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Abstract—Most existing studies on zero-shot recognition（ZSR）
are typically about learning a shared embedding space to allow 

comparison of class prototypes by using nearest-neighbor methods, 

which suffer from hubness and bias problem. Recent studies 

attempted to directly synthesize samples of unseen classes by using 

generative model and have not encountered the aforementioned 

problems. However, their performance is limited by the inherent 

problems of VAE and GAN, such as reconstruction loss, mode 

collapse and unstable training procedure. In this paper, we explore 

and exploit a novel architecture of the generative model for ZSR, 

referred to as conditional normalizing flow-based generative 

model (CNFG). The proposed model consists of a cascade of affine 

couple transformations and can capture the low-distribution 

modes of real data density by virtue of its stable and exact log-

likelihood maximum training procedure. Extensive experiments 

and result comparisons of 5 benchmarks have indicated that the 

normalizing flow-based model is superior to other generative 

models for ZSR in generalized settings.  

Keywords—zero shot recgnition, generative model, affine couple 

transformation, hubness problem, model collapse 

I.  INTRODUCTION  

Zero-shot recognition (ZSR) is a learning paradigm that 
attempts to recognize one object without any (or with zero) 
annotated data of the object in the training set. Motivated by the 
learning paradigm of human cognition, ZSR uses auxiliary 
semantic information of the category to train an effective model, 
which is required to correctly recognize not only the categories 
that appear in the training set (seen class) but also those that do 
not appear in the training set (unseen class). The key point of 
ZSR is to effectively explore and leverage the semantic 
knowledge of category that are shared between the seen and 
unseen class. Early studies on ZSR have mainly focused on the 
identification of a discriminative semantic representation of 
categories, such as semantic attributes or word embedding of 
labels. Leveraging these semantic knowledges, a mapping 
function from a visual/semantic embedding space to a shared 
embedding space is learned in the training set and then applied 
to the testing set. The data distribution of the two domains 
considerably vary. Thus, several intrinsic problems of the 
existing mapping-based methods are encountered.  

Hubness Problem: [1] has theoretically and empirically 
demonstrated that hubness curse is an intrinsic characteristic of 

data distribution density in a high-dimensional space. That is, 
some hub vector points, which are not similar to other vector 
points, may be near many other points in a high dimensional 
space if measured using the nearest-neighbor search methods. 
The category label in the paradigm of mapping-based ZSR 
methods is determined by using the nearest-neighbor classifier 
to identify the most similar class prototype in the shared 
embedding space. Thus, [2] argue that the hubness problem also 
severely pollute the existing zero-shot method.  

Domain Shift and Bias Problem: [3] argue that the 
mapping function, which is learned from the seen class, is often 
biased when applied directly to the unseen class because of 
disjoint classes and the inconsistent manifestation of visual 
attributes between training data and testing data. This occurrence 
is referred to as the projection domain shift problem. 
Coincidentally, [4] also empirically show that the learned 
mapping function does not perform well in the generalized 
setting because mapping functions are biased either toward the 
seen class or the unseen class. 

Generative models have recently shown great potential for 
ZSR and have not encountered the aforementioned problems. 
These generative model-based ZSR methods attempted to 
synthesize samples of unseen classes conditioned by the 
semantic information by using variational autoencoder (VAE) or 
generative adversarial network (GAN) and cast zero-shot 
problem as a traditional supervised recognition problem. In this 
present study, we introduce a novel architecture of the generative 
model for ZSR, referred to as conditional normalizing flow-
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Figure 1.  Overall pipeline of the proposed model 
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based generative model (CNFG), which consists of a cascade of 
affine couple transformations and can capture the low-
distribution modes of real data density by virtue of its stable and 
exact loglikelihood maximum training procedure. 

To summarize, the main contribution of this study is 
threefold. 

1) To the best of our knowledge, we are the first to explore 
and exploit the normalizing flow-based generative model to 
synthesize unseen data for ZSR problem. 

2) We theoretically analyze and derive the formula of our 
proposed model and argue that our model can capture the low-
distribution mode from real data density. 

3) We also conduct extensive experiments and comparisons 
on 5 benchmarks, which shown that the normalizing flow-based 
generative model is superior to other generative models for ZSR 
in generalized settings. 

II. RELATED WORK 

Most existing studies on ZSR are typically about learning a 
shared embedding space to allow comparison of class prototypes 
by using nearest-neighbor methods. The pioneering work [5] is 
the first to propose embedding each class label into the space of 
attribute vector and cast earlier attribute-based multi-task 
learning as a label-embedding problem. ESZSL [6] argue that 
existing approaches to ZSR are highly sophisticated and propose 
a simple but effective compatibility function to model the 
relationship between visual embedding and attribute vector by 
explicitly regularizing the objective function. Prompted by the 
encoder-decoder paradigm, SAE [7] present a novel architecture 
consisting of two components. The encoder is responsible for 
projecting a visual representation into the semantic space similar 
to most existing ZSR models, and an additional decoder 
performs the reconstruction from a semantic representation to 
the visual space. Instead of embedding into a semantic space, 
DEM [8] propose to use the visual embedding space as the 
shared embedding space, which less frequently encounters the 
hubness problem. [9]innovatively introduce graph convolutional 
network (GCN) for predicting the class visual prototype by using 
both semantic embedding and the categorical relationships, with 
semantic embedding as input and visual embedding space as the 
shared embedding space.  

