An Empirical Study on Issue Knowledge Transfer
from Python to R for Machine Learning Software

Wenchin Huangm, Zhenlan Ji?, Yanhui Lil»%*

1. State Key Laboratory for Novel Software Technology, Nanjing University, China
2. Department of Computer Science and Technology, Nanjing University, China
3. School of Management and Engineering, Nanjing University, China

*Corresponding author: yanhuili@nju.edu.cn

Abstract—Background: With the blowout of programming
languages, developers employ different languages to solve similar
problems (e.g., to implement machine learning algorithms) sep-
arately and frequently, which gives rise to knowledge transfer
across different language development. Since GitHub provides
an issue tracking system for developers and users to follow with
issues, knowledge about how to deal with issues is a main part
of available knowledge on GitHub. Such issue knowledge could
be directly transferred to help developers handle new issues on
current projects from similar projects in different languages.
Aims: Inspired by a large amount of developed and developing
machine learning software written in Python and R on GitHub,
we aim to discover how much issue knowledge can be transferred
from Python projects to R projects.

Method: We investigate totally 1161 issues from 15 popular
machine learning projects in R and 7496 issues from Scikit-
Learn in Python on GitHub. After computing the text similarity
between issues from R and Python projects, we match top 5
similar Scikit-Learn issues for each R issue and manually judge
1161 x5 issue-pairs to label and group them.

Results: We observe that a) 13% (149/1161) of R issues can refer
to related Python issues; b) 47% (71/149) of related R issues can
be linked to Python issues by the text mining technique BM25 at
the very early stage; c) 83% (124/149) of related Python issues
support code and description about the similar machines learning
problems; d) reference knowledge is considered as the most useful
knowledge from Python issues.

Conclusion: We put forward the following suggestions: a) refer-
ring to the corresponding cross languages issues is an efficient
way for developers, especially there is the lack of related
information in current language; b) the text mining technique
BM25 is helpful for developers to start earlier for searching
similar issues cross languages.

I. INTRODUCTION

With the blowout of programming languages and the
widespread use of GitHub, software development has evolved
from a single language development to socio-technical ecosys-
tems, within which developers from different language com-
munities solve similar problems separately and frequently [[L].
Knowledge gained across different language development as-
sists developers to find out how different languages implement
the same requirements, which greatly contributes to knowledge
acquisition about current requirements, and subsequently to
decisions about design, coding, test and maintenance [2].

DOI reference number: 10.18293/SEKE2020-102

4 N\
/ REEN
/ Feature \ @ Featurje. Forward
II importance \ PX Selection method
| Forward | rsquaredacademy/blorr/issues/11
I 7 Selection|
| I
\ SV i
\ Random @ Add forward selection
\ Forest / - to scikit-learn
\ / Scikit-learn/Scikit-learn/issues/6545
7
~_~-

Machine Learning Related

Fig. 1. Two issues with similar topics from R and Python projects

Machine learning software is a category of libraries to im-
plement machine learning algorithms that allows users to ac-
curately predict outcomes without explicit programming (e.g.,
Scikit—Leanﬂ), which consists of algorithm implementations
with similar topics and different languages: (a) machine learn-
ing algorithms (e.g., Random Forest) have clear specifications
of the functionality regardless of language implementation
[3]; (b) for most of machine learning algorithms, there are
existing libraries written in popular languages (e.g., Python)
with reliable performance for predictive modeling [4]; (c)
developers from a different language community (e.g., R) may
face the same or very similar requirements, and consequently
develop libraries to implement the same or very similar func-
tionality of algorithms in new languages [3]]. During the new
language implementation of algorithms, knowledge transferred
(e.g., from Python to R) would be useful to accelerate current
software development.

