
The Reaction of Open Source Projects
to C++ Templates and Lambdas:
An Empirical Replication Study

Donghoon Kim
Department of Computer Science

Arkansas State University
Jonesboro, AR, USA

dhkim@astate.edu

Loc Ho
Department of Computer Science

Arkansas State University
Jonesboro, AR, USA

loc.ho@smail.astate.edu

Abstract—New language features are added into a program-
ming language to make high quality software. However, new
features are not always welcomed in the programming com-
munity since they have pros and cons. Templates and lambdas
have benefits so both features were added in many programming
languages, such as C++, Java, and C#. To find improvements,
the programming community wants to know how these features
are actually being used in projects. Researchers have conducted
these studies in different languages and different experimental
environments. In this study, we conduct an empirical replication
study with C++ open source projects in the same experimental
environment we’ve conducted with Java and C# to ascertain
what the community wants. Our framework of the static analysis
tool for Java and C# has been extended to analyze C/C++ open
source projects with quantitative data. We investigate how two
language features—templates and lambdas—are used in C++
open source projects. We found that C++ templates are used
widely by projects and developers, but C++ lambdas are not used
widely. These results of this study are similar to those in other
programming languages and in other experimental environments.

Index Terms—programming language, language feature, static
analysis tool, template, lambda expression, open source project,
quantitative data

I. INTRODUCTION

Programming languages have many language features for
producing good software. Whenever a new feature is intro-
duced for a language, it is thoroughly tested to see if it is
needed for the language [1], [2]. New features can bring
efficiency to programmers, improve program performance, and
provide benefits in many ways [3], [4]. On the other hand,
there are disadvantages to new features. Thus, new features are
not always welcomed in the programming community [5]–[7].

Generics feature (templates in C++) offers code reuse
without compromising static type checking so it can avoid
code duplication [8]. In addition, type checking in C++
templates can be conducted at compile time, rather than run-
time. However, C++ templates still have some limits with
low readability which can lead to difficulty for debugging
the codes when a project uses many templates [9]. Lambda

DOI reference number: 10.18293/SEKE2020-121.

expression (lambda), a core feature of functional program-
ming, makes concise syntax which may lead to reduce LOC
(Lines of Code) [10]. However, it may impact performance
for executable size and execution time as well as making the
code less readable [10]. These features—generics (templates
in C++) and lambdas—have clear benefits, but they also
have disadvantages that can make them difficult to use [11].
Thus, the programming community, including programming
language designers and educators, wonders how these features
are actually being used to find improvements for quality
software, and teaching programming languages [11]–[15].

This paper presents an empirical study of C++ templates and
lambdas. The work is a replication of previous studies with
C# and Java [5], [6], [16], [17]. Our previous studies analyzed
the usage of generics and lambdas, who used them, and how
their benefits appeared in open source projects. In this study,
the usage of two programming language features—templates
and lambdas—in 20 open source projects are investigated. The
results will be discussed by comparing the previous studies,
including our studies and other studies, such as C++ templates
by Chen et al. [14] and C++ lambdas by Uesbeck et al. [11].
More specially, the following two research questions (RQ) are
created to investigate each feature:

• RQ1: Is a language feature widely used in open source
projects?

• RQ2: Do project members in each project broadly use a
language feature after introduction into the project?

The contributions of this paper are as follows:
• Analysis of the usage of templates and lambdas in

C++: the open source projects written in C++ were
analyzed to determine if the features are used widely.
The following facts have been discovered: (1) the usage
of templates is much higher than that of lambdas, (2)
In many projects, templates were not used long after
the project started, and (3) For projects that don’t use
lambdas, the introduction of templates tends to be late.

• Analysis of the developers in open source projects:
this analysis results show that one or two developers used

a lot of templates in the projects. Developers who used
lambdas also used templates, but not necessarily those
who used templates used lambdas.

• An empirical replication study in major programming
languages: this study in C++ provides a consistent ex-
perimental environment with those in the other two pro-
gramming languages—Java and C#. Thus, it is possible
to consistently compare how language features were used
in the three programming languages—C++, Java, and C#.
The results in this study were also compared with other
studies; similar conclusions were drawn.