Moreover, generative models have recently shown great 
potential for ZSR. GAMM [10] compare four different 
architecture of conditional data generators and emphasize the 
importance and efficiency of aligning the distributions of real 
and fake data by using explicit measure metric of distribution 
divergence, such as the KL divergence and maximum mean 
discrepancy. CVAE [11] uses the vanilla conditional variational 
auto-encoder (cVAE) model to directly generate samples 
conditioned by the given attribute representation for the class. 
SE-GZSL [12] further introduce a feedback-driven mechanism 
for cVAE architecture, which is coupled with a multivariate 
regressor to learn a projection from the cVAE decoder output to 
the representation of attributes that help increase the 
discriminative nature of the generated data. f-CLSWGAN [13] 
enhances Wasserstein GAN by adding a classification loss to the 
original generator loss for ZSR and enforces the model to 

generate sufficient image features that are more suitable for 
training a final multi-modal classifier. Inspired by cycle 
consistency loss, [14] introduces a multi-modal cycle 
consistency loss term that enforces better reconstruction from 
the generated visual representations back to semantic embedding. 
Using cyclic consistency loss and dual adversarial loss, [15] also 
proposed a novel model, referred to as GDAN, which combines 
visual-to-semantic projection, semantic-to-visual projection and 
a metric learning module in a unified framework and boosts the 
performance of ZSR. GMN [16] equip a conditional GAN with 
the gradient matching loss, which can measure the quality of the 
gradient signal acquired from the synthesized samples.  

III. PRELIMINARY 

Estimating the underlying distribution density 𝑝(𝑥) of the 
dataset X is a classical challenging task in machine learning. To 
learn the most representative generative model, the KL 
divergence between real distribution 𝑝(𝑥)  and estimation 
distribution q(𝑥) has to be minimized 

KL(𝑝(𝑥) ∥ 𝑞(𝑥)) = ∫ 𝑝(𝑥) log
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 

= 𝐸𝑥~𝑝(𝑥) [log
𝑝(𝑥)

𝑞(𝑥)
] 

= 𝑐 − 𝐸𝑥~𝑝(𝑥) log 𝑞(𝑥) (1) 

or equally, maximizing the likelihood function 𝐸𝑥~𝑝(𝑥) log 𝑞(𝑥). 

The basic idea of the modern generative model is to introducing 
a latent variable z and then convert q(𝑥) into an integral formula 
of the following distribution 

q(𝑥) = ∫ 𝑞 (𝑥, 𝑧)𝑑𝑧 = ∫ 𝑞(𝑧)𝑞(𝑥|𝑧)𝑑𝑧 (2) 

where the prior distribution 𝑞(𝑧) of the latent variable z can be 
set as a common distribution density, such as the standard 
Gaussian density. The conditional distribution 𝑞(𝑥|𝑧) presents a 
generative procedure, which can be conditional Gaussian 
density or Fermi-Dirac density. 

However, the integral Formula (2) is intractable to 

optimization. Instead of minimizing KL(𝑝(𝑥) ∥ 𝑞(𝑥)) , VAE 

introduce a posterior distribution p(𝑧|𝑥) , referred to as the 
encoder procedure, and descend to minimize the KL divergence 
of the joint distribution density 

KL(𝑝(𝑥, 𝑧) ∥ 𝑞(𝑥, 𝑧))  

  = KL(𝑝(𝑥)𝑝(𝑧|𝑥) ∥ 𝑞(𝑧)𝑞(𝑥|𝑧)) 

 

Figure 2.  Pipeline of conditional affine coupling block(CACB) 



= ∬ 𝑝(𝑥)𝑝(𝑧|𝑥) log
𝑝(𝑥)𝑝(𝑧|𝑥)

𝑞(𝑥|𝑧)𝑞(𝑥)
𝑑𝑧𝑑𝑥 

= 𝐸𝑥∼𝑝(𝑥) [∫ 𝑝(𝑧|𝑥) log
𝑝(𝑧|𝑥)

𝑞(𝑥|𝑧)𝑞(𝑧)
𝑑𝑧] 

 = 𝐸𝑥∼𝑝(𝑥)[𝐸𝑥∼𝑝(𝑧|𝑥)[− log 𝑞(𝑥|𝑧)] + 𝐾𝐿(𝑝(𝑧|𝑥) ∥ 𝑞(𝑧))] (3) 

 

which is an upper bound of KL(𝑝(𝑥) ∥ 𝑞(𝑥)) and is usually easy 

to calculate. The first item of Formula (3) is the reconstruction 
loss, and the second item is the KL loss of VAE. One of the 
problems of VAE is that the generated images are usually blurry. 
Owing to the Gaussian assumption of p(𝑧|𝑥)  and the upper 
bound of optimization, the representation ability of VAE is 
restricted. Moreover, [11] indicate that the generated image 
features of VAE are unimodal, which means that VAE cannot 
capture the low-distribution modes of the real probability 
distribution density.  

