
Modeling Topic Exhaustion for Programming Languages on StackOverflow

Rao Hamza Ali and Erik Linstead

Fowler School of Engineering, Chapman University

Abstract

We apply latent Dirichlet allocation on StackOverflow
questions, spanned across ten years, for Python, JavaScript,
Java, C++, and R, in order to discover underlying topics
of questions asked for these programming languages. We
focus on topics that have exhausted over the years; topics
that once peaked in terms of the number of questions being
asked about them but are now in a decline. Studying these
topics provides insight into a language’s evolution and
its cohesion with other programming languages, that may
offer similar features. We also measure the average wait
times to get answers for questions from exhausted topics,
to highlight if the community also plays a role in making
these topics exhausted.

Keywords: Latent Dirichlet Allocation; SOTorrent;
Topic Modeling; Stack Overflow

1. Introduction

Stack Overflow (SO) has become one of the most popu-
lar platforms for programmers to ask and answer questions
for a wide range of topics in software engineering [1]. Start-
ing in 2008, the website has seen constant increase in ques-
tions asked everyday and the categories to which they be-
long [2]. The community, too, has been increasingly active
and boasts an average reply time to a question of 11 minutes
[3]. With the seemingly nonstop increase in questions asked
and new categories sprouting up, we are interested in seeing
how topics (many of which were of high interest to the de-
veloper community historically) have been performing with
the influx of new topics. We are also interested in topics
which have seen a peak of interest from programmers and
now are in a decline. We term these topics as exhausted, in
that they peaked in terms of questions asked about them, but
are now seeing continuous decline in new questions being
posted.

Questions on SO are assigned tags which categorize the
field a question may belong to, but are not helpful in deter-
mining the topic of that question. The work in [4] described

developer behavior for mobile application development, us-
ing tags assigned to SO posts. But two questions with an
iOS tag could ask questions on app performance and creat-
ing a slide view, which are two relatively different topics.
Here we use an unsupervised technique, latent Dirichlet al-
location (LDA) [5], to extract topics from questions specific
to individual programming languages and study their evolu-
tion over time. While there have been studies where LDA
is applied to SO questions, the focus has mostly been on
identifying topics across all languages [6] and looking at
short-term or temporal trends[7] . Another novel approach
to using LDA was presented by [8] to automatically cat-
egorize software from source code, hinting at the success
of using LDA for the analysis of source code and related
text using topic generation. Unlike this previous work, here
we run LDA separately on questions for popular program-
ming languages and observe the trends across the years. The
ultimate goal is to identify which features of the language
have been exhaustively discussed on SO and are no longer
the main focus of the developer community. We also want
to understand how the adoption of programming languages
evolves based on the type of questions that are asked about
them.

One important question that is raised when looking at
topics that have been exhausted is: is the community no
longer active in answering a question related to such top-
ics? Long wait times to get an answer or failure to come
up with a good answer in time, could dissuade developers
from asking further questions about these topics. Once we
identify topics that have been exhausted, we will also look
at the community wide statistics about the time taken to an-
swer questions across the years, and can then conclude the
community’s role in exhaustion of topics.

2. Data

We use the December 2018 data set of SOTorrent[9] for
our study. It consists of over 42 million posts made on SO
from August 2008 to December 2018, including question
and answers from the community on different topics. Each
question is manually tagged by the poster with a program-
ming language and a related field. We use this attribute

DOI reference number: 10.18293/SEKE2020-107.



Table 1. Total number of questions per pro-
gramming language

Language Questions

JavaScript 1,723,695
Java 1,487,204

Python 1,068,646
C++ 595,662

R 265,946

to subset the data for 5 programming languages: Python,
JavaScript, Java, R, and C++. These languages are the most
tagged on SO and comprise a large corpus of questions for
our analyses. We are also using data beginning January
2009, to allow for uniform per-year stats.

We choose to use the text pertaining to the question
asked instead of the question title. The question body pro-
vides greater detail and insight about the problem itself. We
further remove any source code references from the ques-
tion body as we are interested in discovering latent topics
from the description of the programming language feature
rather than from relevant code. From this, we are able to
field more connections between words for LDA to utilize
and get results which give a better understanding of the
trends. For the community stats, we extract the first and
accepted answer times for all questions. An accepted an-
swer is selected by the user who posted the question, which
they deem to be the best answer among all others. Table 1
describes the total number of questions, for each language,
that were used in training the LDA model.