The paper is organized as follows. Section II illustrates
related works. Section III describes research questions and our
methodologies to conduct this study. Section IV answers to the
research questions with quantitative data. Finally, Section V
concludes this paper.

II. RELATED WORK

Researchers have investigated how language features are
used with a variety of methods [18], [19]. Asaduzzaman et
al. [18] discovered many developers, regardless of experience,
misuse exception handling in open source Java projects.

Siek and Taha [20] addressed that templates are a powerful
but poorly understood feature of the C++ language. Kim et
al. [5] conducted an empirical study of C# generics feature in
open source projects. They found that C# generics are used
widely. They compared the results with Java generics [17]
and explained several reasons for the different adoption rate
of generics feature between C# and Java. Wu et al. [12], [14]
analyzed how library templates influenced C++ programming
in open source systems. They listed most commonly-used
template libraries for C++ novices. Chen et al. [14] analyzed
how C++ templates are used in 50 open source systems. They
found that templates are useful for reducing code and C++
developers who prefer templates have no other programming
experience. This work is most related to our work. They
focused on the adoption of the different type of templates.
Our work focuses on how the features are adopted over time
and embraced by developers in open source projects.

Uesbeck et al. [11] conducted an empirical study of C++
lambdas and programmer experience. They analyzed partic-
ipants’ behaviors to solve programming tasks using lambda
expressions and iterators. They found that the students have
difficulty to use lambdas in programs and no benefits of
lambdas have been made. Likewise, our quantitative results
show that few developers are using C++ lambdas. Mazinanian
et al. [13] analyzed how lambda expression is adapted by
Java programmers. They found the reason why Java developers
use lambdas. The reasons are (1) making existing code more
succinct and readable and (2) avoiding code duplication. They
investigated the introduction rate of lambdas over time, starting
from the first commit and the last commit of the project.
Lambda expression in Java has an increasing trend in the
open source community. We also conduct similar methods with
C++ open source projects. Our results show similar trends in
C++ projects. However, not many C++ projects used lambdas

yet. Nielebock et al. investigated the adoption of lambdas in
2,923 open source projects and in three programming lan-
guages—C#, C++, and Java [19]. They found that developers
are significantly used more lambdas in C# than C++ and Java,
but the lambdas are not predominantly applied in concurrent
code. Like other studies [5], their study allows us to analyze
how a language feature affects usages when implemented
differently in different languages.

III. RESEARCH APPROACH

In this section, we explain the approach in this study.
Section III-A introduces our research questions. Section III-B
introduces the characteristics of 20 projects collected for
this study. Section III-C introduces the framework and the
procedure to analyze those projects with quantitative data.

A. Research Questions (RQ)

First, we investigate the adoption rate of each language
feature. As we explained the pros and cons in the Introduction
Section, two language features—templates and lambdas—have
similar pros and cons. Developers are responsible for using
language features to enhance the project’s performance if they
are useful. If language features are beneficial, their adoption
rate to be chosen by the developers must be high, which thus
leads to our first research question:

Research Question 1 (RQ1): Is a language feature
widely used in open source projects?

Our speculation was that more software developers use tem-
plates rather than lambdas due to several reasons: (1) The
template feature was added to C++ much longer than lambda
expression; and (2) The syntax of lambda expression is not
that easy.

C++ templates were added in 1998 as the standard C++
feature, which is relatively earlier than other major program-
ming languages such as Java (2004) and C# (2005). Lambda
expression has been adopted in many programming languages,
such as C# (2007), C++ (2011), and Java (2014). Many
software developers may know how to use lambda in C++.
After a project decides to use a compiler that supports these
features, the team can use the features or some individuals
may take the initiative on their own [5]. Thus, we want to
analyze how many project members actually use templates
and lambdas practically in project, which thus leads to our
second research question:

Research Question 2 (RQ2): Do project members
in each project broadly use a feature after
introduction into the project?

B. Projects Studied

To find out the answers for RQs listed above, we down-
loaded 20 open source projects from Black Duck Open
Hub (formerly Ohloh website). All of the projects have to
satisfy these requirements:

https://www.openhub.net/

https://www.openhub.net/

• Each project should have a high level of activity.
• Each project should have at least 100,000 lines of code

in C++ programming language.
• Each project should begin before C++ 11 (2011) was re-

leased, but ‘xLights’ is an exception because we couldn’t
find a project that meets the first two conditions.

