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Abstract— Identifying similar users lay the foundation in many 

fields, such as friend recommendation, user-based collaborative 

filtering, and community discovery. It is useful to analyze users’ 

similarity based on check-in data, especially the analysis of 

spatiotemporal and semantic information. The existing works 

pursue semantic similarity of user trajectories and cannot 

distinguish the effects of geographical factors in a fine-grained way. 

This paper proposes a graph embedding approach to identify 

similar users based on their check-in data. We firstly identify 

meaningful concepts of user check-in data, based on which we 

design a metagraph for representing features of similar user 

behaviors. Then we characterize each user with a sequence of 

nodes that are derived through a metagraph-guided random walk 

strategy. Finally, the sequences are embedded to generate 

meaningful user vectors that are used to the similarity among users 

and thus identify similar users. We evaluate our proposal on two 

datasets, the results of which show that our proposal can 

outperform the baselines. 

Keywords-user similarity; metagraph; random walk; embedding; 

check-in data 

I.  INTRODUCTION 

With the fast development of Location-Based Social 
Network (LBSN) platforms, an increasing number of users can 
check-in at various Point of Interests (POIs) conveniently and 
share their experiences, resulting in massive user check-in 
trajectory data. Such check-in trajectory data contains 
information about when and where a user visited a POI, which 
indicates users’ behaviors and preferences. Analyzing check-in 
data has contributed to identifying similar users, laying the 
foundation in many fields, such as location prediction [1], 
community discovery [3], user-based collaborative filtering and 
location recommendation [2].  

Some early user similarity studies focus only on the 
geographic features of the trajectory [4][5][6], which is limited 
by the geographic distance and ignores the semantics [7]. Recent 
works have measured the similarity of users by mining the 
semantics of GPS trajectories [7][8][9], but the geographical 
impacts are not considered deeply enough. For example, in Fig.1, 
the three different user trajectories are typical to be treated as the 
same, and not further distinguished in terms of their detailed 
geographical information [7][8][9]. However, users who live 
closer to each other are supposed to be more similar than others. 
As shown Fig.1, affected by geographical location, trajectory1 
is more similar to trajectory2 than trajectory3. As such, we 

argue that the semantic and geographic features should all be 
considered when calculating user similarity.  

 

Figure 1.  Examples of three users’ semantic trajectories 

To consider both semantic and geographic features, we 
leverage the graph embedding technique to measure user 
similarity. Graph embedding techniques have been proven as a 
practical approach for representing profound meanings of 
entities and relations. Specifically, the trajectory check-in data 
contains different types of nodes (user, time, POI, etc.), which 
establishes a graph with heterogeneous nodes. The detailed 
semantics of check-in data can be obtained by embedding such 
a graph based on metagraph, which contributes to calculating the 
similarity among user trajectories. Some pioneer studies have 
been done regarding this topic. Dong et al. [14] and Zhang et al. 
[15] transformed the structure into the input of the embedded 
model by recording the node sequences of the random walk in 
the graph. They use metagraph-guided random walk sequences 
to capture semantic information between different types of 
nodes and thus to improve the quality of transformation. 
However, they do not consider spatiotemporal features. 

In this paper, we propose a metagraph embedding based 
approach to identify similar users using their check-in trajectory. 
The main contributions of this paper are summarized as follows:  

1) We identify meaningful concepts of user check-in data, 
based on which we design a metagraph for representing 
features of similar user behaviors. 

2) We propose an improved metagraph-guided random 
walk algorithm to adapt to time and location similarity, 
which is used to characterize each user with a sequence 
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of nodes. The sequences are embedded to generate 
meaningful user vectors that can be used to effectively 
calculate user similarity. 

3) We compare our approach with the state-of-the-arts 
based on two datasets, the result of which show that our 
approach can outperform others. 

The rest of this paper is organized as follows: Section II 
describes some related works. Section III describes the details of 
our method, including metagraph of check-in data, the improved 
metagraph-guided random walk, embedding and user similarity 
calculation. Section IV evaluates our approach. Section V 
summarizes the paper. 