Issue is a critical way for software projects to track the
progress of problems reported by developers and users during
developing, maintaining, or using, which could be a bug report,
a code document, a feature enhancement request, a task and so
on [6], [7]. Since GitHub provides an issue tracking system
for developers and users to handle issues, knowledge about
how to deal with issues is a main part of available knowledge
extracted from current projects on GitHub, which can be
transferred into the development of the similar projects in
different languages. Here we illustrate an example for a pair
of issues sharing the similar topics from the Python project
and the R project in Figure [T From the topics of the issue

IScikit-Learn is one of the most famous machine learning software in
Python. http://scikit-learn.github.io.

#6545 in Scikit-learn/Scikit-learn and the other issue #11 in
rsquaredacademy/blorr, we can observe that they both aim
to implement the specific algorithm of “forward selection”.
Obviously, when dealing with the new issue in R, developers
can gain knowledge from the old issue in Python.

Inspired by a large amount of developed and developing
machine learning software written in Python and R on GitHub,
we aim to discover how much issue knowledge can be
transferred from Python to R. In this paper, we select 15
popular R machine learning repositories and Scikit-Learn in
Python to extract their issue contents. By computing the text
similarity between 1161 R issues and 7496 Python issues, we
manually browse and label the issue-pairs (i.e., the older issue
in Python and the new one in R) to check similarity with a
top-5 similarity list. Finally, we extract 149 related issue-pairs
for further research.

To examine how knowledge can be transferred from Python
issues to R issues, we structure our study by addressing the
following three research questions (RQs):

RQ1 (Linking issues from R to Python): how can
developers link to the related Python issues when R
issues are just created? By experimenting three strategies
to search related Python issues at the very early stages of R
issues, we observe that BM25 search performs the best, which
successfully searches over 47% corresponding Python issues
for the R issues by only using the initial information (e.g.,
title and body) from issues.

RQ2 (Types of Knowledge): what kinds of knowledge
can developers learn from related Python issues? We ob-
serve that related Python issues offer 6 types of knowledge for
those R issues: description, reference, outer link, related issue,
code and code document. Among them, the most popular kinds
of knowledge are description and code.

RQ3 (Helpfulness of Knowledge): which type of knowl-
edge from Python issues is most helpful? Based on the
comparison of spearman correspondence and weighted mean
helpfulness, we observe that reference knowledge type turns
out to be the most helpful knowledge.

Our study makes the following contributions.

o Dimension. This study opens a new dimension in knowl-
edge transfer from Python to R in cross-language soft-
ware development.

o Study. This study includes an empirical study of cross
language knowledge transfer on 1161 issues from 15
repositories in R and 7496 issues from Scikit-Learn in
Python.

o Strategy. This paper puts forward BM25 search as an
efficient strategy to search for corresponding issues at
the early stage for cross language knowledge transfer.

The rest of this paper is organized as follows. Section
describes our research methodology. Section Section [[V]
and Section [V] present the results of three RQs above. Threats
to validity is discussed in Section Finally, the conclusion
and future work is put forward in Section

II. OUR APPROACH

In this study, we collect issues from 15 R repositories
as the newer language repositories and the famous Python
repository Scikit-Learn as the older language repository. Our
approach comprises three steps: first we collect the issues from
these repositories on the GitHub; after that, we compute the
similarity between issue-pairs by using the word embedding
technique; finally, we extract the related issue-pairs by manu-
ally judging their relationship.

A. Issues Collecting

We choose one of the most representative machine learning
packages Scikit-Learn as our studied repository in Python.
Besides, we take 15 open sources R packages into consid-
eration, which are all involved in machine learning and highly
recommended. We choose these R repositories according to
the following four principles:

o they implement widely used algorithms, such as Random

Forest, Naive Bayes and K-Nearest Neighbors.

« they are open source repositories on GitHub.

« they are listed on CRAl\ﬂ

o the time of first commit in these repositories should be

later than the time of first commit in Scikit-Learn.

