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Abstract—Software artifact traceability is widely recognized as
an essential factor for effectively managing the development and
evolution of software systems. However, such traceability links
are usually missed in practice due to the time pressure. Although
an increasing number of studies have been carried out to recover
such links, they all rely on calculating the textual similarity
between artifacts without appropriately considering the context
of each artifact. In this paper, we propose a novel approach
to recover requirements traceability links between use cases and
code, which extends Description-Embodied Knowledge Represen-
tation Learning (DKRL) model to comprehensively characterize
software artifacts by embedding both text information and
interrelationships. Such meaningful embeddings are then used
to train traceability link classifiers by using machine learning
and triple classification techniques. Experimental results show
that our approach is superior to existing approaches.

Index Terms—Traceability Link Recovery, Knowledge Graph,
Knowledge Representation Learning

I. INTRODUCTION

Software artifact traceability is essential for comprehending,
maintaining, and evolving software programs [1]. However,
creating traceable links is often abandoned due to time pres-
sures in practice. In addition, considering the ever-changing
requirements, continuously maintaining the traceability links
is even more time-consuming. As a result, there is a strong
need to automatically recover such links between existing
software artifacts with acceptably high accuracy. Considering
that software artifacts typically involve natural languages,
many researchers have investigated the automatic recovery
of traceability links by leveraging information retrieval and
natural language processing techniques [2], [3]. Specifically,
such approaches mainly rely on calculating text similarity
between software artifacts, but ignore the context information
of software artifacts.

Although the text-similarity plays an essential role in corre-
lating software artifacts, we argue that the context of software
artifacts also renders important clues for establishing the
traceability links among artifacts. In particular, the context of
software artifacts can typically be modeled as a graph, which
connects an artifact with related ones via certain relationships.
For example, a class diagram specifies the interrelationships
among classes, which can serve as the context of each individ-
ual class. Similarly, use case diagrams represent context of the
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involved use cases. Intuitively, representing software artifacts
(e.g., use cases) by incorporating its context would yield more
meaningful results. Description-Embodied Knowledge Repre-
sentation Learning (DKRL) [4] has been well recognized as
an efficient representation learning approach, which captures
both the structural information of explicit relationships and
the textual descriptions of entities. Considering the context
of software artifacts can be represented in terms of entities
and relations, DKRL would contribute to comprehensively
and meaningfully representing the context software artifacts
and eventually help with the identification of traceability links
among software artifacts.

In this paper, we propose a novel approach called Traceabil-
ity Link Recovery-Knowledge Representation Learning(TLR-
KRL)1 to recover requirements traceability links between use
cases and code based on Extended DKRL. Specifically, we
extends the DKRL model to comprehensively characterize
software artifacts by embedding both text information and
structural relationships. Such meaningful embeddings are then
used to train traceability link classifiers by using supervised
machine learning algorithms. All traceability link candidates
obtained from the classifier will be further screened to get
the final result. Overall, the contributions of this paper can be
summarized as below.

• Propose a systematic approach for recovering traceability
links between use cases and code based on knowledge
representation techniques, which can effectively charac-
terize the context of the software artifacts.

• Extend DKRL model with a systematic process for
developing negative samples in order to enhance the
embedding of software artifacts.

• Design and conduct a series of experiments to evaluate
our approach, the results of which show that our approach
is superior to existing approaches.

The remaining part of this paper is organized as follows. We
first review and discuss related work in Section II. We detail
our approach in Section III. In Section IV, we evaluate our
method through four experiments. In Section V, we conclude
this paper and discuss future work.

1https://github.com/Shniya3/TLR-KRL



II. RELATED WORK

1) Information Retrieval Technology: Information retrieval
techniques are widely used in traceability link recovery [5].
Scholars have adopted various methods based on information
retrieval: vector space model (VSM) [6], latent semantic index
(LSI) [7], Latent Dirichlet allocation (LDA) [8] etc. Some
researchers focus on other types of information of software
artifacts besides textual information. McMillan et al. recover
traceability links with textual and structural information ac-
cording to “related requirement share related source code
elements”. [2] Wang et al. model the source code as a graph
structure and mines the structural information in it through
the graph embedding model [3]. However, we believe that
there are multiple explicit relations between entities (such
as class and method in the source code graph) are more
suitable for mining structural information through knowledge
representation learning methods. Jin Guo et al. introduce
domain knowledge for word embedding, and predicte the
probability of link existence through RNN, in order to solve
the “the term mismatch” problem [9].

