present the statistical tests and their results.
There is no statistical significance in the data sets. That is, the
performance of all technologies is statistically equivalent.

Test p-value (H0)
Shapiro-Wilk for Android 2.97e−10 rejected
Shapiro-Wilk for Flutter 2.486e−5 rejected
Shapiro-Wilk for React Native 4.038e−10 rejected
Wilcoxon for Android and Flutter 0.003335 rejected
Wilcoxon for Android and React 0.03211 rejected
Wilcoxon for Flutter and React 0.0096 rejected

TABLE III
STATISTICAL TESTS FOR METRIC LIKE IN ANDROID APPLICATIONS.

RETRIEVE: In Figure 3d, we show the results for metric Re-
trieve Data. We present the mean and the confidence interval
(95%) for each technology. The means are 8.35, 77, and 128.6
for Android native, React Native, and Flutter respectively.

In Table IV, we present the results of metric RETRIEVE.
The Android native technology is the fastest one with statis-
tical significance. On the other hand, the performance of the
technologies React Native and Flutter is statically equivalent.

Test p-value (H0)
Shapiro-Wilk for Android 6.24e−12 rejected
Shapiro-Wilk for Flutter 1.074e−11 rejected
Shapiro-Wilk for React Native 7.78e−13 rejected
Wilcoxon for Android and Flutter 2.2e−16 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 2.2e−16 rejected

TABLE IV
STATISTICAL TESTS FOR METRIC LIKE IN ANDROID APPLICATIONS.

SUMMARY

Regarding data rendering and retrieving data from local
storage, Android native is faster than Flutter and React
Native. However, performance is statistically equivalent
when considering accessing remote data and storing
data in local storage.

B. iOS

In this section, we answer RQ2 by showing the results of
our experiment in iOS. Next, we present the results for each
metric.

REMOTE: In Figure 4a, we show the mean and the con-
fidence interval (95%) for each technology regarding metric
REMOTE. The means are 45.35, 1,802.46, and 2,474.89 mil-
liseconds for iOS native, React Native, and Flutter respec-
tively.

In Table V, we present the statistical tests and their results.
In this metric, iOS native is statically faster than Flutter and
React. Further, React is statistically faster than Flutter.

Test p-value (H0)
Shapiro-Wilk for Android 0.002446 rejected
Shapiro-Wilk for Flutter 7.975e−11 rejected
Shapiro-Wilk for React Native 6.888e−15 rejected
Wilcoxon for Android and Flutter 2.2e−16 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 5.805e−12 rejected

TABLE V
STATISTICAL TESTS FOR METRIC REMOTE IN iOS APPLICATIONS.

RENDER: In Figure 4b, we present the mean and the con-
fidence interval (95%) for each technology regarding metric
RENDER. The means are 15.79, 56.71, and 72.91 for iOS
native, React Native, and Flutter respectively.

In Table VI, we present the statistical tests and their results.
In this metric, iOS native is also statically faster than Flutter
and React. Further, React is statistically faster than Flutter.

Test p-value (H0)
Shapiro-Wilk for Android 7.206e−15 rejected
Shapiro-Wilk for Flutter 2.2e−16 rejected
Shapiro-Wilk for React Native 2.042e−15 rejected
Wilcoxon for Android and Flutter 2.2e−16 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 2.2e−16 rejected

TABLE VI
STATISTICAL TESTS FOR METRIC RENDER IN iOS APPLICATIONS.

STORE: In Figure 4c, we show the results for metric STORE.
We present the mean and the confidence interval (95%) for
each technology. The means are 2.89, 5.73, and 6.23 for React
Native, iOS native, and Flutter respectively.

In Table VII, we present the statistical tests and their results.
In this metric, React Native is statically faster than iOS Native
and Flutter.



Fig. 4. Results for metrics in iOS.

Test p-value (H0)
Shapiro-Wilk for Android 1.346e−11 rejected
Shapiro-Wilk for Flutter 4.202e−08 rejected
Shapiro-Wilk for React Native 1.94e−13 rejected
Wilcoxon for Android and Flutter 0.5488 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 2.2e−16 rejected

TABLE VII
STATISTICAL TESTS FOR METRIC RENDER IN iOS APPLICATIONS.

RETRIEVE: In Figure 4d, we show the results for metric
RETRIEVE. We present the mean and the confidence interval
(95%) for each technology. The means are 0.38, 2.82, and
32.18 for Android native, React Native, and Flutter respec-
tively.