II. RELATED WORK 

This paper identifies similar users by combining the 
semantic and spatio-temporal features of check-in trajectories. 
We leverage the metagraph-guided heterogeneous graph 
embedding to calculate the user’s representation and then 
calculate the similarity. This section will introduce related works 
of calculating similarity based on semantic trajectory and graph 
embedding algorithms. 

A. User Similarity Based on Semantic Trajectory 

Horozov et al. [10] first construct the user activity’s vectors 
by using the user’s votes on POIs, and then calculate the Pearson 
similarity to represent the user similarity. Mazumdar et al. [11] 
compare user similarity by combining the length, support and 
check-in distribution of common location sequences using GPS 
data. However, these methods can’t measure users who have 
similar preferences but live far away. To solve this problem, 
Ying et al. [7] propose a method to measure the user semantic 
similarity by Maximal Semantic Trajectory Pattern (MSTP). 
They first identify the stopping point from the GPS trajectory 
data, and use the landmarks collected from Google Map to form 
the semantic trajectory. Then the user similarity is calculated by 
the weighted average of the maximum semantic trajectories. 
Chen et al. [8] found that the similarity between two identical 
users is not equal to 1 in [7]’s work. To this end, Chen et al. 
propose a method called Maximal Trajectory Pattern (MTP) to 
fix the shortcomings in [7] by using the longest common 
semantic patterns. Later, Chen et al. [9] propose a method to 
calculate the user similarity according to the Common Pattern 
Set (CPS), they introduce the support value distribution of 
common patterns to solve the problem of indistinguishable 
pattern frequencies in literature [8]. However, these methods 
ignore the influence of geographical factor while studying 
semantics. We argue that semantic and geographic features 
should be considered when calculating user similarity. 

B. Embedding Learning 

Embedding is a way to transform discrete variables into 
continuous vector representations [23]. In neural networks or 
graphs, embedding can not only reduce the spatial dimension of 
nodes, but also represent the nodes in a meaningful way. 
Embedding learning is to learn the vector representation of 
nodes in the metric space through specific methods, such as 
LINE [12], DeepWalk [13], etc.. Deepwalk uses a neural 
language model (skip-gram) to embed graph. The authors first 

use random walks to uniformly sample the neighbors of the 
nodes from the graph as a path. The paths are treated as sentences, 
and nodes are treated as words. Then the skip-gram model is 
used to train the representation of the nodes. To better preserve 
the relationship between nodes during the embedding process, 
LINE proposes the concepts of the first-order similarity and 
second-order similarity. However, these works focus on 
homogeneous networks which have a single type of node or 
relationship. Some pioneer studies have been done regarding this 
topic. Dong et al. [14] propose a method (named as 
Metapath2vec) for embedding in heterogeneous networks. They 
use a random walk based on metapath to get the sequence of 
nodes, and then improved the skip-gram model to learn the 
embeddings. Zhang et al. [15] argue that metagraph has richer 
semantics than meta-path. They use metagraph to analyze the 
behaviors of authors’ published papers and classify similar 
authors. However, there is no time and location limit for the 
author to publish papers, thus their work can not apply to check-
in data. Based on these works, this paper leverages the 
metagraph to study the behavior of users visiting POIs, 
introduces time and location constraints in random walk 
algorithms, and learns user’s embedded representation. 

III. METHODOLOGY 

The framework of our method, as shown in Fig.2, named as 
Metagraph-Guided Embedding (MGE). We first design the 
metagraph of check-in trajectory data to represent similar user 
behaviors. Then we characterize each user with a sequence of 
nodes that are derived through a metagraph-guided random walk 
strategy. Finally, the sequences are embedded to generate 
meaningful vectors that are used to calculate user similarity. 
Here are the basics concepts in this paper, and the details of our 
framework.  

 

Figure 2.  The framework of our method (MGE).  

A. Concepts 

We briefly introduce the basic concepts of check-in data and 
metagraph.  

POI: A POI is defined as a place that has a special function 
or meaning to users (e.g., a school or a bank). In our method, a 
POI has four attributes: identifier, name, geographical location, 
and category.  

 



Trajectory: A trajectory is a path that a user takes in space 
over a period of time. It can be regarded as a spatial point with 
chronological order, which records the user’s geographical 
locations at different times. The check-in data studied in this 
paper has POI profiles, which is a trajectory data with location 
semantic.  

