
DOI reference number: 10.18293/SEKE2020-114

Dynamic Architecture-Implementation Mapping for
Architecture-Based Runtime Software Adaptation

Cuong Cu1, Rachel Culver2, and Yongjie Zheng2
1CyberSource Corporation, Austin, Texas, USA

2Department of Computer Science and Information Systems, California State University San Marcos, USA
csc823@gmail.com, culve005@cougars.csusm.edu, yzheng@csusm.edu

Abstract—Architecture-based software adaptation is a promising
method that adapts a software system by evolving its architectural
model, which is generally easier to understand and manipulate
than source code. The wide-scale practice of the method requires
an approach to automatically mapping adaptive changes that are
planned and deployed in the architecture to modifications of
running code. This involves two main challenges: maintaining
architecture-implementation conformance and dynamic software
updating. Existing approaches fail to address them simultaneously
to enable architecture-based adaptation. This paper presents a
novel approach combining an architectural variability
implementation mechanism with an architecture framework. The
approach automatically updates both source code and running
code during architectural evolution. As an initial assessment, we
applied the approach to the adaptation of a chat application.

Keywords—software architecture, architecture-implementation
conformance, software evolution

I. INTRODUCTION
A self-adaptive software [15] modifies its own behavior in

response to changes in its operating environment, such as end-
user input, external hardware devices and sensors, or program
instrumentation. Architecture-based adaptation [5, 12, 17] is an
important result from software architecture research. A software
system’s architecture is the set of principal design decisions
made about the system [19]. It is commonly modeled as a
configuration of components connected via interfaces, using an
architecture description language (ADL). Architectural models
do not contain implementation details and generally are easier to
understand and manipulate than source code.

Figure 1 shows an existing infrastructure of architecture-
based software adaptation that this research aims to support. It
separates adaptation activities into two simultaneous processes:
adaptation management (the upper half) and evolution
management (the lower half). Adaptation management monitors
and evaluates the application and its operating environment,
plans adaptation, and deploys change descriptions in
architectural terms (e.g., replacing a component) to the running
application. Evolution management is responsible for evolving
the application by mapping the deployed architectural changes
to modifications of the application’s running implementation,
while ensuring runtime conformance between the architecture
and implementation. This is our focus in this project, and it
primarily involves the following two challenges.

Fig. 1. An infrastructure of architecture-based runtime adaptation [17].

• Mapping changes in the architecture to automatic updating
of source code. Software architecture may be frequently
changed during architecture-based adaptation: a component
may be replaced by another component, and a new interface
may be added to a component. These changes affect the code
in various ways and at different degrees of granularity [4].
Existing architecture-centric approaches often solely rely on
code generation [6] to automatically update the code. This is
not sufficient because the manually developed code (i.e.,
user-defined code) also exists and is often mixed with
generated code. It is difficult under this circumstance either
to protect user-defined code from being overwritten or to
update user-defined code accordingly.

• Dynamically modifying running code after source code is
updated. This is essentially a problem of dynamic software
updating [13] that involves several issues, such as swapping
code and transferring application state (e.g., the current
values of program variables) to new code. None of the
existing architecture-implementation mapping approaches
[11, 14, 16, 22] addresses these issues. Existing dynamic
software updating techniques [1, 10, 13] are mainly for

language-level program adaptation. They typically require
extension of existing programming languages or the use of a
third-party middleware. These requirements may add to the
complexity of implementing architectures and thus are not
appropriate for architecture-based runtime adaptation.

In this paper, we present an architecture-implementation
mapping approach to supporting architecture-based runtime
adaptation shown in Figure 1. An important insight that we have
in this research is that the architectural elements that are
planned/anticipated to be changed (i.e., variable) should be
implemented differently from the stable or core elements. Their
implementations should be either loosely bound to the rest of the
system (e.g., in a separate module) or can be easily identified
and updated (e.g., via code annotations). This opens up the
opportunity of automatic updating of source code (including
user-defined code) when the variable architectural elements are
changed as planned during architectural adaptation.