Table |I| illustrates the detail of 15 R repositories we study.
The first column shows the names of R repositories. The URL
links to the repository are listed in the second column. The
numbers of issues and the first commit time are listed in the
third and fourth columns, while the algorithms implemented
are listed at the last. Though there are some repositories
with little stars or forks, even little issues and pulls, we still
choose them for the following two reasons: (a) to ensure the
variousness of algorithms, (b) to observe issue knowledge
transfer for these repositories from the very beginning.

To sum up, we collect 1161 issues from the R repositories,
including both open and closed issues, and 7496 issues from
Scikit-Learn.

B. Similarity Computing

After choosing the repositories and collecting the issues,
we compute the text similarities between 1161 issues from
R and 7496 issues from Scikit-Learn by employing the word
embedding dataset offered and pre-trained by Google [8]. It is
worthwhile pointing out that, we use the whole issue content,
including topic, question and discussion in each issue for
similarity computing. We only consider the natural language
text, and exclude the other parts, e.g., code. For issue pairs
(Ip,Tg) from Python and R correspondingly, we consider Zp
and Zp as the sets of words appearing in them, and calculate
the similarity of them as follows.

(a) Given two words wp and wg appearing in Zp and Zg,
their semantic similarity is defined as the cosine similarity by
using their word embeddings:
wgw R

sim (wps WR) = o Tl

2CRAN is the most popular online repository that store up-to-date versions
of R packages, including code and documentation. https://cran.r-project.org

TABLE I
AN OVERVIEW OF 15 STUDIED R REPOSITORIES

R repository | URL #lIssues | First Commit | #Watch/#Star/#Fork | Classifier(Algorithms)
Arborist | https://github.com/suiji/Arborist 42 31 Jan 2013 15/68/12 RF
benchm-ml | https:/github.com/szilard/benchm-ml 56 28 Mar 2015 155/1734/326 LR/SVM/RF/boosting/...
bigrf | https://github.com/aloysius-lim/bigrf 20 15 Feb 2013 11/91/26 RF
blorr | https://github.com/rsquaredacademy/blorr 71 15 May 2017 | 2/9/1 LR
classyfire | https://github.com/eaHat/classyfire 17 11 Jul 2014 3/8/0 SVM
edarf | https://github.com/zmjones/edarf 57 4 Sep 2014 12/61/10 RF
forestFloor | https://github.com/sorhawell/forestFloor 33 5 Jul 2015 5/36/7 RF
ggRandomForests | https:/github.com/ehrlinger/ggRandomForests | 32 4 Jan 2013 8/107/23 RF
grf | https://github.com/grf-labs/grf 332 28 Jul 2014 41/359/99 RF
kknn | https://github.com/KlausVigo/kknn 17 20 Apr 2015 3/15/5 KNN
lumberjack | https://github.com/neurodata/lumberjack 88 15 Feb 2017 9/54/35 RF
naivebayes | https://github.com/majkamichal/naivebayes 5 3 Jun 2017 2/14/4 NB
randomForestSRC | https://github.com/kogalur/randomForestSRC 22 18 Nov 2016 | 8/48/8 RF
ranger | https://github.com/imbs-hl/ranger 366 28 Jul 2014 42/507/114 RF
TFG | https://github.com/Dani-Basta/TFG 3 31 Oct 2017 5/3/0 KNN
TOTAL 1161

which is calculated by the Euclidean norm of their vectors
using inner product.

(b) In order to compute the similarity between the issues,
we introduce the similarity calculation approach proposed by
Ye et al. [9]], which modified the text-to-text similarity [LO].
To calculate the similarity between a word w and the whole
context of the issue Z, we compute the maximum similarity
between w and w’ in Z:

sim (w,Z) = max{sim (w,w’)}
w' €T

(c) Both the words with no word embedding and the words
not appearing in the target issues Z* are ignored in the
following calculation. The asymmetric similarity from Z to
T* can be computed as:

ZwéP(I—)I*) sim (wa I*)
|P(Z — 1)
where P(Z — I*) = {w € Z|sim(w,T*) # 0}.
(d) The final symmetric similarity sim(Zp,Zr) between
two issues Zp and Zp can be computed as the sum of two
asymmetric similarity.

sim(Z—1") =

sim (IP,IR) = sim (IP — IR) + sim (IR — Ip)

For each R issue Zg, we rank the issue pairs (Zp,Zg) from
large similarity values to small ones in order to find the most
related Python issue from Scikit-Learn. We remain the top 5
of the most similar issue pairs (totally 1161x5 issue-pairs),
which will be filtered to pick out the real related pairs by the
following manual check.

C. Manual Judgement

1) Preprocessing Candidate Issue-Pairs: Among these
1161x5 issue-pairs, some of the issues describe the issue
confusedly, some of them are simply notes for recording the
updating of repositories, and some of them are just discussing
the details in the code (e.g., XX lines in Y documents). These
issues are not included in our following consideration.

Before manual judgement, we divide the issue context into
two parts, the question part and the discussion part for the

following description. The question part contains the topic
and the body of the issues submitted by issue reporter on the
top of the issue content. The discussion part is the content
followed by the question part. Generally, we classify an issue
by browsing the whole issue context, including both question
part and discussion part.

2) Checking Related Issues: Our manual judgement is
conducted by three members of our research group. Each
of them scans the issue-pairs independently, and labels the
similarity as “related” or “unrelated”. Once we get different
results on classification, we will make a double check to ensure
whether the issue-pairs are related or not. If the results of the
double check are still different, the final label is determined
by voting. For example, if two participants vote “related” and
one votes “unrelated” for an issue-pair, we judge the issue-pair
as a related issue-pair. After manual judgement, there are 149
issue-pairs labeled as related. Notice that we exclude the issue-
pairs, in which the creation time of Python issues are later
than the creation time of R issues. To ensure the reliability of
human labeling, we also calculate the inter-rater (i.e., Cohen’s
Kappa [11]) for manual labeling, by comparing the final result
after voting and the independent result from each member.
The results show that for each member, the value of Cohen’s
Kappa is larger than 0.6, which means the related/unrelated
results are substantial [12].

3) Evaluating Related levels: Besides, we label the related
levels of these 149 issue pairs. In detail, we group the
knowledge transferred between these 149 issue pairs into three
levels manually.

o Direction-related level (88 issue-pairs). the correspond-
ing Python issues offer knowledge related to the R issues
in the same or very similar directions.

« Problem-related level (32 issue-pairs). In this level, the
two issues are probably discussing on the very similar
problems, however, Python issues have not given direct
solutions to R issues.

o Solution-related level (28 issue-pairs). The Python is-
sues offer direct solutions (e.g., pseudo-code and refer-
ence), which are most helpful knowledge to the newer R

TABLE II
THE SUCCESSFULLY SEARCHING RESULT FROM 4 DIFFERENT METHOD IN
THE TOP 10 LIST.

Searching Strategies
Topic Search
TF-IDF

BM25

Successfully Searched Rate
5.37% (8/149)
20.13% (30/149)
47.65% (71/149)

issue. This kind of knowledge offered by Python issues
can almost be used in dealing with R issues directly.

III. LINKING ISSUES FROM R TO PYTHON

“How can developers link to the related Python issues when
facing R issues” may become a critical question of knowledge
transfer from Python to R. No matter in which situations,
developers desire to gain useful information to solve issues as
soon as possible. In this RQ, we focus on the question part
(see Section of the 149 R issues, which contains the
topic and the body of issues submitted by issue reporters. The
question part of R issues represents the early information we
can get at the report time of R issues. Based on the question
part of R issues, we employ different strategies to search for
their related Python issues, by their topics and two popular
text mining methods TF-IDF and BMZSEI

Topic Search. Because of the limitation of searching APIs
available on GitHub, we can hardly search the corresponding
issues by using all the content of question parts. We select
the topics from the issues, which represent the main ideas
of issue reporters. We search for the corresponding issues in
Scikit-Learn repository by using searching API from GitHub
and check the top 10 results on the return list.

