
Call Sequence List Distiller for Practical Stateful API Testing

Koji Yamamoto, Takao Nakagawa, Shogo Tokui, Kazuki Munakata
Fujitsu Laboratories Ltd.

{yamamoto.kouji,nakagawa-takao,tokui.shogo,munakata.kazuki}@fujitsu.com

Abstract

Necessary and sufficient combinatorial testing is impor-
tant especially for continuous development to provide state-
ful service APIs that are invoked by an unspecified number
of users. Listing API call sequences for this type of test
cases is an important factor in achieving both high test cov-
erage and short time required for test execution. This paper
proposes a method to list fewer call sequences without re-
ducing API coverage, and a method to measure the degree
of adequacy of an API sequence for testing. Evaluations of
more than 400 services show that the listing method reduces
the number of sequences for half of the services, and that the
measurement method can determine whether the reduction
is possible or not for each service with high probability.

Keywords: test for microservices; call sequence listing;
stateful API; API specification; API fuzzing

1. Introduction

In the development of application systems using mi-
croservices, stateful fundamental functions on remote com-
puting nodes are combined to realize more advanced and
valuable functionality. The continuous development pro-
cess to provide remote side services of fundamental func-
tions involves testing to ensure that any combination of
function calls works as intended by the developers.

Each test case of the combinatorial tests for this purpose
consists of three parts: a sequence of APIs to invoke func-
tions, input parameter values of the functions, and expected
output values returned by the functions. Among them, se-
quences (“seqs” hereinafter) of APIs are most important be-
cause the seqs determine most of the test coverage and the
time required to complete the test process.

Representative previous work to list API call seqs for
services is RESTler [1] to our knowledge. It lists API call
seqs by appending an API to the previously listed seq that
outputs values required for the API.

DOI reference number: 10.18293/SEKE2020-095

Figure 1. APIs for motivating example and
value-sharing groups

From another perspective, test case enumeration pursues
two types of aims. One is to find unexpected defects. The
other is to ensure the functionalities are (still) as expected.
The former is important for testing newly created features.
The latter is crucial to continuous development of services.
RESTler has achieved the former aim. So the method lists
all the API seqs in which the value that each API takes is
emitted by the predecessor APIs. However, it is necessary
to reduce the number of seqs for the latter aim.

Let us see a visualized version1 of API specification
(“spec” hereinafter) in Figure 1 for a certain service. The
spec includes APIs that have little to do with each other.
Though some APIs in it should be called one after the other
for test cases, others need not. It is hypothesized that the
values handled by APIs reflect the developers’ intent as
to which API call should or should not follow a particu-
lar API call. For instance, the API get/user/membership

1Ovals in the figure represent APIs. Dashed rectangles stand for values
emitted or consumed by APIs. Dashed arrows indicate data flow.

API spec is assumed to be written in a common format such as OpenAPI
specification[2] (OAS). For example, the oval named “get/user/mem-
bership” represents the API spec in YAML style of OAS2 as follows:
p a t h s :

/ u s e r / membership :
g e t : { t a g s : [s c h e d u l e r s e r v i c e]

p a r a m e t e r s : [{name : u s e r i d , t y p e : s t r i n g , r e q u i r e d : t r u e }]
r e s p o n s e s : {200: {

schema : { t y p e : a r r a y ,
i t e m s : { t y p e : o b j e c t ,

p r o p e r t i e s : { t e a m i d : { t y p e : s t r i n g }} ,
r e q u i r e d : [t e a m i d]}}}}}

(“APIM” for short) emits value named team id; the API
get/team/schedule (“APIS”) takes the value. These indicate
a call of APIM can be followed by a call of APIS. Therefore
API call seq “APIM and then APIS” should be a candidate
test case. The API get/user/fee (“APIF”), contrarily, does
not emit values that others take, nor does it take values that
others emit. So APIF should follow nothing and vice versa.
To decrease in seqs, the above hypothesis can be used to
avoid API seqs that are not intended by the developers.