The first contribution of our approach is a novel source code
model that implements different kinds of variable architectural
elements in specific ways. It extends an existing implementation
model that we developed for product line architecture [21, 22],
which also involves architectural variability. The original model
decouples the generated code and user-defined code of each
architecture component into independent code modules (e.g.,
classes). Our approach further divides the user-defined code into
modules that implement the component’s main logic and
variable interfaces respectively. Moreover, our approach uses an
annotative technique in the user-defined code to indicate code
fragments (e.g., a single line of code) corresponding to variable
architectural elements. When the architecture is changed, our
approach automatically updates both generated code (via code
regeneration) and user-defined code (via annotation processing)
to maintain architecture-implementation conformance.

Additionally, our approach includes a novel software
framework named DynaMyx that automatically updates running
code of a component when its source code is changed (e.g., as a
result of mapping architectural changes to source code described
above). DynaMyx extends an existing architecture framework,
Myx [9], which provides built-in implementations (e.g., APIs,
abstract classes) for implementing architectures. On top of that,
DynaMyx includes modules that encapsulate the logic (e.g.,
transfer state, swap code) of dynamic software updating from
the overlying application. This allows the developer to focus on
application-specific logic, while the DynaMyx framework
automatically monitors source code, detects its changes, reloads
the changed code, and migrates the runtime state to the new code
without stopping the running code.

We implemented a prototype of the approach in ArchStudio
[2], an Eclipse-based architecture development platform. As an
initial assessment, we applied the approach to the adaptation of
a chat application that has an explicit architectural model. We
changed its architecture while the application was running, and
observed that the running code was dynamically updated with
our approach. After that, we inspected both the source code and
the application’s behavior (e.g., functions, runtime data) to
assess whether the application functions appropriately and
whether its architecture and running code are consistent. We
created a video demo [7] to illustrate this process.

II. APPROACH
Figure 2 provides an overview of our approach. The

rectangle at the top represents different kinds of variable
architectural elements that the approach supports, including
replacement of a component, replacement of an interface, and
addition of an interface. We use an existing architectural
modeling approach and tool called ArchFeature [3] that we
developed in a prior project. ArchFeature supports modeling and
evolution of architectural variations using an existing XML-
based ADL, xADL [8]. Our focus in this project is on mapping
of architectural changes to both source code and running code.
The gray boxes in Figure 2 represent two main contributions of
the approach: (1) a source code model (supported by a code
generator and an annotation processor) that regulates the
implementation of an architecture component to enable
automatic modifications of source code; (2) the DynaMyx
framework that extends the Myx framework as mentioned in
Section I with the capability of automatic updating of running
code. Each is introduced in the following subsections.

A. Architectural Variability Implementation
Our approach includes a novel source code model combining

code generation, code separation, and an annotative technique in
the implementation of an architecture component. As shown in
Figure 2, the model divides a component’s source code into the
following three independent modules and uses a program
composition mechanism (e.g., method delegation) to integrate
the separated code. This enables a separation of decision space
within the implementation of each component and offers a novel
way to implement different variations in the architecture.

Generated Code: a module that is generated from the
component’s architectural specification. It contains routine
implementation of the externally visible information (e.g.,

. . .

Generated Architectural Code
(e.g., architecture topology, framework specifics)

User-Defined Core Code
(with annotations)

User-Defined Variability
Code (with annotations)

Myx Framework
Code

Monitor
Code

Reloader
Code

Wrapper
State

Manager

A
rc

hi
te

ct
ur

al

C
ha

ng
es

So
ur

ce
 C

od
e

 M
od

el
D

yn
aM

yx

Fr
am

ew
or

k

Executing Implementation (i.e., Running Code)

Adaptation
Finalizer

Code Generator and Annotation Processor

Fig. 2. Approach overview.

interfaces) of the component. The generated code encapsulates
knowledge about architecture topology and related variations
(e.g., implementation of an optional interface). It does not need
or allow manual modification, and implements the application-
specific methods (e.g., methods defined in the component’s
interfaces) by redirecting request to a separate module (i.e., user-
defined code modules explained below), where the methods are
manually implemented.