TF-IDF search. From two strategies mentioned above, we
observe that the available searching tool from GitHub can
hardly fulfill our needs. Therefore, we introduce a classic
strategy in natural language process, TF-IDF [13]]. We abstract
word embeddings by TF-IDF with the question part of the
R issues and use these word embeddings vectors to match
10 most similar corresponding issues. Different with the text
similarity search we used before, we set up word embeddings
by TF-IDF instead of using the open source data [8]. In detail,
we implement the TE-IDF method by Scikit-learr[}

BM25 search. Though the strategy above improve a lot,
we still consider finding a more suitable way for raising
successfully searched rate. BM25 [14] is usually used in
evaluating the relationship between query and documents. This
strategy mainly computes the similarity by 3 parts, which are
the weight of words, similarity between words and documents,
similarity between words and queries. We employ BM25 to
compute the similarity between question parts from R issues
and Python issues. In detail, we reuse an implementation
of BM25 algorithm in the Python library Gensinﬂ with the

30ur dataset is constructed via cosine distance and the word embedding
set offered and pre-trained by Google (see Section [[I-B). To avoid the bias,
we introduce two different text mining methods TF-IDF and BM25 here.

“https://scikit-learn.org/stable/modules/feature_extraction.html#text-
feature-extraction

Shttp://pydoc.net/gensim/3.2.0/gensim.summarization.bm25/

default parameter settings.

For each search strategy, we check the top 10 results on
the return list. Once the related Python issue from the issue-
pair occurs on the top 10 list, we count it as a “successful
search” and record the rank. Table |lI| represents the results of
the above three search strategies. We can find that in Table
BM25 performs much better than the other strategies, which
can successfully detect almost half of the issue-pairs.

' N
Answer to RQ1: by conducting three strategies to search

related issues at the very early stage of R issues, we
observe that BM25 search performs the best, which
successfully searches over 47% related Python issues for
the 149 R issues by only using the initial information
(e.g., title and question body).

IV. TYPES OF KNOWLEDGE

In the RQ above, we start from R issues of the related
issue-pairs, and find out how to link to Python issues. In the
following two RQs, we will focus on Python issues of the
related issue-pairs. Specifically, we are going to discover what
type of knowledge we can get from the Python issues in this
RQ. In order to make a summary of knowledge in Python
related issues, we classify the knowledge into 6 groups, which
are description, reference, outer link, related issue, code
and code document, as illustrated in Table with numbers
of issues containing such kind of knowledge, brief introduction
and typical examples.

We choose an interesting example containing all 6 knowl-
edge types, as shown in Figure [2] which mainly discusses
about the implementation of Balanced Random Forest. Next,
we will present the description of these 6 kinds of knowledge
with help of the example.

Description type (147 Python issues): Almost all of
the issues are considered to have description, which offer
information in natural language directly. For example in Figure
[l the orange box is labeled as the description part. However,
not all issue with natural language are included, we exclude
two issues which only contain “thanks” in the content.

Reference type (28 Python issues): This type is the most
recognizable in these 6 groups. It offers the research papers,
related tutorial, etc. As shown in the green box of Figure 2] the
Python issue offers a research paper’s link, which mainly talks
about using random forest to learn imbalanced data. Though
this kind of knowledge may sometimes be complex, it is worth
reading for developers, which usually offers the original idea
of an algorithm.

Outer link type (97 Python issues): Python issues contain
various kinds of url links, which offer related packages or
datasets, or connect to different repositories on GitHub and
other open source platform. The purple box in Figure [2] gives
an example of outer link, which offers dataset.