Table I describes the information of 20 selected open-
source projects. Twenty projects seems small, but more than
several billions LOC has been analyzed in each project since
we analyzed the projects over time (e.g., each commit from
developers). For example, ‘Google’ has 1,322,907 LOC and
about 56,000 commits. For ‘Google’, more than 300 billions
LOC (= 0.65 millions LOC × 56,000 commits) has been
analyzed. We assume that the average LOC for ‘Google’ is
the half (0.65 millions LOC) of the last number of LOC (1.3
millions LOC). The table includes the name of each project,
and the number of total lines of code written in C++ measured
by Black Duck Open Hub on the date we downloaded for
analysis. The name in brackets is a short name for each project
that will be used in this paper.

Project LOC (C++)
Appleseed 410,994
Boost C++ Library (Boost) 3,222,155
deal.II (deal) 1,899,336
digikam 793,638
Dlib C++ Library (Dlib) 309,498
Fawkes Robot Software Framework (Fawkes) 475,294
Google V8 JavaScript Engine (Google) 1,322,907
ICU for C/C++/Java (ICU) 779,201
KDE Frameworks 5 (KDE) 1,037,464
libc++: The LLVM C++ Standard Library (libc++) 551,586
libMesh: A C++ Finite Element Library (libMesh) 685,658
LLVM/Clang C family frontend (LLVM) 1,276,127
mangos-classic (mangos) 350,519
Mantid 1,376,385
MITK 1,162,057
MongoDB 746,533
OpenMS 428,914
Orfeo ToolBox (Orfeo) 364,063
Point Cloud Library (Point) 1,035,913
xLights 343,268

TABLE I: The 20 C/C++ projects under investigation

C. Procedure

We have a framework of the static program analysis tool for
Java and C# [5]. The tool is used to analyze how language fea-
tures are used in open source projects. Recently, we extended
our existing framework to analyze C/C++ open source projects
with quantitative data. Our framework is written with several
programming languages such as python and C++ with llvm
library and the ws2_32 library. The new tool can extract
the information to answer our research questions, such as the
number of templates, lambdas, and developers. The following
is the overall steps to analyze open source projects. After
choosing projects that meet the requirements based on the
information from Black Duck Open Hub, we cloned each
project from its remote repository using Git and Subversion
to a local machine, check out every version of every file
from a project’s repository and store the different file revisions
in an intermediate format, and transfer this information to a

database; extract language features information from each file
revision and populate the information in the database server;
finally analyze the data in the database to answer each research
question.

IV. EXPERIMENTAL RESULTS

To get an overview of adoption of the template and lambda
expression features, we investigate the usage of both features
in the 20 selected projects. We measure the number of both
features to observe how those features are adopted. Table II
shows the overall data on how templates and lambdas are used
by developers. The title in each column indicates as follows:

• Start Date: Date the project started
• Developers: the number of developers involved in the

project
• First Date in Template and Lambda expression: the

first date when the first template or lambda was used by
a developer (N/A means no one used lambda expression
in the project.)

• Developers in Template and Lambda expression: the
number of developers who used templates or lambdas in
the project

• Usage in Template and Lambda expression: the
number of templates or lambdas used by developers in
the project

We observe that:
• The total number of templates is much higher than

lambdas in all projects. Lambdas are used in only 10
projects (out of 20 projects).

• Templates were used (adopted) in one year after the
projects started in 10 projects. On average, templates
were used on approximately 6.5 years after the project
started. On the other hand, lambdas are used (adopted)
in approximately five years after lambdas were added
in C++11 in the year 2011. For projects that don’t use
lambdas, such as deal, Fawkes, ICU, KDE, and libc++,
the introduction of templates tends to be late.

• The total number of developers who used templates is
higher than the total number of developers who used
lambdas.

A. RQ1: Usage of Language Features

RQ1: Is a language feature widely used in open source
projects?
Templates: We extracted the usage of templates over time.
Figure 1(a) shows the number of templates over time. libc++
used the most templates with 19,012 and Appleseed used the
second most templates with 3,930 in 20 projects. In most of
the projects, the numbers of templates increase sequentially.