User-Defined Core Code: a module that contains manually
developed implementation details of the component’s main
logic. It implements a program interface including the methods
that generated code needs the programmer to develop. The user-
defined core code represents the internal implementation of the
component and encapsulates implementation-specific concerns
(e.g., use of code libraries and algorithms). It addresses related
architectural variations (e.g., replacement of a component for a
different implementation) by switching between alternative
user-defined modules, which are represented by the overlapping
boxes in Figure 2.

User-Defined Variability Code: a manual module that is
separated from the user-defined core code above. It contains
implementation details of a construct (e.g., an optional interface)
that can vary independently of the component. This reduces the
impact of the variation (e.g., inclusion/exclusion of the
construct) on the rest of the component’s user-defined code.
Similar to the core module, the variability module implements a
program interface, which only includes methods specific to the
construct. A library of variability modules containing different
implementation mechanisms may also exist.

Our approach also includes an architecture-based code
annotation technique that is used in the user-defined code
modules described above to indicate optional fine-grained code
fragments (e.g., a method, a line of code), which may be added
or removed corresponding to the adaptive changes made to the
architecture. An annotation is defined as a Java annotation (i.e.,
@Optional) wrapped by a block comment (i.e., /*…*/) as shown
below. It contains the name(s) of the feature(s) that the annotated
code is related to. Each feature is represented as a predefined
value of a Java enum named Feature (i.e., Feature.{feature-
name}). In particular, the Feature enum is generated from the
architecture (hence architecture-based) and includes the names
of all the features that are related to the corresponding
component in the architecture. Only the included names can
appear in an annotation used in the component’s code. In this
way, the programmer does not need to manually type in a feature
name. When the architecture is changed, the related code
fragments and annotations are automatically updated by the
annotation processor shown in Figure 2.

/*@Optional(Feature.{feature-name}, …)*/
Figure 3a shows an architecture example of a text-based chat

application. The architecture has four components (i.e.,
rectangles) that are connected via interfaces (i.e., triangles). All
the elements drawn using dashed lines are variable for three
features: sending system messages (e.g., a smiley face), saving
chat history using different mechanisms (e.g., file system,
database), and sharing files. Figure 3a also shows an example of
variability specification in the xADL language. It defines an
optional interface of Component Server for FileSharing.

Client Server

Chat
History

Message
Library

saveMsgloadMsg

sendMsg

fwdMsg
uploadFile

01 class ServerArch extends MyxComponent{
02 IServer _imp = getCoreImp();
03 IFileSharing fileImp = getFileImp();
04 IFwdMsg out1;
05 IChatHisotry out2;
06 public void init(){
07 out1= MyxUtils.getService(“FwdMsg”);
08 out2= MyxUtils.getService(“ChatHistory”);
09 }
10 public void destroy(){}
11 … //other lifecycle methods
12 public void sendMsg(String msg){
13 _imp.sendMsg(msg);
14 }
15 public void uploadFile(File f) {
16 fileImp.uploadFile(f);
17 }
18 }

01 interface IServer {
02 public void sendMsg(String msg);
03 }

01 interface IFileSharing {
02 public void uploadFile(File f);
03 }

01 class ServerImp implements IServer{
02 ServerArch _arch;
03 public void sendMsg(String msg){
04 _arch.out1.fwdMsg(msg);
05 /*@Optional(Feature.ChatHistory)*/
06 _arch.out2.saveMsg(msg);
07 }
08 }

01 /*@Optional(Feature.FileSharing)*/
02 class FSImp implements IFileSharing{
03 ServerArch _arch;
04 public void uploadFile(File f){...}
05 }

(a)

(b)

01 <interface id=”i03”>
02 <optional>
03 <feature>
04 FileSharing
05 </feature>
06 </optional>
07 </interface>

Fig. 3. (a) Architecture example of a chat application; (b) Code example of Component Server.