3. Method

We start by collecting all question posts for a program-
ming language, and removing all stop-words, punctuation,
and numbers from them. We extensively make use of the
gensim [10] package in Python for topic modeling and nat-
ural language processing (NLP). Using built-in functions,
we tokenize each question, and create a dictionary for each
word and its occurrence count. We use spaCy [11], the NLP
Python library, to lemmatize each token to reduce the word
space to a common base form and discover more coherent
topics. A bag-of-words model [12] is then generated from
the dictionary. This step is crucial because we are not in-
terested in the order of words for each question, but the
word occurrences in all questions. This pre-processing step
is done separately for all languages we run LDA on.

LDA is a probabilistic model for a collection of docu-
ments, where each document consists of a bag of words and
is viewed as a mixture of different topics with varying prob-

Figure 1. Trend of exhausted topics for
Python

abilities. Using this explicit representation of documents in
terms of topic probabilities, LDA identifies the topic that
most represents each document. This is done by utilizing
the mixture model we learn for each set of questions cor-
responding to a programming language. Given the vast vo-
cabulary of words and the need to identify both high-level
and low-level topics, we parameterize LDA to discover 30
topics for each programming language. This number also
gave us the most coherent latent topics.

A topic coherence [13] for each LDA model is calcu-
lated which gives a measure of strength and consistency of
all topics generated. Only models with a topic coherence
greater than 0.5 are chosen. This is to ensure that, while 30
topics do cover all of the questions, the model has been suc-
cessful in understanding the relationships in the corpus and
the topics describe the data in the best possible way. The
topics, identified by the model, can be joined back to the
questions that they have the highest probability of belong-
ing to. Next, we calculate the topic impact score, which is
a rank of a topic’s occurrence each year for a programming
language in comparison to other topics utilized for the lan-
guage within the same year. The impact score is scaled so
that we are able to compare multiple exhausted topics at the
same time and are able to observe common trends for them.

4. Results

For our results, we present the topics that have been ex-
hausted, in terms of questions asked, across the years for
the selected programming languages.By using a threshold
of 30 topics for LDA, we were able to find not only top-



Figure 2. Trend of exhausted topics for
JavaScript

Figure 3. Trend of exhausted topics for Java

ics that represented a small set of questions, but also mul-
tiple topics that were part of a bigger theme and described
different aspects of it. Each graph shows the yearly trend
of exhausted topics, with respect to their impact score, for
a different programming language. A set of words is as-
signed to each topic, extracted from the questions, and is
used in the graphs to describe the overall theme of the topic.
These words have the highest probability of belonging to
that topic, among all words. They present an understanding
of what kind of questions are being asked.

LDA has been extensively used in finding inherent top-
ics for a corpus of questions asked on StackOverflow

Figure 4. Trend of exhausted topics for C++

[14][15][16]. But the focus has remained on what kind of
topics are discovered, or which topics have been becoming
more popular or are in steady decline. Our research focuses
on exhausted topics, that are not likely to have an impact
anymore on the community, but need to be identified to fur-
ther study a topic’s trend over the years. It could be the
case that adoption of a new programming language or an
update in the functionality that the developer is interested
in asking about, heavily saturates such topics and we no
longer see them making the same impact on SO. Through
LDA, we found these exhausted topics that cover features
like file I/O, front-end and back-end development, and ba-
sic language functionality.

We start our discussion by identifying exhausted topics
for Python. Figure 1 shows the trend of such topics between
2009 and 2018, given their impact scores. We only report
topics that had an increase in impact after the inception of
SO, but are now in a decline, in terms of questions asked.
We note that topics related to HTML in Python are com-
pletely saturated and developers are no longer asking a lot
of questions about them. Interestingly, we also find some
topics related to Python’s built-in functionality in a decline
too. Python has more or less used the same functions for
file IO and data structures, so it is apparent that develop-
ers have run out of new questions to ask about them, and
their queries have most likely already been answered by
a previous post. The decline in HTML topics is uniform
across all platforms. It is possible that adoption of newer
web scripting languages has moved developers away from
using Python’s web features.

Figure 2 describes the trends of exhausted topics for
JavaScript (JS) on SO. We, here too, note that topics related
to web development and visual programming are the ones



that have been most exhausted by the end of 2018. With no
new features introduced to JavaScript related to these top-
ics, developers have saturated the topics by asking all ques-
tions that could be asked, and are satisfied with the answers
on questions already posted on SO, that are similar to their
queries. Figure 3 shows the trend of exhausted Java topics
across the years, with topics related to HTML again being
the ones that have been exhausted. Since the introduction
of Go, Rust, Kotlin, and Swift, the focus of developers in-
terested in making visual and web based applications has
switched over to these new programming languages, aban-
doning the functionality offered by the relatively older lan-
guages. This results in some topics for a language, that was
popular a few years ago, no longer having the same impact
as others. We see a similar trend for exhausted topics in
C++ in Figure 4. Web application related questions are no
longer being asked, and questions about the basic function-
ality of the language, which has not changed after many
version updates, are also on a downward trend.