As in Table II, you can find relatively large numbers in
templates’ usage rather than lambdas’ usage. However, it is
not easy to draw a conclusion if templates are used ‘widely’
or vice versa because there is a lack of clear criteria to discern
between ‘widely’ and ‘not widely’ with the number of usage.
For this reason, we investigate the usage of other language

Project Start Date Developer Template Lambda expression
First Date Developer Usage First Date Developer Usage

Appleseed 7/3/2010 39 7/3/2010 23 3,930 3/18/2018 3 20
Boost 7/7/2000 19 3/4/2004 15 154 7/6/2016 1 1
deal 11/24/1997 10 12/11/2009 3 190 N/A 0 0
digikam 5/5/2004 140 1/9/2007 22 155 N/A 0 0
Dlib 5/2/2008 25 5/2/2008 10 440 10/18/2015 7 40
Fawkes 1/3/2004 25 11/8/2011 4 39 N/A 0 0
Google 6/30/2008 7 10/9/2008 2 8 N/A 0 0
ICU 8/16/1999 72 10/3/2009 20 35 N/A 0 0
KDE 9/28/1999 47 10/18/2009 7 8 N/A 0 0
libc++ 5/11/2010 102 5/11/2010 78 19,012 7/31/2015 20 109
libMesh 1/9/2003 4 7/17/2012 3 959 N/A 0 0
LLVM 7/11/2007 181 8/7/2012 88 1,855 9/15/2014 31 130
mangos 10/13/2008 45 10/14/2008 27 166 N/A 0 0
Mantid 4/4/2007 137 10/26/2007 83 907 2/8/2016 32 29
MITK 9/6/1997 218 11/16/2002 77 840 6/3/2016 3 4
MongoDB 10/19/2007 283 12/11/2008 171 2,401 4/9/2015 127 307
OpenMS 6/11/2006 60 2/7/2014 30 128 12/13/2018 3 2
Orfeo 1/5/2006 33 5/15/2006 10 168 N/A 0 0
Point 3/2/2011 244 3/3/2011 82 382 7/4/2019 1 1
xLights 1/29/2013 31 9/26/2014 11 32 N/A 0 0

TABLE II: Software developers involved in the projects and the total usage of template and lambda expression

2011 2012 2013 2014 2015 2016 2017 2018 2019
0

5000

10000

15000

20000

Date

U
sa

ge

libc++

Template

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
0

50

100

150

200

250

300

350

Date

U
sa

ge

MongoDB

Lambda

Fig. 1: Usage of features over time: (a) Templates in libc++ (left), (b) Lambdas in MongoDB (right)

Project Template If Switch Lambda
Appleseed 3,930 7,027 56 20
Boost 154 38 0 1
deal 190 1,774 26 0
digikam 155 6,985 63 0
Dlib 440 581 17 40
Fawkes 39 1,968 31 0
Google 8 406 18 0
ICU 35 7,566 62 0
KDE 8 28 0 0
libc++ 19,012 1,722 20 109
libMesh 959 1,185 0 0
LLVM 1,855 1,308 58 130
mangos 166 7,690 48 0
Mantid 907 4,993 47 29
MITK 840 5,241 84 4
MongoDB 2,401 32,857 287 307
OpenMS 128 1,660 2 2
Orfeo 168 7,073 64 0
Point 382 12,472 126 1
xLights 32 1,898 32 0

TABLE III: Comparing the usage of language features with if
and switch statements

features to compare the relative numbers. if and switch
statements have been selected [21]. The If statement is the

most popular feature in projects from GitHub repositories
while the switch statement is less popular feature [21]. Ta-
ble III shows the numbers of language features (i.e., Template,
If, Switch, and Lambda) used in the projects. The number of
templates used by the Appleseed project is 3,930. The libc++
project is the highest number with 19,012 which is quite higher
than the number of if statement with 1,722. The template
feature can be one of popular features since the numbers
of templates have a similar relationship with If statement.
Overall, our results suggest that templates are widely used
in open source projects.
Lambdas: The numbers of projects using lambdas are much
smaller than the numbers of project using templates. 10
projects (out of 20 projects) used lambdas. MongoDB used
the most lambdas with 307 and LLVM used the second most
lambdas with 130 in 10 projects. Figure 1(b) shows the
number of lambdas over time in MongoDB. As mentioned
earlier, switch statements are a less popular feature [21].
When lambdas are compared with switch statements,
the number of lambdas is less than the number of switch
statements for most of the projects except Dlib, libc++,