Figure 3b shows the code example of Component Server
implemented using our approach. The generated code (Class
ServerArch) includes references to user-defined modules (Lines
2-3), references to connected components (Lines 4-5), lifecycle
methods and APIs required by the DynaMyx framework
(introduced in the following subsection), and application-
specific methods (Lines 12-17) that are implemented by calling
the corresponding user-defined module. The user-defined core
code (Class ServerImp) and variability code (Class FSImp) each
implements a program interface (IServer and IFileSharing) that
is also generated and includes the methods to be manually
developed. The user-defined code modules contain architecture-
based annotations that are attached to optional code fragments
(Line 6 of Class ServerImp). Note that the user-defined code
may call the methods of other components via its generated code
(e.g., Lines 4 and 6 of Class ServerImp).

B. DynaMyx Framework
Myx is an existing architecture framework written in the

Java programming language. It includes a set of modules as
built-in implementations of key architectural elements, which
are used to develop an architecture-based application. Myx also
encapsulates the logic for bootstrapping the application and
regulating interactions (e.g., method calls) between components.
This allows application developers to focus on developing
application-specific logic. DynaMyx inherits these capabilities
(i.e., supporting architecture implementation) from Myx. In
particular, DynaMyx maintains Myx’s interface (e.g., APIs and
lifecycle methods that are underlined in Figure 3b) to the
overlying application. All the applications originally built on
Myx can still be correctly executed with DynaMyx. This is
reflected in Figure 2 as all the DynaMyx modules are underneath
Myx and are invisible to the application code above.

DynaMyx extends Myx with the capability of dynamic
software updating and hides the related complexity from
implementing architectures. This represents a novel and
promising approach to supporting architecture-based runtime
adaptation. DynaMyx includes five new modules: Code
Monitor, Code Reloader, Code Wrapper, State Manager, and
Adaptation Finalizer as shown in Figure 2. It automatically
detects source file changes, complies the program from the
changed source files, starts it up alongside the old program,
transmits its state to the new program, and finally swaps the
initialized new program with the old program. The entire
process consists of the following five steps.

Step 1 – Detect code changes. DynaMyx works with an
program development tool (e.g., Eclipse) that automatically
complies source code when it is changed. The Code Monitor
module of DynaMyx monitors the modified dates of every
component’s compiled code files. If a change is detected in a
component, Code Monitor automatically triggers the steps
below to update the component’s running code. Other
components are not affected during this process.

Step 2 – Reload changed code into the running system. The
Code Reloader module includes a dedicated code loader, which
enforces reloading of a modified code file into the system (e.g.,
Java Virtual Machine). The code reloading will occur if the
component is inactive and is not communicating with other
components. This is determined based on Myx’s capability of
managing component communications as mentioned earlier.

Step 3 – Create new instances from reloaded code. The new
code instances are not bound to the system at this point.

Step 4 – Transfer application state to new code instances
and initialize them afterwards. State Manager processes user-
defined code to transfer state for the updated components.
During this process, it bypasses security scope, especially the
private and protected scopes, to access and copy state from old
stances to new instances. In particular, State Manager is able to
transfer state in a class hierarchy and support properties that are
inherited and defined in a parent class. After that, the Manager
will initialize new instances with the transferred state by calling
the component’s Myx lifecycle methods (e.g., init underlined in
Figure 3b).