2) Knowledge Graph and Knowledge Representation
Learning: The main goal of the knowledge graph is to
describe the various entities and concepts that exist in the
real world and the explicit relationships between them. Re-
lations are used to describe the relationship between two
entities. The knowledge graph describes the knowledge in a
structured form. People usually organize knowledge in the
knowledge graph in the form of a network. Each node in
the network represents an entity (person name, place name,
etc.), and each edge represents the relationship between en-
tities. Therefore, most of the knowledge can often be triple
(entity1, relation, entity2) to represent, corresponding to an
edge and two nodes connected in the knowledge graph [10].
Although effective in representing structured data, the under-
lying symbolic nature of such triples usually makes KG hard
to manipulate [11].

Konwledge representation learning has been investigated as
an effective means to solve the above problems. The key idea
of knowledge representation learning is to embed the entities
and relationships in the knowledge graph into a continuous
vector space, simplifying the manipulation while preserving
the inherent structure of the KG [11]. After embedding,
the vector representation of entities and relations is useful
for downstream tasks, such as triple classification [12], KG
completion [4], and so on. Today, TransE and its extensions
are widely recognized in knowledge representation learning
research [13] [12] [4].

Xie et al. uses entity descriptions to extend the TransE and
proposes dkrl model [4]. DKRL model learn knowledge rep-
resentations with both triples and descriptions, i.e.,structure-
based representations and description-based representations.
Structure-based representations do better in capturing informa-
tion in gold triples of the Knowledge graph, while description-
based representations do better in capturing textual informa-
tion in entity descriptions [4].

III. TRACEABILITY LINK RECOVERY-KNOWLEDGE
REPRESENTATION LEARNING(TLR-KRL)

We focus on recovering the traceability links between use
cases and code case. Our proposed traceability link recovery
approach is shown in Figure 1. Firstly, preprocess the software
artifacts. We construct the software artifacts into the structure
of KG and get the description of the entities in KG. Secondly,
we extend the DKRL model to represent use cases and
code comprehensively. We use the extended DKRL model to
represent use cases and code cases. Thirdly, all traceability
link candidates obtained from machine learning classifier and
meaningful representation will be further screened to get the
final results.

Fig. 1. TLR-KRL Overview

A. Phase 1: Preprocess

1) Software Artifact Knowledge Graph Construction: In
order to capture the context information of software artifacts,
we construct software artifacts as knowledge graphs. First of
all, we define the entity types and relationships of the software
artifact knowledge graph based on [3], as shown in figure2.
Because our data set is developed in Java, the file name is
the same as the public class name in the file. So the code
case id is equal to the public class name in the code case.
Other entities connected through these relationships become
the context of a software artifact. We added member variables
and member methods of a class to make vector representation
of class more fine-grained. We add relations between use
cases to capture context information between use cases. The
construction process of the software artifact knowledge graph
is shown in figure 3. Next, introduce the flow of figure 3.

Fig. 2. Entity Type and Relation Definition in KG

• Extract Relation between Use Cases. In the use case, the
“event flow of system” part is linked to other use cases
through the use case name. So by comparing the use case
names, we obtain a set of triples with relation “Inherit”,



Fig. 3. Software Artifact Knowledge Graph Construction

“Include” and “Extend”. Because there are fewer use case
pairs with three kinds of relations, we call the relations
between use cases unified as ”Use Case to Use Case”.

• Source Code Parsing. We parse the code through the
source code parsing tool2 to obtain classes, member
variables, member methods, and their interrelations. Then
we build the knowledge graph according to Table 1.

• Traceability Link Tagging. We tag the links between
use cases and code. Tuples (Use Case, Class) without
traceability link are tagged as 0. Tuples (Use Case,
Class) with traceability links are tagged as 1. Tuples
(Use Case, Class) with traceability links are added to
the software artifact knowledge graph as (Use Case,
Traceability Relation, Class).

2) Entity Description Obtaining: The process of obtaining
entity description is shown in figure 4.

Fig. 4. Entity Description Obtaining

• Remove Character. Remove the title, number, punctua-
tion, and special characters in the use case to get use
case entity description.

• Extract Comment. We use regular expressions to get
comments in the code and map them to class entities and
method entities. Besides, the names of classes, member
variables, and member methods are also natural languages
with important meanings [14]. So the names are added
to the description of entities.

• Translation. ETour is developed in Italian. The software
artifacts contain Italian words, so we translate entity
description into English.

• Stemming. We transform the verbs, nouns, adjectives, and
adverbs in the entity description into prototypes. Software
developers usually use the abbreviation of words when
using common words. So we restore the abbreviations
of words into word prototypes. For example, “database”

2https://github.com/yeweimian21/AST JDT.

Table 1 Variable definitions.
Definition Description

S = {(h, r, t)} S represents training set
for Extended DKRL model.
(h, r, t) is a triple. h, t are
entity. r is a relation.

h, t ∈ E E represents entities set.

r ∈ R R represents relations set.

u ∈ U, c ∈ C U represents use cases set. C
represents code set.

rTrace rTrace represents the relation
which we name “Traceability
Relation.”

