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Abstract—Architecture-based software adaptation is a promising 
method that adapts a software system by evolving its architectural 
model, which is generally easier to understand and manipulate 
than source code. The wide-scale practice of the method requires 
an approach to automatically mapping adaptive changes that are 
planned and deployed in the architecture to modifications of 
running code. This involves two main challenges: maintaining 
architecture-implementation conformance and dynamic software 
updating. Existing approaches fail to address them simultaneously 
to enable architecture-based adaptation. This paper presents a 
novel approach combining an architectural variability 
implementation mechanism with an architecture framework. The 
approach automatically updates both source code and running 
code during architectural evolution. As an initial assessment, we 
applied the approach to the adaptation of a chat application. 

Keywords—software architecture, architecture-implementation 
conformance, software evolution 

I. INTRODUCTION 
A self-adaptive software [15] modifies its own behavior in 

response to changes in its operating environment, such as end-
user input, external hardware devices and sensors, or program 
instrumentation. Architecture-based adaptation [5, 12, 17] is an 
important result from software architecture research. A software 
system’s architecture is the set of principal design decisions 
made about the system [19]. It is commonly modeled as a 
configuration of components connected via interfaces, using an 
architecture description language (ADL). Architectural models 
do not contain implementation details and generally are easier to 
understand and manipulate than source code. 

Figure 1 shows an existing infrastructure of architecture-
based software adaptation that this research aims to support. It 
separates adaptation activities into two simultaneous processes: 
adaptation management (the upper half) and evolution 
management (the lower half). Adaptation management monitors 
and evaluates the application and its operating environment, 
plans adaptation, and deploys change descriptions in 
architectural terms (e.g., replacing a component) to the running 
application. Evolution management is responsible for evolving 
the application by mapping the deployed architectural changes 
to modifications of the application’s running implementation, 
while ensuring runtime conformance between the architecture 
and implementation. This is our focus in this project, and it 
primarily involves the following two challenges. 

Fig. 1. An infrastructure of architecture-based runtime adaptation [17]. 

• Mapping changes in the architecture to automatic updating 
of source code. Software architecture may be frequently 
changed during architecture-based adaptation: a component 
may be replaced by another component, and a new interface 
may be added to a component. These changes affect the code 
in various ways and at different degrees of granularity [4]. 
Existing architecture-centric approaches often solely rely on 
code generation [6] to automatically update the code. This is 
not sufficient because the manually developed code (i.e., 
user-defined code) also exists and is often mixed with 
generated code. It is difficult under this circumstance either 
to protect user-defined code from being overwritten or to 
update user-defined code accordingly. 

• Dynamically modifying running code after source code is 
updated. This is essentially a problem of dynamic software 
updating [13] that involves several issues, such as swapping 
code and transferring application state (e.g., the current 
values of program variables) to new code. None of the 
existing architecture-implementation mapping approaches 
[11, 14, 16, 22] addresses these issues. Existing dynamic 
software updating techniques [1, 10, 13] are mainly for 

 



language-level program adaptation. They typically require 
extension of existing programming languages or the use of a 
third-party middleware. These requirements may add to the 
complexity of implementing architectures and thus are not 
appropriate for architecture-based runtime adaptation. 

In this paper, we present an architecture-implementation 
mapping approach to supporting architecture-based runtime 
adaptation shown in Figure 1. An important insight that we have 
in this research is that the architectural elements that are 
planned/anticipated to be changed (i.e., variable) should be 
implemented differently from the stable or core elements. Their 
implementations should be either loosely bound to the rest of the 
system (e.g., in a separate module) or can be easily identified 
and updated (e.g., via code annotations). This opens up the 
opportunity of automatic updating of source code (including 
user-defined code) when the variable architectural elements are 
changed as planned during architectural adaptation. 

The first contribution of our approach is a novel source code 
model that implements different kinds of variable architectural 
elements in specific ways. It extends an existing implementation 
model that we developed for product line architecture [21, 22], 
which also involves architectural variability. The original model 
decouples the generated code and user-defined code of each 
architecture component into independent code modules (e.g., 
classes). Our approach further divides the user-defined code into 
modules that implement the component’s main logic and 
variable interfaces respectively. Moreover, our approach uses an 
annotative technique in the user-defined code to indicate code 
fragments (e.g.,  a single line of code) corresponding to variable 
architectural elements. When the architecture is changed, our 
approach automatically updates both generated code (via code 
regeneration) and user-defined code (via annotation processing) 
to maintain architecture-implementation conformance. 

