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Abstract—Finding a software application that perfectly suits
user needs is essential for improving user experiences, as well as
contributing to the development of the application ecosystems.
However, it is not an easy task regarding the huge number of
existing applications that are available for use. In this paper, we
propose to tackle this challenge by exploring valuable information
from user reviews. In particular, we design a user review
knowledge graph that consists of both functional information
and user preferences in order to comprehensively and precisely
characterize software applications. Based on such a review
knowledge graph, our approach can support application search
in an efficient and precise manner. To evaluate our proposal, we
have collected a total of 4,370 applications and 4,396,950 pieces
of reviews for constructing a comprehensive review knowledge
graph and have illustrated how users and developers can effi-
ciently retrieve applications and improve software functionality
based on the knowledge graph.

Index Terms—NLP, Knowledge-graph, App searching

I. INTRODUCTION

With the proliferation of types and quantities of mobile
phone’s application, it is increasingly difficult for users to
find applications that perfectly meet their requirements through
only the huge amount of application descriptions. There is an
urgent need for efficient and accurate application search.

Many direct approaches to application searching have been
proposed in the past decade, which are mainly based on
application descriptions. Specifically, some researches mine
application descriptions from App store and process data by
extracting short textual application features or time series data
to make application recommendation [1]–[3]. Another branch
of research advocates on retrieving applications based on
relevance or history of application usage [4]–[6]. Some other
researchers further use a graph-based method to analyze the
similarity between downloaded applications and search from
the graph to improve the searching efficiency [7]. Although,
the approaches mentioned above are considered as systematic
and promising means to recommend useful application, they
typically require a huge amount of textual data and time to
obtain applications related to user needs. Moreover, the rec-
ommendations that are made based on application descriptions
are not able to reflect the application’s performance as they do
not considering user feedback.
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Application reviews contain a huge amount of customer’s
real opinions that are valuable for profiling users. Specifically,
review analysis can obtain the user feedback regarding ap-
plication functionality and qualities. We argue that the effec-
tiveness of application search can be improved by considering
information from both application descriptions and application
reviews.

In this paper, we focused on extracting application features
and corresponding user preference, as well as calculating the
emotional distribution of users. Based on such analysis, we
can meaningfully characterize applications to better support
application recommendation. Specifically, we firstly retrieve
application descriptions and user reviews via web crawling
tool from Google Play Store1. By crawling the user reviews
data and applying Natural Language Processing (NLP) meth-
ods [8], we obtain 4,370 applications and about 4,396,950
pieces of reviews in total. In order to promote the effectiveness
of our approach, only applications that have a decent number
of comments are considered in our study. We then extract the
connections between user sentiment and app features based on
a large scale of textual comments, and figure out the sentiment
distribution accordingly. All the above information services as
the foundation for construction a comprehensive Knowledge
Graph (referred to as “KG” hereinafter), enabling efficient and
effective application search.

Our work mainly leverages techniques of relation extrac-
tion and text classification. With the assistance of Sentiword
Corpus [9] and an application features dictionary, we are able
to extract the relationships between applications features and
their corresponding user sentiment. Each relationship we mark
a sentiment score to evaluate the tendency as well as the
strength of emotions. Based on those relationships, we con-
struct a KG containing user entity, application feature entity
and sentiment relation for further clustering and searching.
Using this Knowledge Graph, we can cluster applications via
intelligent search, rendering multi-angle query results. In this
way, we can deal with an enormous data set of App reviews
and can search the application accurately.

This paper is organized as follows. Section II presents
related work in which app searching has researched within
software engineering. In section III we describe the method-
ology of this work, the collection and processing of data, and

1https://play.google.com/store



Fig. 1. The Framework of our paper. The solid rectangle in the figure represents a working step, the dashed rectangle represents the sub-steps in each step,
the blue rectangle with rounded corners represents the technical process. And the tables and sin the figure are examples of each step.

the Knowledge Graph construction phase. In section IV we
provide evaluation of our work. In section V we provide some
discussion. Section VI is our conclusion.

II. RELATED WORK

Instead of using a formal App description, App reviews are
a key driver of application clustering. On the one hand, it
can learn the true user’s feedback for the App. On the other
hand, it assists developers in finding the novel functions that
can be improved. To date, the smartphone operating systems:
Android and iOS have the whole worldwide smartphone ship-
ment market share [10]. A large scale of application reviews
is provided to researchers for review analysis. The history
of application clustering and the use of KG in application
research is discussed in this section.