T ′ = {(u, rTrace, c)} T ′ represents the negative
samples set. These samples are
traceability links between u
and c tagged as 0 in prepro-
cess.

ud, cd ud, cd represents description-
based representation

us, cs us, cs represents structure-
based representation

is generally abbreviated to “DB”; “delete” is generally
abbreviated to “del.” At this point, we get the knowledge
graph of software artifacts and the description of entities
in the knowledge graph.

B. Phase 2: Software Artifact Embedding

The process of phase 2 and phase 3 is shown in figure
5. As shown in phase 2 of the figure 5, phase 2 embeds
the software artifact KG and its entity descriptions through
Extended DKRL model in order to obtain the meaningful
representation of software artifacts.

In general, the software requirements described by the use
case and the functionality of the software should be equal.
However, the application scenario described by a software
requirement is often completed by multiple classes. The
comments of the class describe the variables and methods
of this class, which results in software requirements and
textual information of the class being usually different. We
argue that the representation of software artifacts with context
information are helpful to recover the traceability links. So
we use the Extended DKRL model to mine the context
information and the text information of entity description in
the KG of software artifacts. After extended DKRL training,
the obtained software artifact vector contains its information
and context information, which is helpful for the application
of downstream tasks.

Extended DKRL represents the DKRL model that changed
the negative sample construction process. In the training pro-
cess of the DKRL model, we need to construct negative sam-
ples according to triples. Since negative samples are randomly
constructed, it is possible to construct false negative samples.
Because we tagged some traceability links in the preprocess,
we improved the negative sample construction process with
T ′(we give some definitions to help the following statement, as



Fig. 5. Phase 2. Knowledge representation learning and Phase 3. Recover Traceability Link

shown in Table 1). Our improved negative sample construction
process is as follows:

S′(h,r,t) =


{(h′, r, t) | (h′, r, t) ∈ T ′}∪
{(h, r, t′) | (h, r, t′) ∈ T ′}

if r 6= rTrace

{(h′, r, t) |h′ ∈ E} ∪ {(h, r, t′) |t′ ∈ E}
if r = rTrace”

(1)

The set of corrupted triples, constructed according to Equa-
tion (1). When constructing a negative sample of triple whose
relation is “Traceability Relation,” randomly select use cases
or classes to corrupt, we replace the use case with other use
cases or class with other classes and make the negative samples
belong to T ′. When the relation is not “Traceability Relation,”
training triples with either the head or tail replace by a random
entity.

C. Phase 3:Recover Traceability Link

1) Traceability Link Vector Definition: First, we represent
traceable links between use cases and classes as Equation (2).

tu,c = (cs − us)⊕ (cd − ud) (2)

“⊕” represents the stitching of two vectors. According to
the tagging results during Phase 1, if there is a traceability
link between u and c, tu,c is tagged as 1; otherwise, tu,c is
tagged as 0.

2) Train and Test Model: We train the classifier with all
tagged tu,c vectors. There are many common classifiers, such
as decision tree, gradient boosting decision tree, Gaussian
naive Bayes, and SVM(We use the sklearn3 library to call
the classifier). Identified traceability links are tagged with 1,
while others are tagged with 0 and will be further analyzed
by using triple classification.

3) Reclassification of Negative Label Samples: Knowledge
representation learning usually uses score function to calculate
the reliability of triples. Triple Classification is to confirm
whether a given triple (h, Traceability relation, t) is correct
or not according to its score, i.e., binary classification on a
triple [12]. The decision rule for classification is simple: for a

3www.scikit-learn.org

triple (h, Traceability relation, t), if the score (by the score
function fr) is below a relation-specific threshold σr, then
predict positive.

Specifically, we first calculate the average score of trace-
ability link triple in Extended DKRL train data. Then, if the
triple to be classified as a score below than average score

rate , the
triple is classified as 1 (with traceability link).

IV. EXPERIMENT

A. Dataset

The dataset of our Research is eTour4. It is an electronic
touristic guide developed by students in Italy. It contains 58
use cases, 116 code cases, and 366 correct traceability links.
(Use case, code case) without traceability link in eTour is
regarded as wrong link, totaling 6362. In our experiment, the
ratio of training set to test set is 4:3.

B. Research Questions and Experiment Design

• Question 1: Can the Extended DKRL model effectively
mine software artifacts textual information and the con-
text of software artifacts?
Experiment 1: We evaluate the embedding results based
on the visualization of entity vectors and traceability
vectors. Because the entity and the traceability vector
are both high-dimensional vectors, the high-dimensional
vectors need to be reduced in dimension. After the high-
dimensional vector is visualized, observe the distribu-
tion of the vector. There should be a clear demarcation
between different types of entity vectors. Traceability
link vectors should have clear demarcation or clustering.
Besides, the quality of the knowledge representation
learning method can be demonstrated through the per-
formance of downstream tasks.