Check-in: A check-in is a quadruple (u, t, g, p), where u is a 
user, t is a time slot, g is a geographical location coordinate 
(including latitude and longitude), and p is a POI. A check-in 
means a user u visiting a POI p at a time slot t and a geographical 
location g. It is worth noting that we discretize timestamps 
associated with check-in records into 24-time slots based on 
hours, as other works have done [16]. 

Metagraph: A metagraph is a relational hypergraph 
representing multi-relational and multi-dimensional data [17]. It 
is a graph with its nodes denoting the entities and its edges 
representing the interaction between nodes. Different from the 
traditional graph concepts, each node in metagraph represent a 
set of an entity. For example, the user, POI, time slot, and 
geographical location can be regarded as entities. Fig.3 shows 
the metagraph of our paper. 

B. Designing Metagraph 

Mining check-in trajectory data can discover user behavior 
features. We argue that users with similar behaviors have similar 
check-in characteristics. For instance, users will check-in at 
similar time slots, geographical locations, or POIs. In order to 
measure the similarity of user behaviors, we design a metagraph 
of check-in, which can reflect the meanings that two users visit 
the same POI when they are at similar time slots and 
geographical locations. We use U, T, G, P to represent the set of 
users, time slots, geographical locations and POIs, respectively. 
In particular, user, time slot, geographical location, and POI are 
defined as entities, and serve as different types of nodes in the 
metagraph.  

Figure 3.  Metagraph of check-in data 

Fig.3 shows the metagraph of check-in data, which describes 
that two users are relevant in check-in activity if they have 
similar time slots and geographical locations in the same POI. 
At this point, the readers only need to understand the meaning of 
the metagraph. The method of defining the similar time slots and 
similar locations will be described in detail in the next subsection. 

C. Metagraph Guided Random Walk 

Using a random walk based on metagraph, we can capture 
meaningful semantics from the data, which find similar user 
behaviors. Our metagraph of check-in data has the constraints of 
similar time slots and similar locations. Therefore, we improved 

the random walk strategy, defining similar time slots and similar 
locations to limit the random walk process. Here we show the 
definition.  

Similar time slots. Given two time slots t1  and t2 , a time 
threshold τ, if |t1-t2|≤τ, then t1 and t2 are similar time slots.  

Similarity locations. Given two geographical coordinates g1 and 
g2, a distance threshold δ, the function distance(a, b) represents 
the geographic distance between the location a and b, if 
distance(g1, g2) ≤ δ, then g1 and g2 are similar locations. 

To meet the constraints of time and location, we propose an 
improved random walk strategy and list the following four 
principles. 

1) Every node that random walks exists in the instantiated 
graph network. Otherwise, it is meaningless. 

2) Random walk starts with user type nodes. Because this 
paper studies the similarity of users, we focus on user-
type nodes.  

3) Random walks are limited by the structure of the 
metagraph. The metagraph is used to describe similar 
user behaviors. Walking in the structure of metagraph 
can capture the semantics of metagraph. 

4) Random walks are constrained by time and location 
nodes. To ensure similar time slots, the time threshold 
must be met when randomly walking time-type nodes. 
In the same way, the distance threshold is met when 
randomly walking the location nodes to ensure similar 
locations. 

To help understand the above principles, given a graph 
network of check-in data in Fig.4, Table Ⅰ shows the correct and 
incorrect walking sequences, we assume the time threshold is 3 
(hours), and locations are similar between nodes. For ease of 
observation, the example sequences omit the time and location 
nodes, only leaving the user and POI nodes. 

Figure 4.  Example of a graph network.  

TABLE I.  EXAMPLES OF RANDOM WALK SEQUENCES 

Example Remark 

u1, p1, u2 Correct 

u1, p3, u2 Incorrect. Violate the principle 1: p3 is not in graph 

p1, u2, p2 Incorrect. Violate the principle 2: the start node is not a user 

u3, u2, p2 
Incorrect. Violate the principle 3: does not satisfy the 

metagraph structure 

u1, p1, u2, 

p2 

Incorrect. Violate the principle 4: the time difference does 

not meet the threshold 

 

 



Next, we formally describe the node transition probability of 
random walks. Different types of nodes (i.e. user, time, location, 
POI) constitute a heterogeneous information network (HIN) [18]. 
Given a HIN H = (V, E) and the metagraph m, where V is a vertex 
set, E is an edge set. Equation (1) defines the node transition 
probability.  