Related issue type (74 Python issues): Referring to another
issue is also quite usual in issues. Those links with different
issue numbers in current repository or other repositories are all

TABLE III
TYPE OF KNOWLEDGE IN 149 RELATED PYTHON ISSUES

Group #Issues | Brief introduction Example Issue

Description 147 Natural language description https://github.com/scikit-learn/scikit-learn/issues/1454
Reference 28 Research paper etc. https://github.com/scikit-learn/scikit-learn/issues/6545
Outer Link 97 A link to outer website e.g Wikipedia | https://github.com/scikit-learn/scikit-learn/issues/448
Related Issue 74 Another linked issue https://github.com/scikit-learn/scikit-learn/issues/6473
Code 124 More than 5 lines of code/ Pulls https://github.com/scikit-learn/scikit-learn/issues/2089
Code Document | 58 Tutorial of code https://github.com/scikit-learn/scikit-learn/issues/3735

Balanced Random Forest #5181

m potash wants to merge 20 commits into scikit-learn:master from potash:feature/balanced-random-fore:

(& Conversation 25 - Commits 20 & Checks 0 Files changed 2

potash commented on 29 Aug 2015

Lhave is balanced random forest as described in Chen, C., Liaw, A., Breiman, L. (2004)
"Using Random Forest to Learn Imbalanced Data", Jech. Rep. 666, 2004. It is enabled using the
Balanced= True parameter to RandomF orestClassier.

This is related to the class_weight="subsample’ feature already available but instead of down-

weighting majority class(es) it undersamples them. According to the referenced paper (and personal
experience) balanced random forests perform well for very imbalanced data.

In order to do the balanced sampling we need some class summary data (distribution of classes,
etc.). For efficiency, this is precomputed in fit() by the _get_balance_class_data() function and then
passed to _parallel_build_trees() which, when specified, calls generate_balanced_sample_indices()
instead of the default _generate_sample_indices().

If there is interest in this feature, I'd be happy to write some tests for it and discuss code style, etc.
Thanks!

trevorstephens commented on 10 Sep 2015 Contributor |~ ==«
By multi-output do you mean multi-class? If so, then the natural generalization of the definition
in the paper is simply to take bootstrap samples of size n of each class, where n = the size of

the smallest class. That is already included in my implementation, see the loop in
generate_balanced_sample_indices(), line 105. If by multi-output you mean something else,
pardon me and please explain.

Iht(p'//sc\k\Heam.org/stable/modu!es/‘ree html#multi-output-problems I

Basically, y is 2D and you predict multiple targets at once. It is supported by individual trees and
random forests.

potash commented on 5 Sep 2015 Author «ee

Hi all, sorry for the delay. I've added an example in examples/ensemble/balanced_random_forest.py.
The dataset i KDD Cup '99:

R jmschrei referenced this pull request on 19 Mar 2017

I bootstrapping based on sample weights in random forests #8607 I

potash added some commits on 26 Aug 2015

=

initial balanced commit
fix default value, comment encoding

remove debug

cache balance_data

Fig. 2. An example of issues with multiple kinds of knowledge from Scikit
Learn Project

involved in this type of knowledge. The black box in Figure
[]is an example of related issue knowledge.

These 4 types of knowledge described above can be learned
language-independently, which are more general. The fol-
lowing two kinds of knowledge may need Python skill to
understand and apply.

Code type (124 Python issues): Once a code part with more
than 3 lines occurs in the issue, we count it as an instance of
code knowledge. As illustrated in Figure [2] the red box is a
typical example of code part. Due to the different grammar
of different languages, this type of knowledge may be more
useful for those developers who can skillfully use Python.

Code document type (58 Python issues): Besides code
type, code document type will sometimes occur in the issues.
As shown in Figure [2] the blue box is an example of code
document.

Answer to RQ2: we observe that related Python issue
can offer 6 types of knowledge for those R issues:
description, reference, outer link, related issue, code and
code document. Among them, the most popular kinds of
knowledge are description and code.