• Question 2: Can SVM effectively recover traceability
links compared to other classifiers?
Experiment 2: We use the same train set and test set
to compare the classification results of multiple classi-
fiers, such as decision tree, gradient boosting decision
tree (GBDT) and Gaussian naive Beyes (Gaussian NB).

4http://www.cs.wm.edu/semeru/tefse2011/.



Experiment 2 compares multiple classifiers without per-
forming triples classification.

• Question 3: Can TLR-KRL effectively recover traceabil-
ity links?
Experiment 3: We compare our approach with
ML+Logical Reasoning [14], UD-CSTI(VSM) and UD-
CSTI(JS) [15]. These models are the best performing
models to use the same dataset. In addition, in order
to prove the validity of the modified negative sample
construction process, experiment 3 also add TLR-
KRL(DKRL) to the experimental comparison.

• Question 4: Can triple classification recover traceability
links effectively?
Experiment 4: We first fix the results of the extended
DKRL and SVM. Then experiment 4 observes whether
the triple classification is useful by changing the threshold
of triple classification.

C. Metric

We use well-known IR metrics to evaluate the performance
of traceability recovery methods [5].

precision =
|cor ∩ ret|
|ret|

% (3)

recall =
|cor ∩ ret|
|cor|

% (4)

F1-score =
2× precision× recall
precision+ recall

(5)

Specifically, cor represents the sets of correct links and ret is
the full set of retrieved links. Based on these two variables,
the metrics precision, recall and F1-score can be calculated,
which are shown in equation (3)-(5)

D. Analysis of the Results

Fig. 6. Entity Structure Vector Dimensionality Reduction Scatter Graph

1) Experiment 1: As we can see in figure 6, use case
structure vectors and classes structure vectors have a clear
demarcation. As we can see in figure 7, use case description
vectors and class description vectors have a clear demarcation.

Fig. 7. Entity Description Vector Dimensionality Reduction Scatter Graph

Fig. 8. Traceability Link Vector Dimensionality Reduction Scatter Graph

As shown in figure 8, traceability link vectors with different
labels are distributed on both sides of the figure. Traceability
link vectors that are tagged as 0 are well clustered on the
left side and can be clearly separated from the other type of
vectors, showing that our approach can effectively mine textual
information and the context of artifacts.

Fig. 9. Comparison of Multiple Classifiers

2) Experiment 2: As we can see in figure 9, the precision
of GBDT is slightly higher than SVM, but the recall is
significantly lower than SVM. The F1 − score of SVM
with the polynomial kernel is the best among the compared
classifiers because SVM can better classify linear inseparable
problems. Because F1− score comprehensively evaluates the
performance of the classifier, our subsequent experiments use
SVM as the classifier.



Fig. 10. The Precision-Recall Curves Graph

3) Experiment 3: When evaluating a traceability link re-
covery work, it is common to compare precision at different
recall level. Figure 10 shows the precision-recall curve
of ML+Logical Reasoning, UD-CSTI(VSM), UD-CSTI(JS),
TLR-KRL(DKRL) and TLR-KRL(Extended DKRL) respec-
tively. It can be seen that our method has a significant
improvement in the recall rate of 0.2-0.5. The performance of
our method is close to that of the ML+Logical approach within
the recall rate of 0.5-0.8. It shows that TLR-KRL(Extended
DKRL)s can recover traceability links effectively. In addition,
the improvement of the DKRL negative sample construction
process is also effective, because the precision-recall of
downstream tasks has been improved.

Fig. 11. F1-score at Different Rate of Triple Classification(TC)

4) Experiment 4: We fixed the hyper-parameter of Ex-
tended DKRL and SVM to explore whether the triple clas-
sification is effective. As shown in figure 11, the performance
only using SVM and only using triple classification is similar.
When we change the threshold of triple classification to 0.9,
the performance is improved. As the rate increases, F1−score
gradually decreases, because the threshold is gradually reduced
to reduce the recall. But TLR-KRL is still better than using
the only SVM. To sum up, triple classification can effectively
recover traceability links.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach to recover
requirements traceability links between use cases and code
based on DKRL. our approach extends DKRL model in order
to embed software artifacts with regard to both of their textual

descriptions and their structural context. A series of experi-
ments have been conducted, the results of which show that
our approach has outperformed existing traceability recovery
approaches In the future, we first plan to further evaluate our
approaches with additional data sets. Moreover, we want to
apply our approach to recover traceability links among other
software artifacts, investigating whether our approach can be
generalized to deal with various software artifacts. Finally, we
envision an empirical case study with our industrial partners.
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