 P(vi |vi-1; m, H)=
1

N
φvi-1

(vi)
 () 

Where φ(∙) is a function of the node type, φ
vi-1

(vi) represents 

the type of vi and the previous node is vi-1, N
φvi-1

(vi)  represents 

the number of nodes which of type φ
vi-1

(vi) . If vi∉ V , the 

probability is 0. It is worth noting that the higher frequency of a 
user visiting a POI or visiting at a time slot, the higher the 
probability of such a time slot or POI node being selected. A 
walk will follow the structure of the metagraph repetitively until 
it reaches the pre-defined length. 

The pseudocode of random walk with time and location 
constraints algorithm is shown in Algorithm 1. In particular, 
given a graph network, the random walk starts at the user-type 
node, walk randomly according to the node transition probability 
and ends at a given length. Each starting node generates a given 
number of paths. The output is a file containing meaningful 
sequences of nodes. 

Algorithm 1 Random Walk with Time and Location Constraints 

Input 
The HIN H = (V, E); the metagraph m; the walk length wl; the 
number of walks per node n. 

Output  A path.txt that records sequences of random walks 

1.  For each u in U do 

2.        random walk to time node  t0, and location node g0 

3.        For i ← 1 to n do 

4.              path = [u] 

5.              For j ← 1 to wl do 

6.                   While (1) do 

7.                       walk to the node according (1) 

8.  If time or location similarity are satisfied 

9.                            append the node into path; break 

10.                    End while 

11.              write path into path.txt 

12.              End for 

13.        End for 

14.  End for 

 

D. Embedded Learning 

Through random walks under time and location constraints, 
we obtain sequences of each node. We aim to convert the 
sequences into vectors to calculate similarity. With embedded 
models, given a HIN H = (V, E), the task is to calculate latent 

representations in d- dimension X∈R
|V|*d (a.k.a. embeddings), 

d ≪ |V|. Then, we choose the skip-gram model to learn the latent 
embeddings of nodes. This model has been validated in [14][15]. 
Specifically, the skip-gram learn node representation by 
maximizing the probability of the occurrence node v’s context 
nodes Context(v) within w window size, as shown in (2).  

 min ∑ ∑ -logP(v'|v;θ)v'∈Context(v)v∈V  () 

Where Context(v)  denotes v’s neighborhood based on the 
random walks guided by metagraph, P(v'|v;θ) is modeled via 
softmax. To speed up training, like other works [19], negative 
sampling is used to approximate the objective function (3):  

 logσ(Xv'∙Xv)+ ∑ logσ(-Xv'k
∙Xv)K

k=1  () 

Where Xv is the vth row of X, representing the embedding 
vector of node v. σ(∙)  is the sigmoid function, v'k  is the kth 
negative node sampled for node v' , and K is the number of 
negative samples. 

E. Calculating User Similarity 

The higher the frequency with which two users visit the same 
POI at similar times and locations, the higher the behavior 
similarity. Based on this meaning, we get the embedded 
representation of user nodes. In particular, the closer the user 
embeddings are in the vector space, the more similar the users 
are. In vector space, the cosine distance pays more attention to 
the difference from the vector direction, which helps to 
distinguish and measure the similarity of users. Therefore, 
equation (4) use the cosine distance to calculate the user’s 
similarity and normalization to make the result in the range [0,1].  

 sim(ua,ub)=0.5+0.5 
ua∙ub

|ua||ub|
 () 

Where ua,ub∈X, sim is the user similarity. 

IV. EVALUATION 

In this section, we evaluate our method (MGE) on two 
datasets. Specifically, we focus on two research questions (RQ) 
and designed experiments for each one. 

• RQ1. Can our method (MGE) calculate user similarity 
effectively? 

To answer this question, we compare our method with 
the MTP [8] and CPS [9] that focus on the semantic 
trajectory similarity calculation. 

• RQ2. Can our method (MGE) identify similar users 
effectively? 