Step 5 – Swap (i.e., bind) new instances into the running
system and discard old instances. A challenge involved at this
point is updating the references of other components to old code
instances, which will be swapped out of the memory. It is
difficult to detect all the related references as this is essentially
a problem of dynamic code analysis. DynaMyx addresses the
challenge by wrapping the implementation of each component
with Code Wrapper (implemented based on Java Proxy). The
Wrapper, instead of the component’s code, is referenced by the
code of other connected components. The Wrapper serves as a
delegate that intercepts and redirects the function calls from the
connected components. At the end of the adaptation, the
Adaptation Finalizer module updates the Wrapper to refer to
new instances of the component’s code and bind new instances
into the system.

Table 1. Mapping Runtime Architectural Changes to both Source Code and Running Code.
Runtime architectural changes Mapping to source code Mapping to running code

Component addition/removal Regenerate code to include/exclude the
component’s architectural code.

Load/unload code and
create/destroy instance.

Component replacement Regenerate code to switch to a different
user-defined core module.

Reload new code; create new
instance; transfer state; swap code.

Provided interface addition/removal Regenerate code to include/exclude the
interface’s architectural code.

Load/unload code and
create/destroy instance.

Provided interface replacement Regenerate code to switch to a different
user-defined variability module.

Reload new code; create new
instance; transfer state; swap code.

Required interface addition/removal Regenerate code; process annotations and
code fragments in user-defined modules.

Reload new code; create new
instance; transfer state; swap code.

Connection addition/removal Regenerate the bootstrapper program. Reload the bootstrapper program.

C. Mapping Architectural Changes to Code
Table 1 summarizes our approach’s capabilities of mapping

typical kinds of runtime architectural changes to both source
code and running code based on the implementation model and
DynaMyx framework presented in this section. It distinguishes
a provided (input) component interface from a required (output)
interface. A provided interface contains the methods
implemented within the component, while a required interface
contains the methods that are implemented by another
component and used by the current component. The connection
changes are handled by Myx as mentioned in Section II.B.

III. PRELIMINARY EXPERIENCE
We developed a prototype of the approach in the ArchStudio

open-source system as mentioned in Section I. The prototype
includes a code generator, an annotation processor, and the
DynaMyx framework. The code generator is built using the
Eclipse JET code generation engine [6] that follows a template-
based code generation paradigm. The code generation templates
capture routine implementations of software architecture. The
annotation processor is built using the ANTLR parser generator
[20]. It automatically identifies and updates code annotations
and code fragments corresponding to an architectural change.
We integrated these tools with the ArchFeature architectural
modeling tool mentioned in Section II. This provides us with a
platform where we can assess our approach.

We will consider the architecture-implementation mapping
approach presented in this paper successful if (1) it maintains
conformance between a software’s architecture, its source code,
and its running code when the planned architecture changes are
deployed; (2) the dynamically-updated running software
behaves appropriately (with the updated behavior) and
continuously (with the transferred state); (3) the overhead in
terms of executing time and memory requirement during
adaptation is acceptable. To validate our approach along all
these three dimensions, we applied the approach and tools to a
chat application.

The chat application was implemented by two Masters
students based on the approach presented in this paper. It has a
list of features (e.g., File Sharing, Game, and Template) and an
explicit architectural model developed using the ArchFeature
tool. It has around 15K SLOC, including generated code, user-
defined code, and code annotations. The architecture and code
are consistent with each other. This was validated using a
consistency checking tool of ArchStudio. We assessed the
approach by executing the chat application and exercising some
of its functions (e.g., chat) to generate runtime state (e.g., chat
messages). We then used the ArchFeature tool to change its
architecture while the application was running. We exercised
different kinds of architectural changes as discussed in the paper,
such as component removal and interface addition, which were
eventually reflected into the running code by our approach. In
the end, we checked architecture-implementation conformance
using the tool mentioned above. We also inspected the behavior
and application data of the updated chat application to validate
whether it still functions correctly.