Project All None Template Template only Intersection Lambda only Lambda
Appleseed 39 16 (41.0 %) 23 (59.0 %) 20 3 0 3 (7.7 %)
Boost 19 4 (21.1 %) 15 (78.9 %) 14 1 0 1 (5.3 %)
deal 10 7 (70.0 %) 3 (30.0 %) 3 0 0 0 (0.0 %)
digikam 140 118 (84.3 %) 22 (15.7 %) 22 0 0 0 (0.0 %)
Dlib 25 15 (60.0 %) 10 (40.0 %) 3 7 0 7 (28.0 %)
Fawkes 25 21 (84.0 %) 4 (16.0 %) 4 0 0 0 (0.0 %)
Google 7 5 (71.4 %) 2 (28.6 %) 2 0 0 0 (0.0 %)
ICU 72 52 (72.2 %) 20 (27.8 %) 20 0 0 0 (0.0 %)
KDE 47 40 (85.1 %) 7 (14.9 %) 7 0 0 0 (0.0 %)
libc++ 102 22 (21.6 %) 78 (76.5 %) 60 18 2 20 (19.6 %)
libMesh 4 1 (25.0 %) 3 (75.0 %) 3 0 0 0 (0.0 %)
LLVM 181 92 (50.8 %) 88 (48.6 %) 58 30 1 31 (17.1 %)
mangos 45 18 (40.0 %) 27 (60.0 %) 27 0 0 0 (0.0 %)
Mantid 137 53 (38.7 %) 83 (60.6 %) 52 31 1 32 (23.4 %)
MITK 218 140 (64.2 %) 77 (35.3 %) 75 2 1 3 (1.4 %)
MongoDB 283 89 (31.4 %) 171 (60.4 %) 67 104 23 127 (44.9 %)
OpenMS 60 30 (50.0 %) 30 (50.0 %) 27 3 0 3 (5.0 %)
Orfeo 33 23 (69.7 %) 10 (30.3 %) 10 0 0 0 (0.0 %)
Point 244 162 (66.4 %) 82 (33.6 %) 81 1 0 1 (0.4 %)
xLights 31 20 (64.5 %) 11 (35.5 %) 11 0 0 0 (0.0 %)

SUM 1,722 928 (53.9 %) 766 (44.5 %) 228 (13.2 %)

TABLE IV: Analysis of Developers

LLVM, and MongoDB. Overall, our results suggest that
lambdas are not widely used in open source projects.
Similar results were found in Java lambda expression [22].
Uesbeck et al. observed that lambdas don’t benefit developers
in terms of time to completion, or compiler errors [11].
However, as Mazinanian et al. found an increasing trend in
the adoption rate of lambdas [13], the adoption rate of C++
lambdas also shows an increasing trend in some projects
which used lambdas 1(b). This indicates that if we analyze
C++ lambda expression again in a decade, the answer may
be changed.

B. RQ2: Who used Language Features

RQ2: Do project members in each project broadly use a
language feature after introduction into the project?
Templates: As the answer to RQ1 , C++ templates are used by
most projects. However, few developers may take major usage
of templates or vice versa. To evaluate RQ2, we examined how
many developers used templates. Table IV shows the number
of developers who used templates and lambdas. Each title in
Table IV represents:

• All: the total number of developers involved in the project
• None: the number of developers who didn’t use both

template and lambda
• Template (Lambda): the number of developers who used

templates (lambdas)
• Template (Lambda) only: the number of developers who

only used templates (lambdas)
• Intersection: the number of developers who used both

templates and lambdas
In SUM in Table IV, 44.5% (766 out of 1,722) developers

used templates. More than 50% developers used templates in
8 projects. Boost is the highest project with 78.9% (15 out
of 19) of developers using templates. libc++ is the second
highest project with 76.5% (78 out of 102) of developers
using templates. These facts indicate that most developers
understand the benefits of the template feature. digikam is the
lowest project with 15.7% (22 out of 140) of developers using

templates. Fawkes is the second lowest project with 16.0% (4
out of 25) of developers using templates. In 13 projects, more
than 50% developers did not use both templates and lambdas.