To answer this question, we compared MGE with 
popular network representation learning methods LINE [12] 
and Deepwalk [13]. 

A. Experiment 1 

1) Dataset: to observe the results of pairwise user similarity 

more specifically, and to accurately compare with other 

literature which using the same dataset, we use the synthetic 

dataset, which is derived from [9]. The dataset is constructed 

based on six users’ behaviors that first five being from the 

literature [9], we constructed the same behavior of u6 as u3, but 

they live far away. The dataset consists of 76 check-ins and 4 



POIs from 6 users. Fig.5 shows the six users’ behaviors. We use 

circles to indicate POIs and arrows between POIs to represent 

the trajectory transition direction, and thicker arrows indicate 

higher transition frequencies.  
 

Figure 5.  The six users’ behaviors (The u6 living far from others). 

2) Similarity metrics. the effective similarity calculation 

should meet the following principles, with the first four being 

from [9]. The last is used to verify the geographical impact. 

a) sim(u, u’) is in range [0,1] 

b) sim(u, u’) = sim(u’, u) 

c) sim(u, u) = 1 

d) The frequency of visiting the same place affects the 

similarity of user behavior, i.e. sim(u2, u3) > sim(u1, u3). 

e) According to the common sense, the user’s geographic 

location should have an impact on similarity. The similarity 

between geographic and semantic combination should be 

higher than considering only semantic similarity, i.e. sim(u3, u6) 

≠1. 

3) Comparison with Baselines: in terms of calculating user 

similarity, we choose MTP [8] and CPS [9] as the baselines for 

comparison. The reason is that after our research, most of the 

papers that identify similar users are based on GPS data 

[20][21], and the algorithms of literature [22] based on check-

in data are unknown or incomplete, making it difficult to 

reproduce. Although [8][9] use GPS trajectory data, and their 

later works are to calculate user similarity by mining trajectory 

semantics. Since neither of them disclosed semantic trajectory 

datasets and codes, in order to avoid the negative impact of 

different datasets’ types and the reproduction process on the 

results, we use the data from [9] and prove their weaknesses and 

illustrate the rationality of our method. The results of the 

different methods are given below.  

 

TABLE II.  PAIRWISE USER SIMILARITY 

 u1 u2 u3 u4 u5 u6 

 MTP CPS MGE MTP CPS MGE MTP CPS MGE MTP CPS MGE MTP CPS MGE MTP CPS MGE 

u1 1.0 1.0 1.0 1.0 0.96 0.88 1.0 0.93 0.83 0.83 0.76 0.81 0.83 0.50 0.62 1.0 0.93 0.66 

u2 1.0 0.96 0.88 1.0 1.0 1.0 1.0 0.97 0.89 0.58 0.71 0.80 0.58 0.47 0.63 1.0 0.97 0.67 

u3 1.0 0.93 0.83 1.0 0.97 0.89 1.0 1.0 1.0 0.79 0.67 0.77 0.79 0.44 0.57 1.0 1.0 0.79 

u4 0.83 0.76 0.81 0.58 0.71 0.80 0.79 0.67 0.77 1.0 1.0 1.0 0.79 0.44 0.58 0.79 0.67 0.59 

u5 0.83 0.50 0.62 0.58 0.47 0.63 0.79 0.44 0.57 0.79 0.44 0.58 1.0 1.0 1.0 0.79 0.44 0.57 

u6 1.0 0.93 0.66 1.0 0.97 0.67 1.0 1.0 0.79 0.79 0.67 0.59 0.79 0.44 0.57 1.0 1.0 1.0 

 

TABLE III.  COMPARING THE METRICS OF METHODS ACCORDING TO THE VALUES IN TABLE Ⅱ 

 Similarity metrics Result 

Methods a) b) c) d) e) Description User behavior examples Example values in Table Ⅱ 

MTP √ √ √ ×  × 

Violate d): The similarity of u1, u2 

and u3 should not be the same. 
 

sim(u1,u2) = sim(u1,u3) = 

sim(u2,u3) 

Violate e): The similarity of u3 and 

u6 should not be the same. 
 

sim(u3,u6) = 1 

CPS √ √ √ √ × 
Violate e): The similarity of u3 and 

u6 should not be the same. 
 

sim(u3,u6) = 1 

MGE √ √ √ √ √ Meet all metrics   

 



Results and analysis. In Table Ⅱ, and we describe the results 
of different methods separately. For the sake of observation, we 
list the measurement results of each method in Table Ⅲ, which 

satisfy with “√” and do not satisfy with “×”, and give detail 

description and examples. 