Figure 4 shows screenshots of the chat application’s
architectural model (opened in our ArchFeature modeling tool)
and user interface (i.e., a chat client window). In one of the
experiments, we removed the Template feature (selected in the
feature list) and its related architectural elements while the
application was running. Our approach was then triggered to
automatically update the application’s source code (via code
regeneration and annotation processing) and running code (with
DynaMyx) without terminating its execution. When the
adaptation was completed, we noticed that a related user
interface element (e.g., the button circled in the figure)
disappeared since the corresponding code was dynamically
removed by our approach. Meanwhile, the application state
(e.g., chat messages) was successfully preserved. We created a
video demo [7] to illustrate the process described above.

Overall, our approach was able to automatically update both
the source code and running code of the chat application when
its architecture was changed at runtime. We validated

Fig. 4. Architecture-based runtime evolution of a chat application.

conformance between the updated architecture and
implementation after each evolutionary operation. The system’s
new behavior also matched the corresponding architectural
changes, and we did not notice any performance degradation
during the adaptations. A limitation of DynaMyx that we found
is that the new state must be determined and transferred from the
existing state. Our approach does not address inferring new state
information, which usually requires manual intervention (due to
lack of information). For example, it cannot automatically
transfer state to a new field added in the new code since this
information does not exist in the old code.

IV. RELATED WORK
Several architecture-implementation mapping approaches

exist, including programming language design [11], code
generation [6], and architecture frameworks [9, 16]. These
approaches successfully address the challenge of bridging the
abstraction gap between architecture constructs and program
elements during the initial development of a software system.
They can maintain conformance between the architecture and
source code along certain criteria, such as style conformance
[16], communication integrity [11], or quality concerns [14].
However, none of them addresses runtime conformance
between the architecture and running code in architecture-based
self-adaptation. Existing architecture frameworks, such as C2
[16] and Myx [9], provide fairly well understood source code
that assists developers in implementing systems conforming to
an architecture style. They do not support the mapping of
architecture changes to code and require an additional mapping
approach (e.g., the presented work) to maintain architecture-
implementation conformance.

Existing architecture-based runtime adaptation approaches
address some important issues in this area, such as adaptation
infrastructure [5, 12, 17] and architecture styles [18]. These
approaches reveal the benefits of a self-managed software
architecture. In terms of mapping architectural changes to
running code, they mainly rely on existing architecture-
implementation mapping approaches, such as architecture
frameworks and code generation, which are not sufficient as
described above. For example, existing approaches in this area
cannot support architectural changes (e.g., replace an interface)
involving the challenges of automatically updating user-defined
code and dynamic software updating.

V. CONCLUSION
This paper presents an approach that maintains runtime

conformance between the architecture and running system. This
is essential to architecture-based runtime adaptation, but fails to
be addressed by the existing approaches of dynamic software
updating and architecture-implementation mapping. The
approach has two main contributions: (1) a variability-specific
architecture implementation approach that enables automatic
modifications of source code (e.g., user-defined code) during
architectural adaptation, and (2) an architecture framework that
encapsulates dynamic software updating mechanisms and
enables automatic modifications of running code. The initial
assessment reveals that our approach is capable of supporting
architecture-based runtime software adaptation. We intend to
further evaluate the approach through a long-term study with a
large software system in the future.

REFERENCES
[1] A. Orso, A. Rao and M. J. Harrold, “A technique for dynamic updating of

Java software,” International Conference on Software Maintenance,
2002. Proceedings., Montreal, Quebec, Canada, 2002, pp. 649-658.

[2] Archstudio. An Architecture-based Development Environment.
http://www.isr.uci.edu/projects/archstudio/, Institute for Software
Research, University of California, Irvine.

[3] C. Cu, X. Ye, and Y. Zheng. “XLineMapper: a product line feature-
architecture-implementation mapping toolset”. In Proceedings of the 41st
International Conference on Software Engineering: Companion
Proceedings (ICSE 2019). IEEE Press, 87–90. 2019.

[4] D. Garlan, R. Allen and J. Ockerbloom, “Architectural mismatch: why
reuse is so hard,” in IEEE Software, vol. 12, no. 6, pp. 17-26, Nov. 1995.