Previous researches mainly solve the app searching problem
by text mining and semantic awareness [11]. Jiang et al. [12]
use a greedy algorithm to find the semantic awareness of the
user’s request and design an application order for user re-
trieval. Datta, Kajanan and Pervin [13] provide an independent

unbiased search machine for mobile apps with semantic search
capabilities. Lavid Ben Lulu and Kuflik [3] use the Machine
Learning method to automated analyze functional similarity
on the application’s description data. Al-Subaihin et al. [14]
extracted App feature using information retrieval augmented
with ontological analysis to characterize apps. User history and
using experience can be used for app searching because user
feelings are important for app searching. Costa-Montenegro,
Barragáns-Martı́nez and Rey-López [15] used user history to
select the application similar to the downloaded apps. And
Krishna et al. [4], searched a similar app using the user’s
history and the app description information to achieve word
import. Zhu et al. [16] combine the popularity of mobile Apps,
personal preference, and mobile device constraints for app
searching and recommendation. Such textual data is difficult
to search and manage. Park et al. [17] leverage user reviews to
find out important features of apps for app retrieval. Compared
with using app descriptions, brief app reviews can indicate true
feedback from users and comes to more detailed app features.



A more applicable method is to use both official descriptions
and user reviews for information collection and select more
app features to more in line with user needs.

Graph is a kind of data structure which models a set
of objects (nodes) and their relationships (edges). Recently,
researches of app searching with a graph representation have
been receiving more and more attention. Jisha, Krishnan and
Vikraman [18] construct a Knowledge Schema - a graphic
model of interconnections of data that characterize any mo-
bile app for app searching. Bae et al. [19] incorporates a
graph-based technique for application recommendation. Such
a method is difficult to find out relevant applications from
a large app store. To concisely record the app features and
achieve multi-angled searching, we construct a knowledge-
based graph containing all the application’s information and
the user’s feedback.

Based on the previous researches, we focus on the app
searching based on formal descriptions and user reviews. By
analyzing the content of reviews, we can extract not only
the application’s features but also true feedback from users.
What’s more, we design a Knowledge Graph-based on the
extracted results for app searching. In this way, the large scale
of review data can be managed well and can be searched
efficiently.

III. METHODOLOGY

Our framework is shown in Fig.1. The sequence Numbers
in the figure correspond to the III.Methodology part. We firstly
design a web crawling tool to grasp the App reviews and offi-
cial descriptions from the Google Play store. We also prepared
the sentiment word information and application feature data
for Named Entity Recognition. During the data preprocessing
phase, we changed words in sentences to their lowercase
and removed the stop words and special symbols, then we
delete the irregular reviews. For example, reviews which only
contain punctuation or non-English sentence. Based on these
corpora, we extracted the sentences with co-occurrence of user
sentiment and App feature. To figure out the sentiment of
user, we classified the relation into different categories and
use the sentiment score from SentimentWordNet to indicate
emotional strength. At last, we build a Knowledge Graph
using these relations for results cluster and retrieval. This step
contains conceptual model and entity & relation construction.
The conceptual model include the user and the application’s
basic information and the inclusion and emotional relation of
them is linked in the graph.

A. Data Collection and Preparation

According to the introduction above, the relationships of
user sentiment with app features are fundamental for construct-
ing the Knowledge Graph and their information thus need to
be collected and prepared beforehand.

1) App Reviews and official description Information: We
choose the Google Play store as the app repositories for its
large scale and high frequency of use. We design web crawling

tools to catch the app reviews, which is built upon PhantomJS2

and Selenium3. There are 20 app categories, including Art
& Design, Augmented Reality, Auto & Vehicles, Beauty,
Books & Reference, Business, Comics, Communication, Dat-
ing, Daydream, Education, Entertainment, Events, Finance,
Food & Drink, Health & Fitness, House & Home, Libraries
& Demo, Lifestyle, and Game.

We extract user reviews from App Store as records and save
the content, user’s ID, review date and other detailed infor-
mation of each review. Before we extract the user sentiment
information, the textual data need to be cleaned. We changed
words in sentences to their lowercase and removed the stop
words such as ”. , !” and special symbols. Then we dismiss
the irregular reviews which may only consist of punctuation,
number or reviews with messy code.

2) Application feature Information: Fine-grained catego-
rization of app features are considered in our research. Here
we create a list of 13 different topics [20]. The topics were
proposed by Di S. et al., which can be a great classification
category for different review topics, for example, ”I like the
GUI of Crazy Bird” is a comment on application’s GUI.
Table I illustrates the definition of each review topic. These
topic are concluded from user reviews and they indicate the
categories that user comments most frequently. Nearly all
mentioned application feature in user reviews can be classified
into a specific feature category. The classify tools create a
new category once the review does not belong to the existing
categories, and then they summarize each category into a topic.
This cluster has shown to achieve a classification accuracy of
0.76.