For MTP, the first three users u1, u2 and u3, are not 
distinguished, which violates the metric d). MTP’s weakness has 
been proven in [9]. For CPS, the similarity between u3 and u6 is 
1, which violates metric e) and cannot find the difference in 
geographical location.  

MGE can distinguish u3 and u6 and satisfy all metrics. The 
reason is that we randomly walked nodes with similar 
geographical locations while considering semantics. 
Randomness can reduce but not eliminate the similarities of 
faraway users. 

B. Experiment 2 

1) Dataset: we use the Foursquare datasets that is one of the 

most popular online location-based social networks. This 

dataset consists of 372,387 check-ins and 90,089 POIs from 

4,144 users over four years (December 2009 to July 2013). We 

construct the graph with users, check-in time and location, and 

POI as different types of nodes. We use 80% data as the training 

dataset and the rest as the test dataset. 

2) The experiment design: the node classification is used to 

evaluate MGE. We leverage third-party labels to determine the 

class of each node. Foursquare offers ten categories of POI 

(including Arts & Entertainment, College & University, Event, 

Food, Nightlife Spot, Outdoors & Recreation, Professional & 

Other Places, Residence, Shop & Service and  Travel & 

Transport), which can be used as labels for POI node. Like 

literature [15], the user’s label is assigned to the category of the 

user’s most visited POIs. In this paper, the node embeddings are 

as the input to the logistic regression classifier. F1-measure, 

Precision and Recall are applied to evaluate the performance 

[24].  

3) Parameter selection: in random walks and embeddings, 

there are several parameters, such as the number of walks per 

node, walk length, the vector dimension and location threshold 

δ. We perform an analysis of these parameters in MGE and 

select appropriate parameters by observing the F1-measure. Fig. 

6 shows the results using the control variable method. It can be 

seen from Fig. 6(a) and Fig. 6(b) that a larger value of walk 

length and numbers does not mean that the effect is better. F1 

peaks at 20 and 50 respectively, but overall the parameters have 

little effect on the result, and the extreme value of the result is 

around 0.03. For the location threshold in Fig. 6(c), 10km works 

best. This shows that users within 10km of their current location 

are more likely to visit the same place, so their similarity is high. 

In Fig. 6(d), the dimension of the vector peaked at 96. As the 

dimension increased, the result did not change much. 

4) Comparison with Baselines:  in terms of embedding, we 

compare two popular network representation learning methods, 

LINE [12], DeepWalk [13]. After parameter selection, we use 

the same parameters in Table Ⅳ for all embedding methods.  

Results and analysis. From Fig. 7, the results of LINE and 
DeepWalk are similar, with the F1-measure of about 0.54. MGE 
is higher than the baselines, with the F1-measure of about 0.63, 
indicating that considering similar time slots and similar 
locations can identify users in the same category better. Overall, 
our method has better performance than all baselines in F1-
measure, Precision and Recall. 

 

Figure 6.  Comparison of different parameters 

TABLE IV.  PARAMETER SETTINGS 

Parameter 
Number of 

walks per node 

Walk 

length 

Vector 

dimension 
τ δ 

value 50 20 96 3h 10km 

 

(a) 

 

(b) 

 

(c) 

 

(d) 



 

Figure 7.  Comparison of different methods. 

V. CONCLUSION 

This paper proposes a systematic method for identifying 
similar users based on user check-in trajectory data. In particular, 
we base our approach on metagraph embeddings, in which we 
first designed a metagraph to represent the check-in behavior of 
similar users. Then, we apply a customized metagraph-guided 
random walk algorithm to integrate semantic and geographic 
similarity into our analysis. Finally, the heterogeneous skip-
gram model is used to graph embedding so that we can calculate 
representation vectors of users, and calculate user similarity. We 
have designed and conducted a series of experiments which have 
shown the effectiveness of our methods over existing 
approaches. 
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