Value-sharing groups (SGs). In order to determine the
degree of adequacy of API call seqs for test cases, we pro-
pose a method to construct groups in which APIs can pass
values to each other. We call the groups as value-sharing
groups. More precisely, a value-sharing group is defined
as a minimum disjoint set of APIs that exchange values by
emitting only to or receiving only from other member APIs
in the same set. In this paper, values are identified by name.

Value-sharing groups could be a method to measure to
what extent each API call seq is adequate for a test case by
counting the number of sharing groups that APIs in each
seq belong to. Formally, a seq is the most adequate iff
|{sg ∈ SharingGroups(spec)|sg ∩ seq ̸= ∅}| = 1 by us-
ing function SharingGroups in Algorithm 1 where spec is
a set of API specs and seq is a set of APIs contained in
the seq. For example, APIs in Figure 1 are divided into
two value-sharing groups drawn as two rectangles. That is,
if the seq is the most adequate, the set seq of APIs in the
seq holds seq ∈ P({APIM, APIS})∪P({APIF}) instead of
seq ∈ P({APIM, APIS, APIF}).

This determination could help filter out API call seqs that
previous work lists to reduce the time required for testing.

We preexamined API specs for 2,157 cases2 of 410
REST services. Half of cases have more than one sharing
groups. Therefore, We have developed a method to list API
call seqs for testing so that each of the listed seqs is associ-
ated with one value-sharing group for almost all seqs.

This method lists API call seqs with exactly one sharing
group for all the investigated cases. For 1/3 of the cases, our
method lists fewer seqs than previous work. Nevertheless,
API coverage by our method is equivalent to the previous
work, except for one of the 2,157 cases investigated. We
suppose our method reduces the number of seqs for testing
without reducing test coverage.

Contributions. Contributions of this work are:

• We have developed a measurement method to decide
the adequacy degree of API call seqs for testing.

• We have developed a way to list fewer API call seqs.
2In general, a service contains multiple service categories, which are

identified by tags if the spec format is OAS for example. For each of the
410 services, each category identified by tag is treated as a case.

• We have performed quantitative evaluation of the pro-
posed listing method using 2,157 cases of REST ser-
vices. The evaluation results show our method lists
fewer API call seqs for testing than previous work
without reducing API coverage.

We show the proposed method and evaluation in sections
2 and 3 resp., discuss related work in 4, then conclude in 5.

2. Proposed Method

To reduce API call seqs for testing, two methods have
been developed. One is to divide APIs to value-sharing
groups (SGs), which appears in subsection 2.2. It is used to
measure a set of API specs and an API call seqs by counting
the number of associated sharing groups. Another method
is to list the reduced number of API call seqs, which ap-
pears in subsection 2.3. The method is also based on the
relationships between values emitted or taken by APIs.

2.1. Prerequisites

Suppose you have API specs for a service obtained by
parsing the API spec file (in OpenAPI Specification [2] or
other formats). Each parsed API spec corresponds to a spe-
cific API, and consists of the following information3:

• A set ivals of tuples of the API input values. A tuple
consists of a value name name, a boolean reqd indi-
cating that the value must be input, and a value type.

• A set ovals of tuples of the API output values. The
tuple type is the same as in ivals, but reqd indicates
the value must be outputted.

2.2. Value-sharing group listing function

Function SharingGroups in Algorithm 1 receives a set of
API specs each of which is of type described in subsection
2.1 to output a set of SGs for the spec set.

The function creates SGs one by one. Variables group,
ref , and namsN contain the SG being created, a set of
names for values emitted or taken by at least one mem-
ber API of the SG, and a set of names for values emitted
or taken only by members newly added to the SG, respec-
tively. The function attempts to select new members of the
SG (ln. 5). If no member are selected, the function decides
to create another SG with any API in spec as an initial mem-
ber (ln. 7, 11). Otherwise, the function adds selected mem-
bers to the SG (ln. 11). In either case, the function adds the
names for the values that the new members emit or take to

3A spec also contains information required to call the API. This in-
formation includes endpoint, base path, and scheme (GET, PUT, and
DELETE for example) if the original API spec is in OAS.

Algorithm 1 SharingGroups
Input: A set spec of API specs.
Output: A set groups that stores all the sharing groups as pairs

of sets. The 1st set is of APIs in a sharing group. The 2nd set
is of value names that the APIs in the group take or emit.