Additionally, our approach includes a novel software 
framework named DynaMyx that automatically updates running 
code of a component when its source code is changed (e.g., as a 
result of mapping architectural changes to source code described 
above). DynaMyx extends an existing architecture framework, 
Myx [9], which provides built-in implementations (e.g., APIs, 
abstract classes) for implementing architectures. On top of that, 
DynaMyx includes modules that encapsulate the logic (e.g., 
transfer state, swap code) of dynamic software updating from 
the overlying application. This allows the developer to focus on 
application-specific logic, while the DynaMyx framework 
automatically monitors source code, detects its changes, reloads 
the changed code, and migrates the runtime state to the new code 
without stopping the running code. 

We implemented a prototype of the approach in ArchStudio 
[2], an Eclipse-based architecture development platform. As an 
initial assessment, we applied the approach to the adaptation of 
a chat application that has an explicit architectural model. We 
changed its architecture while the application was running, and 
observed that the running code was dynamically updated with 
our approach. After that, we inspected both the source code and 
the application’s behavior (e.g., functions, runtime data) to 
assess whether the application functions appropriately and 
whether its architecture and running code are consistent. We 
created a video demo [7] to illustrate this process. 

II. APPROACH 
Figure 2 provides an overview of our approach. The 

rectangle at the top represents different kinds of variable 
architectural elements that the approach supports, including 
replacement of a component, replacement of an interface, and 
addition of an interface. We use an existing architectural 
modeling approach and tool called ArchFeature [3] that we 
developed in a prior project. ArchFeature supports modeling and 
evolution of architectural variations using  an existing XML-
based ADL, xADL [8]. Our focus in this project is on mapping 
of architectural changes to both source code and running code. 
The gray boxes in Figure 2 represent two main contributions of 
the approach: (1) a source code model (supported by a code 
generator and an annotation processor) that regulates the 
implementation of an architecture component to enable 
automatic modifications of source code; (2) the DynaMyx 
framework that extends the Myx framework as mentioned in 
Section I with the capability of automatic updating of running 
code. Each is introduced in the following subsections. 

A. Architectural Variability Implementation 
Our approach includes a novel source code model combining 

code generation, code separation, and an annotative technique in 
the implementation of an architecture component. As shown in 
Figure 2, the model divides a component’s source code into the 
following three independent modules and uses a program 
composition mechanism (e.g., method delegation) to integrate 
the separated code. This enables a separation of decision space 
within the implementation of each component and offers a novel 
way to implement different variations in the architecture. 

Generated Code: a module that is generated from the 
component’s architectural specification. It contains routine 
implementation of the externally visible information (e.g., 
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Fig. 2. Approach overview. 



interfaces) of the component. The generated code encapsulates 
knowledge about architecture topology and related variations 
(e.g., implementation of an optional interface). It does not need 
or allow manual modification, and implements the application-
specific methods (e.g., methods defined in the component’s 
interfaces) by redirecting request to a separate module (i.e., user-
defined code modules explained below), where the methods are 
manually implemented. 

User-Defined Core Code: a module that contains manually 
developed implementation details of the component’s main 
logic. It implements a program interface including the methods 
that generated code needs the programmer to develop. The user-
defined core code represents the internal implementation of the 
component and encapsulates implementation-specific concerns 
(e.g., use of code libraries and algorithms). It addresses related 
architectural variations (e.g., replacement of a component for a 
different implementation) by switching between alternative 
user-defined modules, which are represented by the overlapping 
boxes in Figure 2. 

User-Defined Variability Code: a manual module that is 
separated from the user-defined core code above. It contains 
implementation details of a construct (e.g., an optional interface) 
that can vary independently of the component. This reduces the 
impact of the variation (e.g., inclusion/exclusion of the 
construct) on the rest of the component’s user-defined code. 
Similar to the core module, the variability module implements a 
program interface, which only includes methods specific to the 
construct. A library of variability modules containing different 
implementation mechanisms may also exist. 

Our approach also includes an architecture-based code 
annotation technique that is used in the user-defined code 
modules described above to indicate optional fine-grained code 
fragments (e.g., a method, a line of code), which may be added 
or removed corresponding to the adaptive changes made to the 
architecture. An annotation is defined as a Java annotation (i.e., 
@Optional) wrapped by a block comment (i.e., /*…*/) as shown 
below. It contains the name(s) of the feature(s) that the annotated 
code is related to. Each feature is represented as a predefined 
value of a Java enum named Feature (i.e., Feature.{feature-
name}). In particular, the Feature enum is generated from the 
architecture (hence architecture-based) and includes the names 
of all the features that are related to the corresponding 
component in the architecture. Only the included names can 
appear in an annotation used in the component’s code. In this 
way, the programmer does not need to manually type in a feature 
name. When the architecture is changed, the related code 
fragments and annotations are automatically updated by the 
annotation processor shown in Figure 2.  