Here, the hypotheses of all statistical tests were rejected
with p− value = 2.2e−16. It is the lowest number that R can
represent, that is, the null hypotheses (H0) are all rejected with
a small p-value, as shown in Table VIII.

Test p-value (H0)
Shapiro-Wilk for Android 2.2e−16 rejected
Shapiro-Wilk for Flutter 2.2e−16 rejected
Shapiro-Wilk for React Native 2.2e−16 rejected
Wilcoxon for Android and Flutter 2.2e−16 rejected
Wilcoxon for Android and React 2.2e−16 rejected
Wilcoxon for Flutter and React 2.2e−16 rejected

TABLE VIII
STATISTICAL TESTS FOR METRIC RENDER IN iOS APPLICATIONS.

SUMMARY

Regarding data rendering, accessing remote data and
retrieving data from local storage, iOS native is faster
than Flutter and React Native. However, performance
is statistically equivalent or faster when considering
storing data into local storage.

IV. THREATS TO VALIDITY

Construct Validity. It refers to whether the functionalities
that we choose are indeed relevant for mobile applications. We
minimize this threat by analyzing existing mobile applications.
The functionalities that we select, i.e., call remote API, render
items as lists, and store and retrieve data from database, are
present in almost all applications that we analyzed in our study.

Internal Validity. In our study, we implemented a specific
class in different languages, i.e., Java, Swift, JavaScript, and
Dart, to measure the time of performing the functionalities in
the exact way for each technology. Furthermore, we select a
stable internet connection to avoid differences when running

the applications in the different technologies. However, notice
that we may still face network differences. To minimize this
threat, we run the experiment for all technologies in an interval
of three hours.

External Validity. We analyze four functionalities that we
commonly find in existing applications. However, we have not
considered functionalities that use resources, such as GPS and
camera. Thus, we cannot generalize the results of this study
to this context.

V. IMPLICATIONS TO PRACTICE

The difference in terms of performance among React Native
and Flutter when compared to native technologies can be ex-
plained based on how these cross-platform technologies work.
In React Native, the source code is not compiled to C/C++ or
other native languages. Instead, the user interface components
are compiled into native equivalents and JavaScript is executed
on a separate thread (called bridge). In Flutter, the source
code is compiled to native language directly, but it also uses
an engine that goes together with the source code of the
mobile applications, and a platform channel is necessary to
access native resources, such as camera and GPS. That is, they
work as intermediates that may decrease performance also.
However, these technologies are evolving, they are used in
practice by many companies, and they can perform as fast as
native technologies for specific functionalities, such as storing
and retrieving data by using local storage, as we shown in our
comparative study.

Another important point to take into account is the costs for
development. When using native technologies, such as Java
and Swift, developers need to develop the same application
for every supported platform, making the development more
expensive and time-consuming. Thus, when performance re-
quirements are not extremely important, it makes sense to use
cross-platform technologies, as their performance is closer to
natives ones to most functionalities, as we have shown in our
current study.

VI. RELATED WORK

In this section, we compare our study with previous work.
Sommer and Krusche [8] performed a comparative study with
a number of technologies, including Titanium, Rhodes, and
PhoneGap. The authors recommend to use cross-platform
technologies in general, but they alert for high requirements
with regards to performance issues, usability or native user
experience. In [7], the authors compared the same three cross-
platform technologies and measured performance in terms of



memory, CPU usage and power consumption. The former
provided a similar result when comparing to our study in terms
of performance. In the latter study, the authors used a different
strategy to measure performance, as we computed the time of
execution in our study.

Heitkötter et al. [14] performed a study by comparing the
PhoneGap and Titanium Mobile technologies. The authors
compared the technologies by considering the native look
and feel, supported platforms, license and costs, as well
as the application speed at start-up and run-time. Different
from React Native and Flutter, the technologies used do not
generate native code, they use a Web app approach knows as
WebView [15], which let the application slower, as discussed
by the authors in their results. Furthermore, technologies that
use WebViews may cause security issues [16].

In the study of Xiaoping et al. [6], the authors compared the
Apache Cordova, Microsoft Xamarin, and Appcelerator Tita-
nium against the native technologies, that is, Android and iOS.
The study is similar to ours, it presents trade-offs of different
technologies and offer guidance in selecting an appropriate
technology based on performance requirements. Further, the
results are similar with our results, but the results of Flutter
and React Native seem to be closer to the performance of
native technologies.

In [17], the authors discussed the different strategies used
by cross-platform technologies, and mention the advantages
in productivity when using a model-driven approach. Our
study complements all these related work by considering two
modern cross-platform technologies for mobile development.