1: ivals← NS(∪
api∈spec

api.ivals); ovals← NS(∪
api∈spec

api.ovals)

2: ungot← ivals \ ovals; unused← ovals \ ivals
3: groups← ∅; namsN ← ∅
4: while spec ̸= ∅ do
5: memsN ← {api ∈ spec|VALNS(api) ∩ namsN ̸= ∅}
6: if memsN = ∅ then
7: api←select an element from spec; memsN←{api}
8: group← ∅; ref ← ∅ ▷ allocate new memories
9: groups← groups ∪ {⟨group, ref⟩} ▷ stores group

and ref as references to reflect changes after that in groups.
10: end if
11: group← group ∪memsN
12: namsN ← ∪api∈memsN VALNS(api) \ ref
13: ref ← ref ∪ namsN
14: namsN ← namsN \ (ungot ∪ unused)
15: spec← sepc \memsN
16: end while
17: return groups
18: function VALNS(api)
19: return NS(api.ivals)∪NS(api.ovals)
20: end function

Algorithm 2 Common functions
21: function NS(vals)
22: return {v.name|v ∈ vals}
23: end function

ref (ln. 13), then removes the members from spec (ln. 15),
and replaces namsN with a name set for the values emitted
or taken only by newly added members (ln. 14).

The time complexity of Algorithm 1 is O(S2N) for S
API specs and N value names because the most expensive
part, ln. 5, needs O(SN) at each run and is run O(S) times.

Solid rectangles in Figure 1 shows the result for example.

2.3. Sequence (seq) listing algorithm

Function ListAPISeqs in Algorithm 3 takes API specs
spec, and builds an API call seq list for testing.

First the function lists the initial API seqs (ln. 27), and
stores them into the queue todo. Each element in the queue
todo is a triple of an API seq and two sets of value names
that APIs in the seq take and emit resp. The function picks
an API seq (ln. 29), and checks for executability by calling
INVOKE4 (ln. 30). If all the APIs in the seq have been run,
the function stores it to the result list seqlist (ln. 32). If the
last API call has ended successfully5, the function extends

4The definition of the function is omitted.
5For REST APIs, ListAPISeqs uses HTTP status code to judge success.

Algorithm 3 ListAPISeqs
Input: A set spec of API specs, a max count Nlist of seqs, and a

max length Nseq of a seq.
Output: seqlist that stores all listed API seqs.
24: seqlist← [] ▷ seqlist is a list of API lists.
25: todo← [] ▷todo is a queue for triples of an API list, and two

sets of names for values taken or emitted by APIs in the list.
26: given←NS(∪api∈specapi.ivals)\NS(∪api∈specapi.ovals)
27: EXTEND([], ∅, ∅)
28: while todo ̸= [] ∧ |seqlist| ≤ Nlist do
29: dequeue ⟨seq, taken, emitted⟩ from todo
30: ⟨done whole, last result⟩ ← INVOKE(seq)
31: if done whole then
32: append seq to seqlist
33: if last result is successful ∧ |seq| < Nseq then
34: EXTEND(seq, taken, emitted)
35: end if
36: end if
37: end while
38: procedure EXTEND(seq, taken, emitted)
39: ref←emitted ∪ taken; feedable←given ∪ ref
40: for each next ∈ spec do
41: starving ← NS({v ∈ next.ivals|v.reqd})
42: if starving ̸⊂ feedable then
43: continue to process rest of next-s
44: end if
45: taking ← NS(next.ivals)
46: if seq ̸= [] ∧ (ref \ given) ∩ taking = ∅ then
47: continue to process rest of next-s
48: end if
49: seqN ← seq + [next]
50: takenN ← taken ∪ (feedable ∩ taking)
51: emittedN ← emitted ∪ NS(next.ovals)
52: enqueue⟨seqN , takenN , emittedN ⟩to todo
53: end for
54: end procedure

it (ln. 34) for longer seqs using procedure EXTEND.
Procedure EXTEND appends a API next to the specified

seq seq to get a longer seq seqN . Not all APIs are used for
appending. The procedure uses the following value name
sets to pick APIs to append to the seq: (1) given – A name
set of values taken by at least one APIs in spec and emitted
by no API. The values are treated as coming from outside
the APIs in spec; (2) ref – A name set of values emitted or
taken by at least one APIs in seq; (3) feedable – A name
set of values supplied by APIs in seq or externally supplied.
EXTEND picks APIs that meet both of the following condi-
tions (Note previous work employs condition I alone):

I All the values needed by the API are in feedable(ln. 42).