Figure 2 shows the introduction and removal of both tem-
plates and lambda expressions by the top 5 developers per
project. Top 5 developers means 5 developers using the most
templates in a project. A dashed line represents the number of
templates while a solid line represents the number of lambdas.
We observed that one or two developers show higher usage
of templates in the projects. For example, Figure 2(a) shows
that two developers used significantly higher templates than
other developers; Al*** used more than 300 templates and
Jo*** used more than 150 templates. In the appleseed project
which is not in Figure 2, one developer (Fr***) used around
3,700 templates (out of 3,930) while other developers used less
than 100 templates. This pattern was observed in many of the
other projects such as appkeseed, Boost, digikam, dlib, Fawkes,
ICU, libMesh, and Orfeo. Overall, our results indicates that
templates are used by a small pool of developers. These
results are similar to other previous studies [5], [14], [17].

Lambdas: As can be seen by the analysis results in RQ1,
we recognize that not many project members used lambdas.
Table IV shows that 13.2% (228 out of 1,722) used lambdas.
In LLVM (Figure 2(a)), Al*** (who used the most templates)
used the most lambda. Jo*** (who used the second most
templates) used the second most lambdas. In MongoDB, 44.9%
(127 out of 283) used lambdas. Several developers (Be***,
Ma***, Ka***) used almost 100 templates; Be*** used 75
lambdas. In most projects, developers who used lambdas also
used templates, except MongoDB; In MongoDB, 23 developers
only used lambdas, not templates. Overall, C++ lambdas are
used by a very small number of project members. Nine
years have passed since lambda expression was added in C++
in 2011. We need to look at whether each project uses C++11
compiler (or higher version) to enable lambdas and when each
project begins to use C++11 compiler, but for now only a few
developers use C++ lambdas.

2014 2016 2018 2020

0
50

10
0

15
0

20
0

25
0

30
0

LLVM

Date

N
um

be
r

of
 T

yp
e

U
se

s

Al*** Template

Al*** Lambda

Ha*** Template

Ha*** Lambda

Jo*** Template

Jo*** Lambda

An*** Template

An*** Lambda

Aa*** Template

Aa*** Lambda

(a) LLVM

2010 2012 2014 2016 2018 2020

0
10

0
20

0
30

0
40

0
50

0

MongoDB

Date

N
um

be
r

of
 T

yp
e

U
se

s

Be*** Template

Be*** Lambda

El*** Template

El*** Lambda

Ma*** Template

Ma*** Lambda

Ka*** Template

Ka*** Lambda

(O*** Template

(O*** Lambda

(b) MongoDB

Fig. 2: Individual developers’ usage of templates and lambdas over time

V. CONCLUSION

Template and lambda expression features have benefits.
Throughout the empirical study with C++ open source
projects, we investigated the usage of templates and lambdas
and how these features are used by developers. We found that
templates are used widely by many developers in open source
projects. However, lambdas are not used widely in open source
projects, and not many developers use lambdas. These results
from quantitative data will help you create a new programming
language, add new language features into the programming
language, or teach programming with what priorities. Since
language features were added at different times, we recognize
that quantitative comparisons are limited. Further research
with qualitative data may be needed to analyze the reasons
for these conclusions.

REFERENCES

[1] G. Bracha, N. Cohen, C. Kemper, S. Marx, M. Odersky, S.-E. Panitz,
D. Stoutamire, K. Thorup, and P. Wadler, “Adding generics to the java
programming language: Participant draft specification,” 2001.

[2] J. Järvi, J. Freeman, and L. Crowl. (2008, Feb) Lambda functions
and closures for C++ (Revision 4), Technical Report N2550=08-0060,
ISO/IEC JTC 1, Information technology, Subcommittee SC 22,
Programming Language C++. [Online]. Available: http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf

[3] B. Stroustrup, “Evolving a language in and for the real world: C++
1991-2006,” in Proceedings of the third ACM SIGPLAN conference on
History of programming languages. ACM, 2007, pp. 4–1.