TABLE I
DEFINITIONS OF APPLICATION FEATURES

Topic Definition

App sentences related to the entire app, e.g., generic crash
reports, ratings, or general feedback

GUI sentences related to the Graphical User Interface or the
look and feel of the app

Contents sentences related to the content of the app
Pricing sentences related to app pricing
Feature or sentences related to specific features or functionality of
Functionality the app
Improvement sentences related to explicit enhancement requests
Updates/ Versions sentences related to specific versions or the update

process of the app
Resources sentences dealing with device resources such as battery

consumption, storage,etc.
Security sentences related to the security of the app or to

personal data privacy
Download sentences containing feedback about the app download
Model sentences reporting feedback about specific devices or

OS versions
Company sentences containing feedback related to the com-

pany/team which develops the app
Other sentences not treating any of the previous topics

To extract the entity word from the review sentence, we con-
struct an entity dictionary which contains all clusters words,

2http://phantomjs.org/
3http://www.seleniumhq.org/



e.g., “battery, phone storage” belong to cluster “Resources”
and “Android, iOS” belong to the cluster “Model”. We create
a list of entity words manually which contained 134 original
words identifying the topics. To make the dictionaries more
exhaustive we used Word-Net [21] to generate synonyms for
all the feature words. Synonyms word were then appended to
the dictionary to extract the topic entity word from a different
user, such as ”price, expense and cost” all mean the amount
of money for which something is sold.

3) Sentiment Word Information: For the sentiment informa-
tion, we adopt the method of Gatti, Guerini and Turchi [9]. We
adopt the sentiment corpus containing approximately 155,000
sentiment words called “SentiWords”, which has both high
precision and coverage. We use this sentiment lexicon as our
emotional words dictionary to extract user’s sentiment from
reviews. Each sentiment word from lexicon has a sentiment
score, ranging from -1 to +1. The absolute value of the
sentiment score indicates the emotional tendency (like the
application or dislike) and how strong the emotion is. When
a score is a positive number, the higher the score is, the
more positive the user comment is. On the contrary, the more
negative it is. For example, positive word such as “Good” has
the sentiment score 0.77510, negative word such as “Bad” has
the score -0.47073 and the subjective word such as “install”
has the sentiment score 0.

B. Sentiment-Feature Relation Extraction

In this phase, we mainly introduce how to extract the
relationship of user sentiment with app features from review
contents, which may have the complex grammar and unstruc-
tured sentence pattern. We utilize NLP methods to process
the comments. During this process, Name Entity Recognition
(NER) is significant for getting a high performance of relation
extraction. We construct both user sentiment corpus and app
feature dictionary. Then we use NLTK (Natural Language
Toolkit)https://www.nltk.org/ to figure the sentences with co-
occurrence of user sentiment and app features.

Using the sentiment information and app feature informa-
tion, we dealt with the sentence relation extraction task as a
classification problem. We divided the relation between the
app feature and user sentiment into four main categories,
positive (+), negative (-), expecting (1), and meaningless (0).
More specifically, the relations are classified as “expecting”
when sentiment word is in the expecting word list (which
contains words expressing expected meaning, such as hope,
wish, expect, etc.). Sentiment word with a score greater than
0 will be classified as “positive”, and a score less than 0
is classified as “negative”. If the above three conditions do
not exist, it will be classified as “none”. For instance, if the
user likes the application, We labeled it as positive to the
relationship of the entity with user sentiment. If the user
dislikes the application, We labeled it as negative to the
relationship. If a user expects an improvement of the app
feature, we labeled it as expecting to the relationship. And
if the user comments without real meaning, we labeled it
as meaningless to it. The example of those four categories

is shown in Fig.1, which contains the user sentiment word,
comment app feature word and the relation category.

Relation Extraction is a popular topic in NLP, many novel
methods have been proposed with high performance. To sim-
plify the model as well as avoid complex grammatical and
semantic analysis, we here adopt the text CNN (Convolutional
Neural Network) for sentence classification. In our study, we
manually label part of the reviews and then utilize Text-CNN
[22] to classify others automatically. The marked sentences
are divided into two parts: training data and validation data.
We then trained the CNN model on the marked corpus. In
this way, we extract all sentences that contain co-occurrence
of sentiment words and entity words. For each relationship, a
sentiment score corresponds to the user’s emotion.