/*@Optional(Feature.{feature-name}, …)*/ 
Figure 3a shows an architecture example of a text-based chat 

application. The architecture has four components (i.e., 
rectangles) that are connected via interfaces (i.e., triangles). All 
the elements drawn using dashed lines are variable for three 
features: sending system messages (e.g., a smiley face), saving 
chat history using different mechanisms (e.g., file system, 
database), and sharing files. Figure 3a also shows an example of 
variability specification in the xADL language. It defines an 
optional interface of Component Server for FileSharing.  

Client Server

Chat 
History

Message 
Library

saveMsgloadMsg

sendMsg

fwdMsg
uploadFile

01 class ServerArch extends MyxComponent{
02   IServer _imp = getCoreImp();
03   IFileSharing fileImp = getFileImp();
04   IFwdMsg out1;
05   IChatHisotry out2;
06   public void init(){
07     out1= MyxUtils.getService(“FwdMsg”);
08     out2= MyxUtils.getService(“ChatHistory”);
09   }
10   public void destroy(){}
11   … //other lifecycle methods     
12   public void sendMsg(String msg){
13    _imp.sendMsg(msg);
14   }
15   public void uploadFile(File f) {
16    fileImp.uploadFile(f);
17   }
18 }

01 interface IServer {
02   public void sendMsg(String msg);
03 }

01 interface IFileSharing {
02   public void uploadFile(File f);
03 }

01 class ServerImp implements IServer{
02   ServerArch _arch;
03   public void sendMsg(String msg){
04     _arch.out1.fwdMsg(msg);
05     /*@Optional(Feature.ChatHistory)*/
06     _arch.out2.saveMsg(msg);
07   }
08 }

01 /*@Optional(Feature.FileSharing)*/
02 class FSImp implements IFileSharing{
03   ServerArch _arch;
04   public void uploadFile(File f){...}
05 }

(a)

(b)

01 <interface id=”i03”>
02   <optional>
03     <feature>
04       FileSharing
05     </feature>
06   </optional>
07 </interface>

 
Fig. 3. (a) Architecture example of a chat application; (b) Code example of Component Server. 



Figure 3b shows the code example of Component Server 
implemented using our approach. The generated code (Class 
ServerArch) includes references to user-defined modules (Lines 
2-3), references to connected components (Lines 4-5), lifecycle 
methods and APIs required by the DynaMyx framework 
(introduced in the following subsection), and application-
specific methods (Lines 12-17) that are implemented by calling 
the corresponding user-defined module. The user-defined core 
code (Class ServerImp) and variability code (Class FSImp) each 
implements a program interface (IServer and IFileSharing) that 
is also generated and includes the methods to be manually 
developed. The user-defined code modules contain architecture-
based annotations that are attached to optional code fragments 
(Line 6 of Class ServerImp). Note that the user-defined code 
may call the methods of other components via its generated code 
(e.g., Lines 4 and 6 of Class ServerImp). 

B. DynaMyx Framework 
Myx is an existing architecture framework written in the 

Java programming language. It includes a set of modules as 
built-in implementations of key architectural elements, which 
are used to develop an architecture-based application. Myx also 
encapsulates the logic for bootstrapping the application and 
regulating interactions (e.g., method calls) between components. 
This allows application developers to focus on developing 
application-specific logic. DynaMyx inherits these capabilities 
(i.e., supporting architecture implementation) from Myx. In 
particular, DynaMyx maintains Myx’s interface (e.g., APIs and 
lifecycle methods that are underlined in Figure 3b) to the 
overlying application. All the applications originally built on 
Myx can still be correctly executed with DynaMyx. This is 
reflected in Figure 2 as all the DynaMyx modules are underneath 
Myx and are invisible to the application code above.  

DynaMyx extends Myx with the capability of dynamic 
software updating and hides the related complexity from 
implementing architectures. This represents a novel and 
promising approach to supporting architecture-based runtime 
adaptation. DynaMyx includes five new modules: Code 
Monitor, Code Reloader, Code Wrapper, State Manager, and 
Adaptation Finalizer as shown in Figure 2. It automatically 
detects source file changes, complies the program from the 
changed source files, starts it up alongside the old program, 
transmits its state to the new program, and finally swaps the 
initialized new program with the old program. The entire 
process consists of the following five steps.  