Another set of topics, we notice have been exhausted,
are ones related to the basic functionality of a programming
language. Since R is used for statistical modeling and has
no applications in web development, all exhausted topics
in R are related to the base functionality of the language.
Questions about data I/O, plotting data points, and wran-
gling data of different types, are the main focus of the lan-
guage. And all such topics have already been exhausted.
Developers can independently develop packages for a pro-
gramming language, to introduce new features, that core de-
velopers have not yet introduced, leaving base features to be
the same across the years. Our analysis makes it apparent
that questions for such features will not evolve over time
and a developer looking to learn a language, will find an-
swers to their questions already posted on the website. This
points to the evolution of a programming language and the
evolution of a developer using that language: how HTML
based queries are on a decline and questions for big data
are being asked more and more, or how people have a com-
mand over the basic features of Java and C++ and have now
run out of questions to ask about them.

Modeling the trends of exhausted topics across different
languages leads to more questions being asked about the
role of the community in their decline. Given that no new
functionality is added to a certain feature of a programming
language, the community will eventually run out of new
questions to ask and those seeking answers would get redi-
rected to questions that have already been posted on SO. But
if the number of such questions being asked declines, is the
community also in decline in answering these questions? It
could be possible that if the SO community takes a longer
time to answer a question, or to give a suitable enough ques-
tion that it is deemed ’accepted’ by the original poster, that
it deters developers from asking questions related to these

Figure 5. Trend of exhausted topics for R lan-
guage on Stack Overflow

topics, and instead they try to find their solution in old posts.
To answer this question, we look at the average time

taken, in hours, to post the first answer, and the accepted
answer, for all questions asked for the exhausted topics. As
the number of active users on SO increases over time, it is
clear that the average wait time to get an answer will lower
[17]. But only if the community is no longer interested in
answering questions about exhausted topics, will we see an
increase or even a plateau in the averages. Figures 6 and 7,
respectively show the trend of average number of hours un-
til a first answer is posted and an accepted answer is posted
for the exhausted topics for all five programming languages
between 2009 and 2018. With over a 100,000 questions
being asked about these topics consistently since 2014, we
observe a steady decline in the average wait time to get to
a satisfactory answer. This shows that the community is
is still active in answering questions, regardless of whether
they belong to an exhausted topic or not.

We conclude that topic exhaustion of a programming
language on SO is not due to the community’s lack of in-
terest in answering these questions, and instead, stems from
the evolution of the language and its cohesion with other
languages. Python still remains the programming language
with the most questions asked. What has changed is that
developers have found other, more efficient avenues to us-
ing some features of the language, via a different program-
ming language. But with new functionality being added to
languages, which leads to more questions being asked by
developers, who want to learn about those functions, old
topics become saturated and developers have exhausted the
different type of questions they can ask about them.



Figure 6. Average Hours until First Answer for Exhausted Topics

Figure 7. Average Hours until Accepted Answer for Exhausted Topics

5. Related Work and Future Directions

Since first applied to software in 2007 [18], LDA has be-
come a staple for textual analysis of software artifacts. The
work in [6] extracted topics from questions asked on SO us-
ing LDA and compared them with Java code tokens to find
that some topics generated were either text or code identifier
only. Mentioned earlier, [2] performed topic modeling on
SO questions and answers, posted between 2008 and 2010,
and highlighted main discussion topics, scores comparison
of answer topics, developer interest, and change in interest
in technologies over time. In [16], the authors looked into
how the community answers posts on SO and calculated
user stats over topics generated by an LDA model. Our pa-
per focuses on exhausted topics across 5 programming lan-
guages, over the course of 10 years, and provides an insight
into why they are no longer a big focus of developers.

Our research also relates to [19], which explores the evo-
lution of features of a programming language across version
updates, using topic modeling. The topics were generated
using source code for large open source Java projects, and

the trends showed a stark comparison of feature usage be-
tween version updates. In this paper, we focus on the vo-
cabulary of questions asked about these features in hope
that we can provide trends regardless of version updates,
over a long period of time, and view the exhaustion of ques-
tions to ask as a measure itself of depletion of newer ways
to use a language feature. Exhaustion of questions asked
about a topic does not mean that the feature is less popu-
lar, nor does it mean that the feature is now deprecated and
requires replacement. We instead focus on a community
driven vantage point, which views such features as some-
thing that programmers have mastered, and are now looking
at other prospects that are more challenging.