VII. CONCLUSIONS

In this study, we present a comparative study to analyze
the performance of cross-platform and native technologies for
mobile development. To run this study, we developed the same
application by using different technologies: Android (Java),
iOS (Swift), Flutter (Dart), and React Native (JavaScript).
Our results reveal that native technologies are faster, as we
expected, but the performance of the current cross-platform
technologies are pretty closer. In a number of cases, we could
not show statistical different among the performance of the
applications written in different technologies. For instance,
when storing and retrieving data by using local storage in An-
droid and iOS devices. As future work, we plan to implement
more functionalities in the applications to run the study again
considering different aspects, such including functionalities
that use geolocation, camera, and accelerometer.

REFERENCES

1. Latif, M., Lakhrissi, Y., Nfaoui, E. H. & Es-Sbai, N.
Cross platform approach for mobile application develop-
ment: A survey in International Conference on Informa-
tion Technology for Organizations Development (IEEE,
2016), 1–5.

2. Palmieri, M., Singh, I. & Cicchetti, A. Comparison of
cross-platform mobile development tools in International
Conference on Intelligence in Next Generation Networks
(IEEE, 2012), 179–186.

3. Javeed, A. Performance Optimization Techniques for
ReactJS in Int. Conf. on Electrical, Computer and Com-
munication Technologies (IEEE, 2019), 1–5.

4. Serrano, N., Hernantes, J. & Gallardo, G. Mobile Web
Apps. IEEE Software 30, 22–27 (2013).

5. Lin, H. & Lee, G. Building a Secure Cross Platform
Enterprise Service Mobile Apps Using HTML5 in In-
ternational Conference on Network-Based Information
Systems (IEEE, 2015), 162–166.

6. Jia, X., Ebone, A. & Tan, Y. A Performance Evaluation
of Cross-Platform Mobile Application Development Ap-
proaches in Int. Conf. on Mobile Software Engineering
and Systems (Association for Computing Machinery,
2018), 92–93.

7. Dalmasso, I., Datta, S. K., Bonnet, C. & Nikaein, N.
Survey, comparison and evaluation of cross platform mo-
bile application development tools in Int. Wireless Com-
munications and Mobile Computing Conference (IEEE,
2013), 323–328.

8. Sommer, A. & Krusche, S. Evaluation of cross-platform
frameworks for mobile applications in Software Engi-
neering - Workshopband (eds Wagner, S. & Lichter, H.)
(Gesellschaft für Informatik e.V., 2013), 363–376.

9. Daniel, F. et al. Understanding UI Integration: A Survey
of Problems, Technologies, and Opportunities. IEEE
Internet Computing 11, 59–66 (2007).

10. Tirodkar, A. A. & Khandpur, S. S. EarlGrey: iOS UI
Automation Testing Framework in International Con-
ference on Mobile Software Engineering and Systems
(IEEE/ACM, 2019), 12–15.

11. Basili, V., Caldiera, G. & Rombach, D. H. in Encyclo-
pedia of Software Engineering (Wiley, 1994).

12. Kanji, G. K. 100 statistical tests 3rd ed. (Sage Publica-
tions, 2006).

13. Boslaugh, S. & Watters, P. A. Statistics in a nutshell - a
desktop quick reference. (O’Reilly, 2008).

14. Heitkötter, H., Hanschke, S. & Majchrzak, T. A. Com-
paring Cross-platform Development Approaches for Mo-
bile Applications in Int. Conf. on Web Information Sys-
tems and Technologies (2012).

15. Shin, D., Yao, H. & Rosi, U. Supporting Visual Security
Cues for WebView-Based Android Apps in Proceedings
of the Annual Symposium on Applied Computing (ACM,
2013), 1867–1876.

16. Bao, W., Yao, W., Zong, M. & Wang, D. Cross-Site
Scripting Attacks on Android Hybrid Applications in
Proceedings of the International Conference on Cryp-
tography, Security and Privacy (ACM, 2017), 56–61.

17. Gaouar, L., Benamar, A. & Bendimerad, F. T. Model
Driven Approaches to Cross Platform Mobile Devel-
opment in Proceedings of the International Conference
on Intelligent Information Processing, Security and Ad-
vanced Communication (Association for Computing Ma-
chinery, 2015).


	Introduction
	Study Settings
	Definition
	Planning and Operation

	Results
	Android
	iOS

	Threats to Validity
	Implications to Practice
	Related Work
	Conclusions