V. HELPFULNESS OF KNOWLEDGE

In the above RQ, we discuss various types of knowledge
from Python issues. “Which type of knowledge from Python
issues is most helpful?” is the question we need to solve next.
Based on the related levels of the issue-pairs (see Section
II-C3), we mark the helpfulness H(Zp) of corresponding
Python issues Zp in the range from 1 to 3:

1, if (Zp,Zg) is labeled as direction-related;
H(Zp) =12, if (Ip,Zg) is labeled as problem-related;
3,

and use the helpfulness of Python issues to evaluate the most
useful knowledge type.

Spearman correspondence: First, we conduct a Spearman
corresponding test [[15] between whether containing the knowl-
edge type and the helpfulness of Python issues, to select the
most useful knowledge type. The larger Spearman correspon-
dence shows the knowledge type with higher helpfulness. As
illustrated in Table we can find that the reference type
gets the highest Spearman correspondence among 6 types of
knowledge. Besides, related issue type gets the second place.

Weighted mean helpfulness: Besides, we judge the help-
fulness of knowledge type by the following formulas. Let
T ={description, reference, outer link, related issue, code,
code document}. For ¢ € T, S(Z,t) implies the set of Python
issues containing the knowledge in type ¢. H(Zp) implies the
helpfulness (H(Zp) € {1,2,3}) of the Python issue Zp. The
weighted mean helpfulness (H,,(t)) of type t are computed as

follows.
Y. H(Zp)
_ IpeS(Tpt)

Hy(t) =
1S(Z,)]
Finally, we rank the value of H,,(t) for each knowledge type

in Table[[V] We can find that reference type gets the first place
again. Also, the related issue type still follows.

if (Zp,Zg) is labeled as solution-related.

TABLE IV
KNOWLEDGE TYPES RANKED BY SPEARMAN CORRESPONDENCE AND
WEIGHTED MEAN HELPFULNESS

Knowledge Type | Spearman | Ranks, | Hy(t) | Ranksc
Reference 0.16 1 1.89 1
Related issue 0.11 2 1.70 2
Description 0.09 3 1.60 5
Code document 0.04 4 1.61 4
Outer link 0.01 5 1.67 3
Code -0.02 6 1.58 6

According to the above results, we conclude that the ref-
erence part is the most important part in the related Python
issues of the cross language knowledge transferring. Once we
search for the cross language issues, scanning for the reference
type of knowledge is highly recommended.

Answer to RQ3: based on the comparison of spearman
correspondence and weighted mean helpfulness, we ob-
serve that reference knowledge type turns out to be the
most useful knowledge.

VI. THREATS TO VALIDITY

We select 15 of the open source R repositories from GitHub
which all come from machine learning classifiers category.
They do not cover the issues in all kinds of R repositories,
and new issues submitted after November 2018 are not in-
cluded. Nonetheless, these 15 repositories are popular and
well known which cover several classifiers. Furthermore, it
is recommended that more projects with more issues in R and
Python should be tested using our approach, and the result
may vary.

For each issue-pair, we browse their content, try to under-
stand their ideas, carefully judge the similarity levels and issue
groups. We then gather all the result from 3 members and do
the double-check job to ensure their correctness. Thus, we
believe that all the issue-pairs we extracted are true positive.
However, we compute the similarities by only using natural
language text, and excluded the code, chart, etc., which may
lead to lose some issue-pairs that might also be helpful for
cross-language referring.

Text similarity search uses the similar text mining method
with dataset extraction. Though we employ two different text
mining methods while doing the searching job in RQ1, there
might be some coincidence that some issues have no discus-
sion part, which may cause little higher of the successfully
searched rate.

VII. CONCLUSIONS AND FUTURE WORKS

Different languages are used to solve similar problems,
which gives rise to knowledge transfer across different lan-
guages development. In this paper, we discover knowledge
transfer between 15 machine learning R repositories and
Scikit-Learn by analyzing their issues on GitHub.