Step 1 – Detect code changes. DynaMyx works with an 
program development tool (e.g., Eclipse) that automatically 
complies source code when it is changed. The Code Monitor 
module of DynaMyx monitors the modified dates of every 
component’s compiled code files. If a change is detected in a 
component, Code Monitor automatically triggers the steps 
below to update the component’s running code. Other 
components are not affected during this process. 

Step 2 – Reload changed code into the running system. The 
Code Reloader module includes a dedicated code loader, which 
enforces reloading of a modified code file into the system (e.g., 
Java Virtual Machine). The code reloading will occur if the 
component is inactive and is not communicating with other 
components. This is determined based on Myx’s capability of 
managing component communications as mentioned earlier. 

Step 3 – Create new instances from reloaded code. The new 
code instances are not bound to the system at this point.  

Step 4 – Transfer application state to new code instances 
and initialize them afterwards. State Manager processes user-
defined code to transfer state for the updated components. 
During this process, it bypasses security scope, especially the 
private and protected scopes, to access and copy state from old 
stances to new instances. In particular, State Manager is able to 
transfer state in a class hierarchy and support properties that are 
inherited and defined in a parent class. After that, the Manager 
will initialize new instances with the transferred state by calling 
the component’s Myx lifecycle methods (e.g., init underlined in 
Figure 3b).  

Step 5 – Swap (i.e., bind) new instances into the running 
system and discard old instances. A challenge involved at this 
point is updating the references of other components to old code 
instances, which will be swapped out of the memory. It is 
difficult to detect all the related references as this is essentially 
a problem of dynamic code analysis. DynaMyx addresses the 
challenge by wrapping the implementation of each component 
with Code Wrapper (implemented based on Java Proxy). The 
Wrapper, instead of the component’s code, is referenced by the 
code of other connected components. The Wrapper serves as a 
delegate that intercepts and redirects the function calls from the 
connected components. At the end of the adaptation, the 
Adaptation Finalizer module updates the Wrapper to refer to 
new instances of the component’s code and bind new instances 
into the system. 

Table 1. Mapping Runtime Architectural Changes to both Source Code and Running Code. 
Runtime architectural changes Mapping to source code Mapping to running code 

Component addition/removal Regenerate code to include/exclude the 
component’s architectural code. 

Load/unload code and 
create/destroy instance. 

Component replacement Regenerate code to switch to a different 
user-defined core module. 

Reload new code; create new 
instance; transfer state; swap code. 

Provided interface addition/removal Regenerate code to include/exclude the 
interface’s architectural code. 

Load/unload code and 
create/destroy instance. 

Provided interface replacement Regenerate code to switch to a different 
user-defined variability module. 

Reload new code; create new 
instance; transfer state; swap code. 

Required interface addition/removal Regenerate code; process annotations and 
code fragments in user-defined modules. 

Reload new code; create new 
instance; transfer state; swap code. 

Connection addition/removal Regenerate the bootstrapper program. Reload the bootstrapper program. 
 



C. Mapping Architectural Changes to Code 
Table 1 summarizes our approach’s capabilities of mapping 

typical kinds of runtime architectural changes to both source 
code and running code based on the implementation model and 
DynaMyx framework presented in this section. It distinguishes 
a provided (input) component interface from a required (output) 
interface. A provided interface contains the methods 
implemented within the component, while a required interface 
contains the methods that are implemented by another 
component and used by the current component. The connection 
changes are handled by Myx as mentioned in Section II.B. 

III. PRELIMINARY EXPERIENCE 
We developed a prototype of the approach in the ArchStudio 

open-source system as mentioned in Section I. The prototype 
includes a code generator, an annotation processor, and the 
DynaMyx framework. The code generator is built using the 
Eclipse JET code generation engine [6] that follows a template-
based code generation paradigm. The code generation templates 
capture routine implementations of software architecture. The 
annotation processor is built using the ANTLR parser generator 
[20]. It automatically identifies and updates code annotations 
and code fragments corresponding to an architectural change. 
We integrated these tools with the ArchFeature architectural 
modeling tool mentioned in Section II. This provides us with a 
platform where we can assess our approach. 

We will consider the architecture-implementation mapping 
approach presented in this paper successful if (1) it maintains 
conformance between a software’s architecture, its source code, 
and its running code when the planned architecture changes are 
deployed; (2) the dynamically-updated running software 
behaves appropriately (with the updated behavior) and 
continuously (with the transferred state); (3) the overhead in 
terms of executing time and memory requirement during 
adaptation is acceptable. To validate our approach along all 
these three dimensions, we applied the approach and tools to a 
chat application.  