II If the specified seq seq is not empty, (ref \ given) con-
tains at least one value taken by the API (ln. 46).

EXTEND appends each API that holds the conditions to seq

to make a new seq seqN (ln. 49), then queues seqN to todo
besides names of values taken or emitted by seqN (ln. 52).

The time complexity of Algorithm 3 is O(MQSN) for
max API seq length Q, S API specs, N value names,
and at most M members for a SG, because EXTEND,
which is the most expensive and consumes O(SN), is run
O(MQ) times. On the other hand, the previous work needs
O(SQ+1N). It is larger than the former complexity because
O(S) = O(GM) ≥ O(M) where G is the number of SG.

The output seqs for APIs in Figure 1 are “APIF”,
“APIM”, and “APIM, APIS” for example. Besides them,
previous work outputs “APIF, APIM”, and “APIM, APIF”.

2.4. Implementation

We have implemented the functions SharingGroups and
ListAPISeqs in Python3. We also have made an OAS2
parser required for the prerequisites in section 2.1. It also
decomposes arrays6 in OAS2 to obtain value names of array
items, such as team id in the motivating example API spec.
The implementation includes code in which the condition
II in section 2.3 is disabled to emulate the way of previous
work like RESTler for comparison purposes. In the follow-
ing, the implementation of the proposed method is called
DC and the previous work is called SC.

3. Evaluation and discussion

Using the implementation above, we aim to answer the
following research questions:

Q1: Does DC (proposed method) list fewer API call seqs
than SC (previous work)?

Q2: Does DC decrease value-sharing groups (SGs) per
seq? If so, is the decrease related to the decrease in
the listed seq?

Q3: Does DC achieve the same API coverage as SC?

Q4: Is the decrease in listed call seq for a case related to the
number of value-sharing groups (SGs) in that case?

To answer these fairly, we have examined all the API
specs described in OAS 2.0 collected by APIs.guru[3]7.

This examination omits the actual API call portion of
ListAPISeq8 due to lack of access rights to the services. We
listed API call seqs up to length 3. We canceled listing if the
queue todo was still non-empty after 2,000 seqs had been
listed for each service9. The distribution of the examined
cases with each number of SGs is shown in Figure 2.

6Object types are not supported yet.
7These specs may not have been created by the developers.
8It was replaced with a function that always returns ⟨true, true⟩.
9We gave up 125 of 2,282 cases in 32 of 442 services.

Figure 2. The examined cases distribution

Figure 3. Plots for seqs and groups per seq

3.1. Decrease in seqs and sharing groups (Q1 & Q2)

The rows for ns in Table 1 and the scatter plot in Figure 3
show Q1 as yes. The number ns of seqs listed by DC is less
than or equal to the number of seqs listed by SC. Each grey
dot in the figure indicates how much the number of seqs for
each case is reduced by DC.

The rows for ng in the table say DC sets ng to 1 in almost
all cases. On the other hand, the box plot in Figure 3 shows
the numbers of SGs per seq listed by SC vary from 1 to
3. Table 2 shows ns is related to decrease of ng . These
respond affirmatively to the both questions of Q2.

Category |Cases|
Examined cases 2,157
The number ns of increased by DC 0
listed seqs equivalent 651

decreased by DC 1,506
The number ng of increased by DC 0
sharing groups equivalent (both are 1) 623
per seq (mean value) decreased to 1 by DC 1,498

other; no mean value 36
API coverage increased by DC 0
(The number of equivalent 2,154
APIs that appear (both are 100%) (2,033)
in the listed seqs) (both are < 100%) (121)

decreased by DC 1
other; no seqs listed 2

Table 1. The numbers of cases

|Cases| ng decreased to 1 otherwise
ns not decreased 0 651
ns decreased 1498 8

(The p-value for χ2 test is 0.0.)