We extract 149 related issue-pairs from 1161 R issues
and 7496 Scikit-Learn issues manually. We experiment and
observe that text similarity search gains high successfully

searched rate and the perfect performance on ranking on
searching corresponding issues for just created issues. Then,
we abstract 6 types of knowledge from cross language issue,
which are presented in 149 issue-pairs. Finally, in order to
calculate the helpfulness, we rank the knowledge type by two
indicators.

In the future, we will extend the study by enlarging the
datasets from more different languages to conduct a more
complete investigation. At the same time, we will also improve
our similarity approach by recording more information (like
code), which is considered to be more helpful.

ACKNOWLEDGEMENTS

The work is supported by National Key R&D Program
of China (Grant No. 2018YFB1003901) and the National
Natural Science Foundation of China (Grant No. 61872177
and 61772259).

REFERENCES

[1]1 Y. Zhang, D. Lo, P. S. Kochhar, X. Xia, Q. Li, and J. Sun, “Detecting
similar repositories on github,” in 2017 IEEE 24th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER),
Feb 2017, pp. 13-23.

[2] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar
software applications,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12. Piscataway,
NJ, USA: IEEE Press, 2012, pp. 364-374. [Online]. Available:
http://dl.acm.org/citation.cfm?1d=2337223.2337267

[3] S. Athey, J. Tibshirani, S. Wager et al., “Generalized random forests,”
The Annals of Statistics, vol. 47, no. 2, pp. 1148-1178, 2019.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825-2830, 2011.

[5]1 M. N. Wright and A. Ziegler, “ranger: A fast implementation of random
forests for high dimensional data in c++ and r,” Journal of Statistical
Software, vol. 077, no. 1, 2015.

[6] T.F. Bissyande, D. Lo, L. Jiang, L. Reveillere, J. Klein, and Y. L. Traon,
“Got issues? who cares about it? a large scale investigation of issue
trackers from github,” in IEEE International Symposium on Software
Reliability Engineering, 2013.

[7]1 E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Software Engineering, vol. 21, no. 5, pp. 2035-2071,
2016.

[8] Google, “A pre-trained dataset from google news, google-news-vectors-
negative300,” https://code.google.com/archive/p/word2vec,

[9]1 X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word embeddings
to document similarities for improved information retrieval in software
engineering,” in Proceedings of the 38th international conference on
software engineering. ACM, 2016, pp. 404-415.

[10] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and
knowledge-based measures of text semantic similarity,” Unt Scholarly
Works, vol. 1, pp. 775-780, 2006.

[11] L. M. Hsu and R. Field, “Interrater agreement measures: Comments
on kappan, cohen’s kappa, scott’s 7, and aickin’s «,” Understanding
Statistics, vol. 2, no. 3, pp. 205-219, 2003.

[12] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159-174, 1977.

[13] X. Yang, D. Lo, X. Xia, L. Bao, and J. Sun, “Combining word em-
bedding with information retrieval to recommend similar bug reports,”
in IEEE International Symposium on Software Reliability Engineering,
2016.

[14] C.Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more accurate retrieval
of duplicate bug reports,” in IEEE/ACM International Conference on
Automated Software Engineering, 2011.

[15] D. J. Best and D. E. Roberts, “Algorithm as 89: The upper tail
probabilities of spearman’s rho,” Journal of the Royal Statistical Society,
vol. 24, no. 3, pp. 377-379, 1975.

http://dl.acm.org/citation.cfm?id=2337223.2337267
https://code.google.com/archive/p/word2vec

	Introduction
	Our Approach
	Issues Collecting
	Similarity Computing
	Manual Judgement
	Preprocessing Candidate Issue-Pairs
	Checking Related Issues
	Evaluating Related levels

	Linking Issues from R to Python
	Types of Knowledge
	Helpfulness of Knowledge
	Threats to Validity
	Conclusions and future works
	References