In the future, topic modeling SO questions for viewing
trends for older languages would highlight the most com-
mon challenges programmers face for a language and ana-
lyzing the answers for such questions would also give a way
of solving them. Investigating why certain topics have been
exhausted in terms of questions asked, from a language de-
veloper point of view, is also a challenge worth tackling,
which could provide new insight into how the community



asks questions for a highly documented feature, or how a
major update can increase the hype around it. This infor-
mation, in turn, can be leveraged by language developers to
prioritize the integration of new features or even improve
old ones.

References

[1] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “So-
torrent: reconstructing and analyzing the evolution of
stack overflow posts,” in Proceedings of the 15th Inter-
national Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018,
2018, pp. 319–330.

[2] A. Barua, S. W. Thomas, and A. E. Hassan, “What
are developers talking about? an analysis of topics
and trends in stack overflow,” Empirical Software En-
gineering, vol. 19, no. 3, pp. 619–654, 2014.

[3] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak,
and B. Hartmann, “Design lessons from the fastest
q&a site in the west,” in Proceedings of the SIGCHI
conference on Human factors in computing systems.
ACM, 2011, pp. 2857–2866.

[4] C. Rosen and E. Shihab, “What are mobile developers
asking about? a large scale study using stack over-
flow,” Empirical Software Engineering, vol. 21, no. 3,
pp. 1192–1223, 2016.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirich-
let allocation,” Journal of machine Learning research,
vol. 3, no. Jan, pp. 993–1022, 2003.

[6] M. Allamanis and C. Sutton, “Why, when, and what:
analyzing stack overflow questions by topic, type, and
code,” in Proceedings of the 10th Working Conference
on Mining Software Repositories. IEEE Press, 2013,
pp. 53–56.

[7] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining
questions asked by web developers,” in Proceedings
of the 11th Working Conference on Mining Software
Repositories. ACM, 2014, pp. 112–121.

[8] K. Tian, M. Revelle, and D. Poshyvanyk, “Using la-
tent dirichlet allocation for automatic categorization
of software,” in Mining Software Repositories, 2009.
MSR’09. 6th IEEE International Working Conference
on. IEEE, 2009, pp. 163–166.

[9] S. Baltes, C. Treude, and S. Diehl, “Sotorrent: Study-
ing the origin, evolution, and usage of stack overflow
code snippets,” CoRR, vol. abs/1809.02814, 2018.
[Online]. Available: http://arxiv.org/abs/1809.02814

[10] R. Řehůřek and P. Sojka, “Software Framework
for Topic Modelling with Large Corpora,” in
Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Val-
letta, Malta: ELRA, May 2010, pp. 45–50,
http://is.muni.cz/publication/884893/en.

[11] M. Honnibal and I. Montani, “spacy 2: Natural lan-
guage understanding with bloom embeddings, convo-
lutional neural networks and incremental parsing,” To
appear, 2017.

[12] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding
bag-of-words model: a statistical framework,” Inter-
national Journal of Machine Learning and Cybernet-
ics, vol. 1, no. 1-4, pp. 43–52, 2010.

[13] K. Stevens, P. Kegelmeyer, D. Andrzejewski, and
D. Buttler, “Exploring topic coherence over many
models and many topics,” in Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning, 2012, pp. 952–961.

[14] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk, “An
exploratory analysis of mobile development issues us-
ing stack overflow,” in Mining Software Reposito-
ries (MSR), 2013 10th IEEE Working Conference on.
IEEE, 2013, pp. 93–96.

[15] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun,
“What security questions do developers ask? a large-
scale study of stack overflow posts,” Journal of Com-
puter Science and Technology, vol. 31, no. 5, pp. 910–
924, 2016.

[16] S. Wang, D. Lo, and L. Jiang, “An empirical study on
developer interactions in stackoverflow,” in Proceed-
ings of the 28th Annual ACM Symposium on Applied
Computing. ACM, 2013, pp. 1019–1024.

[17] G. Hewgill, Meta Stack Overflow Statistics Graphs,
2010 (accessed May 4, 2020). [Online]. Available:
https://meta.stackexchange.com/questions/38297/meta-
stack-overflow-statistics-graphs

[18] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and
P. Baldi, “Mining eclipse developer contributions via
author-topic models,” in Proceedings of the Fourth In-
ternational Workshop on Mining Software Reposito-
ries. IEEE Computer Society, 2007, p. 30.

[19] E. Linstead, C. Lopes, and P. Baldi, “An applica-
tion of latent dirichlet allocation to analyzing soft-
ware evolution,” in Machine Learning and Applica-
tions, 2008. ICMLA’08. Seventh International Confer-
ence on. IEEE, 2008, pp. 813–818.