[5] D. Garlan, S. Cheng, A. Huang, B. Schmerl and P. Steenkiste, “Rainbow:
architecture-based self-adaptation with reusable infrastructure,” in
Computer, vol. 37, no. 10, pp. 46-54, Oct. 2004.

[6] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework (2nd Edition). Addison-Wesley Professional, 2008.

[7] DynaMyx. https://youtu.be/2zCHz6jovX4
[8] E.M. Dashofy, A. van der Hoek, and R.N. Taylor, “A Comprehensive

Approach for the Development of Modular Software Architecture
Description Languages,” ACM Transactions on Software Engineering
and Methodology (TOSEM). 14(2), p. 199-245, April, 2005.

[9] E.M. Dashofy, Myx and myx.fw.
http://www.isr.uci.edu/projects/archstudio/myx.html.

[10] H. Seifzadeh, H. Abolhassani, and M.S. Moshkenani, “A survey of
dynamic software updating,” Journal of Software: Evolution and Process,
25(5), 535-568, 2013.

[11] J. Aldrich, C. Chambers and D. Notkin, “ArchJava: connecting software
architecture to implementation,” Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002, Orlando, FL, USA,
2002, pp. 187-197.

[12] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural
Challenge,” Future of Software Engineering (FOSE '07), Minneapolis,
MN, 2007, pp. 259-268.

[13] M. Hicks, and S. Nettles, “Dynamic Software Updating,” ACM
Transactions on Programming Languages and Systems (TOPLAS) 27(6),
p. 1049-1096, 2005.

[14] M. Mirakhorli and J. Cleland-Huang, “Detecting, Tracing, and
Monitoring Architectural Tactics in Code,” in IEEE Transactions on
Software Engineering, vol. 42, no. 3, pp. 205-220, 1 March 2016.

[15] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Trans. Auton. Adapt. Syst. 4, 2, Article 14,
42 pages, May 2009.

[16] N. Medvidovic, N.R. Mehta, and M. Mikic-Rakic, “A Family of Software
Architecture Implementation Frameworks,” In Proceedings of the 3rd
IFIP Working International Conference on Software Architectures.
Montreal, Canada, August, 2002.

[17] P. Oreizy et al., “An architecture-based approach to self-adaptive
software,” in IEEE Intelligent Systems and their Applications, vol. 14, no.
3, pp. 54-62, May-June 1999.

[18] R.N. Taylor, N. Medvidovic and P. Oreizy, “Architectural styles for
runtime software adaptation,” 2009 Joint Working IEEE/IFIP Conference
on Software Architecture & European Conference on Software
Architecture, Cambridge, 2009, pp. 171-180.

[19] R.N. Taylor, N. Medvidovic, and E.M. Dashofy, Software Architecture:
Foundations, Theory, and Practice. 736 pgs., John Wiley & Sons, 2010.

[20] T. Parr, The ANTLR Parser Generator. http://www.antlr.org/.
[21] Y. Zheng, C. Cu and H. U. Asuncion, “Mapping Features to Source Code

through Product Line Architecture: Traceability and Conformance,” 2017
IEEE International Conference on Software Architecture (ICSA),
Gothenburg, 2017, pp. 225-234.

[22] Y. Zheng, C. Cu, and R. N. Taylor, “Maintaining Architecture-
Implementation Conformance to Support Architecture Centrality: From
Single System to Product Line Development,” ACM Transactions on
Software Engineering and Methodology. 27, 2, Article 8, 52 pages, June
2018.

http://www.isr.uci.edu/projects/archstudio/myx.html
http://www.antlr.org/

	I. Introduction
	II. Approach
	A. Architectural Variability Implementation
	B. DynaMyx Framework
	C. Mapping Architectural Changes to Code

	III. Preliminary Experience
	IV. Related Work
	V. Conclusion
	References