The chat application was implemented by two Masters 
students based on the approach presented in this paper. It has a 
list of features (e.g., File Sharing, Game, and Template) and an 
explicit architectural model developed using the ArchFeature 
tool. It has around 15K SLOC, including generated code, user-
defined code, and code annotations. The architecture and code 
are consistent with each other. This was validated using a 
consistency checking tool of ArchStudio. We assessed the 
approach by executing the chat application and exercising some 
of its functions (e.g., chat) to generate runtime state (e.g., chat 
messages). We then used the ArchFeature tool to change its 
architecture while the application was running. We exercised 
different kinds of architectural changes as discussed in the paper, 
such as component removal and interface addition, which were 
eventually reflected into the running code by our approach. In 
the end, we checked architecture-implementation conformance 
using the tool mentioned above. We also inspected the behavior 
and application data of the updated chat application to validate 
whether it still functions correctly. 

Figure 4 shows screenshots of the chat application’s 
architectural model (opened in our ArchFeature modeling tool)  
and user interface (i.e., a chat client window). In one of the 
experiments, we removed the Template feature (selected in the 
feature list) and its related architectural elements while the 
application was running. Our approach was then triggered to 
automatically update the application’s source code (via code 
regeneration and annotation processing) and running code (with 
DynaMyx) without terminating its execution. When the 
adaptation was completed, we noticed that a related user 
interface element (e.g., the button circled in the figure) 
disappeared since the corresponding code was dynamically 
removed by our approach. Meanwhile, the application state 
(e.g., chat messages) was successfully preserved. We created a 
video demo [7] to illustrate the process described above. 

Overall, our approach was able to automatically update both 
the source code and running code of the chat application when 
its architecture was changed at runtime. We validated 

 
Fig. 4. Architecture-based runtime evolution of a chat application. 



conformance between the updated architecture and 
implementation after each evolutionary operation. The system’s 
new behavior also matched the corresponding architectural 
changes, and we did not notice any performance degradation 
during the adaptations. A limitation of DynaMyx that we found 
is that the new state must be determined and transferred from the 
existing state. Our approach does not address inferring new state 
information, which usually requires manual intervention (due to 
lack of information). For example, it cannot automatically 
transfer state to a new field added in the new code since this 
information does not exist in the old code. 

IV. RELATED WORK 
Several architecture-implementation mapping approaches 

exist, including programming language design [11], code 
generation [6], and architecture frameworks [9, 16]. These 
approaches successfully address the challenge of bridging the 
abstraction gap between architecture constructs and program 
elements during the initial development of a software system. 
They can maintain conformance between the architecture and 
source code along certain criteria, such as style conformance 
[16], communication integrity [11], or quality concerns [14]. 
However, none of them addresses runtime conformance 
between the architecture and running code in architecture-based 
self-adaptation. Existing architecture frameworks, such as C2 
[16] and Myx [9], provide fairly well understood source code 
that assists developers in implementing systems conforming to 
an architecture style. They do not support the mapping of 
architecture changes to code and require an additional mapping 
approach (e.g., the presented work) to maintain architecture-
implementation conformance. 

Existing architecture-based runtime adaptation approaches 
address some important issues in this area, such as adaptation 
infrastructure [5, 12, 17] and architecture styles [18]. These 
approaches reveal the benefits of a self-managed software 
architecture.  In terms of mapping architectural changes to 
running code, they mainly rely on existing architecture-
implementation mapping approaches, such as architecture 
frameworks and code generation, which are not sufficient as 
described above. For example, existing approaches in this area 
cannot support architectural changes (e.g., replace an interface) 
involving the challenges of automatically updating user-defined 
code and dynamic software updating. 

V. CONCLUSION 
This paper presents an approach that maintains runtime 

conformance between the architecture and running system. This 
is essential to architecture-based runtime adaptation, but fails to 
be addressed by the existing approaches of dynamic software 
updating and architecture-implementation mapping. The 
approach has two main contributions: (1) a variability-specific 
architecture implementation approach that enables automatic 
modifications of source code (e.g., user-defined code) during 
architectural adaptation, and (2) an architecture framework that 
encapsulates dynamic software updating mechanisms and 
enables automatic modifications of running code. The initial 
assessment reveals that our approach is capable of supporting 
architecture-based runtime software adaptation. We intend to 
further evaluate the approach through a long-term study with a 
large software system in the future. 
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