[4] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining billions
of ast nodes to study actual and potential usage of java language fea-
tures,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 779–790.

[5] D. Kim, E. R. Murphy-Hill, C. Parnin, C. Bird, and R. Garcia, “The
reaction of open-source projects to new language features: An empirical
study of c# generics.” Journal of Object Technology, vol. 12, no. 4, pp.
1–1, 2013.

[6] C. Liddell and D. Kim, “Analyzing the adoption rate of local variable
type inference in open-source java 10 projects,” Journal of the Arkansas
Academy of Science, vol. 73, no. 1, pp. 51–54, 2019.

[7] D. Kim and G. Yi, “Measuring syntactic sugar usage in programming
languages: an empirical study of c# and java projects,” in Advances in
Computer Science and its Applications. Springer, 2014, pp. 279–284.

[8] M. H. Austern, Generic programming and the STL: using and extending
the C++ Standard Template Library. Addison-Wesley, 1999.

[9] Á. Sinkovics and Z. Porkoláb, “Implementing monads for c++ template
metaprograms,” Science of computer programming, vol. 78, no. 9, pp.
1600–1621, 2013.

[10] J. Järvi and J. Freeman, “C++ lambda expressions and closures,” Science
of Computer Programming, vol. 75, no. 9, pp. 762–772, 2010.

[11] P. M. Uesbeck, A. Stefik, S. Hanenberg, J. Pedersen, and P. Daleiden,
“An empirical study on the impact of c++ lambdas and programmer
experience,” in Proceedings of the 38th International Conference on
Software Engineering. ACM, 2016, pp. 760–771.

[12] D. W. 0014, L. Chen, Y. Zhou, and B. Xu, “An empirical study on
the adoption of c++ templates: Library templates versus user defined
templates.” in SEKE, 2014, pp. 144–149.

[13] D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, “Understanding
the use of lambda expressions in java,” Proceedings of the ACM on
Programming Languages, vol. 1, no. OOPSLA, p. 85, 2017.

[14] L. Chen, D. Wu, W. Ma, Y. Zhou, B. Xu, and H. Leung, “How c++
templates are used for generic programming: An empirical study on 50
open source systems,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 29, no. 1, pp. 1–49, 2020.

[15] A. P. Black, K. B. Bruce, M. Homer, and J. Noble, “Grace: the absence
of (inessential) difficulty,” in Proceedings of the ACM international sym-
posium on New ideas, new paradigms, and reflections on programming
and software. ACM, 2012, pp. 85–98.

[16] C. Saldivar, R. Clayton, and D. Kim, “The adoption rate of lambda ex-
pressions in java open source projects,” 31st Annual National Conference
on Undergraduate Research, 2017.

[17] C. Parnin, C. Bird, and E. Murphy-Hill, “Java generics adoption: how
new features are introduced, championed, or ignored,” in Proceedings of
the 8th Working Conference on Mining Software Repositories. ACM,
2011, pp. 3–12.

[18] M. Asaduzzaman, M. Ahasanuzzaman, C. K. Roy, and K. A. Schneider,
“How developers use exception handling in java?” in Proceedings of the
13th International Conference on Mining Software Repositories. ACM,
2016, pp. 516–519.

[19] S. Nielebock, R. Heumüller, and F. Ortmeier, “Programmers do not favor
lambda expressions for concurrent object-oriented code,” Empirical
Software Engineering, vol. 24, no. 1, pp. 103–138, 2019.

[20] J. Siek and W. Taha, “A semantic analysis of c++ templates,” in
European Conference on Object-Oriented Programming. Springer,
2006, pp. 304–327.

[21] M. J. Lemay, “Understanding java usability by mining github reposi-
tories,” in 9th Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU 2018). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[22] C. Mcdougal, B. Staufer, J. Reach, and D. Kim, “The evolution of java
involving lambda,” Fifteenth Annual Consortium for Computing Sciences
in Colleges Mid-South Conference In Cooperation With ACM/SIGCSE,
2017.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2550.pdf

	Introduction
	Related Work
	Research Approach
	Research Questions (RQ)
	Projects Studied
	Procedure

	Experimental Results
	RQ1: Usage of Language Features
	RQ2: Who used Language Features

	Conclusion
	References