C. Review Knowledge Graph Construction
1) Conceptual Model: Fig.2 shows the conceptual model

of the review knowledge graph, including the concept of the
application, user, and some attributes. Specifically, we defined
the sentiment of reviews into four basic emotions: positive,
negative, expecting, and meaningless. At the same time, we
also defined app features that applications and reviews have.
The detailed concept definition is illustrated as follows.

For each application we choose from App Store, we collect
the basic information including the app’s category, app’s total
score, and app’s development team.

Each application has a lot of reviews. The user’s ID and
the comment date would be selected as basic information for
uniquely identifying a comment. Specifically, each review con-
taining user sentiment for app features. Here we particularly
add sentiment score for each comment to transform the textual
emotion to a digitized score, which is defined as sentiment
score ranging from -1 to +1. This score can directly indicate
the relationship including positive, negative, meaningless and
expecting. In this way, the KG can display the distribution of
the user’s opinion about the app. The review is also linked
with the app features that users comment on. The app feature
entity belongs to a different perspective of the application, the
detailed definition of app features is shown in Table I. Each
category contains feature words with specific meaning. For
example, ”button” belongs to the topic ”GUI”. In the review
KG, the app feature entity indicates comment objects around
a specific app.

2) Entity and Relation construction: The relationships of
user sentiment and app features were then embedded into
the Knowledge Graph. Each relationship is displayed in the
KG through the one-to-one correspondence of the concepts
including user entity, app feature entity and the sentiment
score. The attributes information such as app category and
app feature topic are also linked to the app.

In this way, our Knowledge Graph can express the relations
of users and the Apps. For each user entity and App feature
entity, there exists a relation line with a sentiment score to
indicate the meaning and the strength of the relation, such
as “Good (0.77510)”, “Bad (-0.47073)”. We use Neo4j4, an

4https://neo4j.com/



Fig. 2. The Conceptual model of Review Knowledge Graph

online database, to construct the Knowledge Graph of the
application’s review.

D. Application searching based on Knowledge Graph

Based on the application’s knowledge graph, application
and its features can be searched accurately. In addition, the
distribution of the user’s emotions can be shown according
to the sentiment score. Several searching problems as follows
can be solved efficiently.

1) Suitable Application Retrieval: For a specific application
searching, the knowledge graph performs a clustering algo-
rithm to group the applications that have the same attributes,
e.g. app category, app development team, app total score, etc.

2) Improvable Application Feature Retrieval: The develop-
ment team can check the expecting relations in the application
knowledge graph to know the most needed functions. In this
way, the knowledge graph can achieve the application’s multi-
angled retrieval.

3) User Sentiment Distribution Retrieval: For selecting a
specific function or standard of applications, the knowledge
graph can give the results based on app features, which were
linked with positive sentiment scores ranging from +1 to -1.
It can also show the distribution of users’ experience feelings
for a certain app by ordering sentiment relations.

IV. EVALUATION

A. Experimental Data Set

We utilize crawling tools designed by ourselves to catch
the application’s description and user reviews from Google
Play Store5. To increase the accuracy and reliability of review
analysis, we only choose the application whose total score is
bigger than 4.0/5.0 and the number of reviews is bigger than
1,000. For those categories that take less than 1% of the total
apps we only choose the applications with score bigger than
3.5/5.0 and the number of reviews bigger than 100. We get a
total of about 4,370 applications and about 4,396,950 pieces
of reviews. The proportion of the reviews number from each

5https://play.google.com/store/apps

app category is shown in Fig. 4, in which all app categories
and the sentiment distribution of reviews are illustrated. In this
picture, each row represents an application category. For each
application category, the figure identifies the total number of
user comments in that category, the proportion of comments
in the total number of experimental comments, and the review
sentiment distribution in each category of comments. The
proportion of different sentiment is distinguished by different
color.

For each review, we save it as one record with review id,
review app, review content, review date, and review user to
indicate the review details. The part of the database we crawled
from the website is shared on another website6.

B. Research Question

This research aims to use previous user comments to
provide a more practical result for users. The most important
evaluation standard of the results would be the user’s satis-
faction degree since there are much more fine-grained feature
categories than the original searching method. So we have the
following research questions to guide our evaluation.

• RQ1: Does this Knowledge Graph improve the algorithm
generated searching results?

• RQ2: Does this Knowledge Graph deal with the applica-
tion information in the same way for all app platforms?