Table 2. Relation of ng and ns

|Cases| Cases having multiple SGs single SG
ns not decreased 39 612
ns decreased 1435 71

(The p-value for χ2 test is 0.0.)

Table 3. Relation of the number of SGs and ns

The answer to Q1 indicates DC reduces API call seqs.
The answer to Q2 says the reduction may be due to DC cre-
ating seqs containing only APIs of a single sharing group.

3.2. API coverage (Q3)

The rows for API coverage in Table 1 show that method
DC holds the number of APIs that appear in the listed seqs
in almost all cases while the method reduces the listed seqs.

3.3. Relationship between seq and SGs (Q4)

Table 3 shows that the fact that a case has multiple shar-
ing groups (SGs) is related to the fact that DC lists fewer
call seqs than SC. Thus, the number of SGs for a service
can indicate the possibility of pruning the call seqs for a
service by using the proposed method.

3.4. Threats to the validity

One threat to the validity is the services to be examined.
We use API specs in APIs.guru[3] alone. The API specs
may be biased while the distribution of the number of SGs
in Figure 2 appears natural and an evidence of unbiased
to us. Besides, we did not evaluate our method with finer
grained measures (ex. code coverage) since internal infor-
mation like code on the examined services is not available.

Another threat is we have not actually called APIs to ex-
amine call seqs. Even if the method is based on static anal-
ysis, the result should be confirmed by actual execution re-
sults. In particular, each seq listed by the proposed method
must be checked by actual calls to see it is actually practical.

An important internal threats to the validity is that cat-
egorization by shared values may not capture the essential
characteristics of API specs. There may be more intuitive
and obvious factors. The scatter plot in Figure 3 implies that
there can exist other drivers to control the number of seqs
listed, even if the shared values is one of the drivers.

4. Related Work

Our algorithm is based on RESTler [1]. It aimed at find-
ing unexpected results. To address another aim, seq reduc-
tion, we have to add the idea of condition II in section 2.3.

We suppose the proposed approach also improves meth-
ods aiming at finding unexpected results since our approach
can support effective testing by reducing redundant call
seqs. RESTler calls itself an API fuzzing tool. One def-
inition of fuzzing is “the execution of the program under
test (PUT) using input(s) sampled from an input space that
protrudes the expected input space of the PUT”[4] (the em-
phasis is also by [4]). API seq listing without restriction
does not only protrudes the input space10 but may enlarge it
explosively. Our method can control its degree.

MoonShine[5], which lists API call seqs for OS kernels,
took a similar approach to ours. Its static analysis has the
algorithm for cond. I in section 2.3, though cond. II is miss-
ing. As another advantage, ours depends only on API specs
to support PUTs written in any programming languages.

5. Conclusion

We have developed a method to list fewer API call seqs
than previous work without losing API coverage. This re-
duces the number of seqs in half of cases. Another devel-
oped method determines whether a seq list is reducible for
each case. Nevertheless, we are afraid that these methods
alone are insufficient for more practical testing of stateful
service APIs. One key to improving the methods is to use
attributes of values that APIs input and output more deeply
(ex. on the types and the degree of necessity of the values).

References

[1] V. Atlidakis et al. RESTler: Stateful REST API
fuzzing. In IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pages 748–758, 2019.

[2] OpenAPI specification.
http://swagger.io/resources/open-api.

[3] APIs-guru - Wikipedia for web APIs.
https://github.com/APIs-guru/openapi-directory.

[4] V. J. M. Manès et al. The art, science, and engineering
of fuzzing: A survey. IEEE Transactions on Software
Engineering (Early Access), pages 1–1, 2019.

[5] Shankara Pailoor et al. Moonshine: Optimizing os
fuzzer seed selection with trace distillation. In Pro-
ceedings of the 27th USENIX Conference on Security
Symposium, SEC ’18, page 729–743, 2018.

10Call seqs are also inputs for combinatorial testing of services.