C. Experimental Setting

The app reviews data is collected from the Google Play
Store, which is a world-wide used platform for the mobile
application’s downloading. This app information has also been
analyzed for app retrieval before. Since we only choose the
app with a high total score and accept conspicuously rich
searching terms than ever before, the searching efficiency
would improve a lot. Which can explain RQ1. Using the
sentiment corpus and app feature dictionary designed before,
we manually mark 4000 sentences and achieved an agreement
of 92%. If we hold a different opinion on the sentence, we

6https://github.com/fraulifang/Google-app-reviews



Fig. 3. Example of Knowledge Graph

discussed and then labeled it. We collected 1802 positive
relations, 1326 negative relations, 628 improve relations and
244 useless relations. Then we use the Text-CNN [22] model
to automatically classify the other reviews. The parameters of
the model are: filter size are 3,4 and 5, the number of filters is
100, and three convolution layers depending on three different
window sizes. There are also three max-pooling layers, and
an output layer with a softmax function to get the label. The
performance of our model is presented in Table II.

D. Results and Analysis

For now, we get about 4,395,000 relation pairs of user
and app features, including 1,923,038 positive relations,
1,174,434 negative relations, 874,480 improvement relations,
and 423,048 meaningless relations. The more detailed distri-
bution of user sentiment is shown in Fig.4. Then we construct
the knowledge graph based on the relations and the application
description information.

A simplified example of KG is shown in Fig.3, which
contains user entity, app feature entity, relation score and entity
attribute. In this figure, rectangles represent the Apps from
the App Store, ovals represent the App features and rhombus
denote the attributes such as App category and Topic category.
In this figure, two apps, Telegram and Vidogram, with its total
score from Google Play are shown in the graph. The lines with
arrows denote the relationship between apps and their entities
and users. The label of the solid line in the figure is the type
of relationship between the entities.

Based on such a huge graph, application searching can be
achieved. Apps have the same attributes that can be easily
grouped and the category of the app is also shown clearly in
the graph. Furthermore, users can simply search the KG to
find the application they want and know the real experience
feelings from others. For example, a user wants to find an app
for communication. He or she can search the user sentiment
distribution of the app and the result would be the app’s
sequential arrangement of sentiment score, e.g.”Telegram-
4.5, Vidogram-4.2” in Fig3. Or someone wants to find an

application that can read both .doc and .pdf format files, then
they can search the app feature with those keywords. What’s
more, app developers can also check the expecting relations
to see whether the application needs to be improved in some
directions from the user’s aspect. In this way, the multi-angled
and user-friendly app searching can be achieved.

As for RQ2, we test our method on other application
platforms- Uptodown7, which contains Android apps in 6
categories, including Communication, Games, Lifestyle, Mul-
timedia, Productivity, and Tools. We only choose the apps with
a total score bigger than 4.5/5.0 and the number of reviews is
bigger than 1,000. We get a total of about 700 applications.
By dealing with the reviews as illustrated before, we get
about 680,000 relationships. Then the Knowledge graph is
expanded using this new application information. Since the
app feature entities and user sentiment information are the
same, this method can include more platforms application for
more precise searching results.

TABLE II
PERFORMANCE OF OUR TEXT-CNN MODEL

category Precision Recall F1 value

positive 0.75 0.71 0.70
negative 0.74 0.72 0.71
improve 0.76 0.76 0.73
useless 0.81 0.85 0.83

total 0.78 0.76 0.78

V. DISCUSSION

There are still many potential directions need to be explored.
A meaningful direction is to refine the classification of the re-
view category. For example, dividing the content of comments
into version-related, platform-related and operation-related can
help eliminate differences and improve the Knowledge Graph.

7https://en.uptodown.com/



Fig. 4. The proportion of app category and the sentiment distribution

The size of the database is equally important and deter-
mines the accuracy and comprehensiveness of the knowledge
map. We tend to continue the collection work and generate
more knowledge on the data while achieving automatic real-
time updates of some data sources. The resulting knowledge
contributes to further development.

VI. CONCLUSION

In this work, we propose an efficient and effective applica-
tion search approach based on a user review knowledge graph,
which contains information of application features and their
corresponding user sentiment. To this end, a total of 4,370
applications and 4,396,950 pieces of reviews were collected.
We leverage advanced NLP techniques for extracting the app
features and identifying their corresponding user’s sentiment.
The 4,396,000 structured relation pairs are then embedded into
a Review Knowledge Graph. Based on such a KG, application
users and developers can search specific applications, review
the distribution of the user sentiment and application categories
to better achieve their specific requirements.
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