The normalizing flow-based invertible generative models 
take a different way, which supposes the conditional distribution 
q(𝑥|𝑧) as a Fermi-Dirac density 

q(𝑥|𝑧) = δ(𝑥 − 𝐺−1(𝑧)) (4) 

and tackle the aforementioned integral Formula (1) directly by a 
well-designed G(z), which needs to ensure not only the 
invertibility 

x = 𝐺−1(𝑧) ⇔ 𝑧 = G(𝑥) (5) 

but also, the tractable computability of Jacobian determinant 

𝜕G(𝑥)

𝜕𝑥
(6) 

If we set the prior distribution q(𝑧) as a standard multivariate 
Gaussian density 

q(𝑧) =
1

(2𝜋)𝐷 2⁄
𝑒𝑥𝑝 (−

1

2
‖𝑧‖2) (7) 

estimation distribution q(𝑥)  can be inferred by the integral 
transformation under the assumption of what G(z) is invertible 

q(𝑥) = q(𝐺(𝑥)) =
1

(2𝜋)𝐷 2⁄
𝑒𝑥𝑝 (−

1

2
‖𝐺(𝑥)‖2)

𝜕G(𝑥)

𝜕𝑥
(8) 

whose logarithmic form is 

log q(𝑥) = −
𝐷

2
log(2𝜋) −

1

2
‖G(𝑥)‖2 + log

𝜕G(𝑥)

𝜕𝑥
(9) 

which is the objective function of the normalizing flow-based 
invertible generative model. The invertibility is to satisfy the 
generative procedure, and the tractable computability of the 
Jacobian determinant is to facilitate the calculation of the loss 
function. To meet the requirements, the strategy of the 
normalizing flow-based invertible generative model is to use 
affine coupling blocks to construct G(𝑥) . The method is 
presented in detail in the following section. 

IV. APPROACHES 

Our goal is to directly synthesize samples of unseen classes 
by explicitly modeling the underlying distribution of training 
data by using a powerful CNFG model. We can then train an 
ordinary supervised learning classifier by using synthesized 

unseen data and real seen data. The classifier can be any off-the-
peg model, such as support vector machine (SVM) and SoftMax 
classifier. The overall pipeline of our model is illustrated in 
Figure 1. 

A. Affine coupling block 

The affine coupling block is the basic module of CNFG 
model, which was proposed by NICE [17] and popularized by 
Glow [18]. It is a combination of additive coupling block and 
multiplicative coupling block. An affine coupling block first 
splits the input 𝑥𝑖𝑛  into 𝑥1  and 𝑥2 , and then transforms 
[𝑥1, 𝑥2] into [ℎ1, ℎ2] by applying the affine coupling 
transformation 

ℎ1 = 𝑥1                                                   

ℎ2 = 𝑥2 ⊗ 𝑒𝑥𝑝(𝑚2(𝑥1)) + 𝑎2(𝑥1) (10)

whose inverse is 

𝑥1 = ℎ1                                                       

𝑥2 = (ℎ2 − 𝑎2(ℎ1)) ⊘ 𝑒𝑥𝑝(𝑚2(𝑥1)) (11) 

and the lower triangular Jacobians matrix is 

𝜕𝑓

𝜕𝑥
= (

𝕀, 𝕆

em⨂
𝜕𝑚2

𝜕𝑥1

⨂𝑥2 +
𝜕𝑎2

𝜕𝑥1

, 𝑒𝑚
) (12) 

where em = exp(𝑚2(𝑥1)). 

To improve the nonlinearity of transformation, [19] extends 
the affine coupling block by introducing a more complex affine 
transformation 

ℎ1 = 𝑥1 ⊗ 𝑒𝑥𝑝(𝑚1(𝑥2)) + 𝑎1(𝑥2) 

ℎ2 = 𝑥2 ⊗ 𝑒𝑥𝑝(𝑚2(ℎ1)) + 𝑎2(h1) (13) 

The conditional variant of the affine coupling block was first 
proposed by cINN [20]. Since the sub-transformation (𝑚𝑖 and 
𝑎𝑖 ) of each affine coupling block is not inverted, cINN 
concatenate the conditional information 𝑐 to the input of the sub-
transformation and does not violate the assumption of 
invertibility. We can obtain the conditional affine coupling 
transformation by simply replacing 𝑚𝑖(𝑥)  and 𝑎𝑖(𝑥)  with 
𝑚𝑖(𝑥, 𝑐)  and 𝑎𝑖(𝑥, 𝑐)  in Formula (13), respectively. The 
pipeline of the conditional affine coupling block is presented in 
Figure 2.  

B. Architecture of our model 

Our model is built on the principle of the conditional affine 
coupling transformation. The overall pipeline of the proposed 
model is presented in detail in Figure 1. Specifically, several 

TABLE I .             STATISTICS OF FIVE BENCHMARKS 

Dataset 
Total 
class 

Seen 
class 

Unseen 
class 

Total 
instance 

Train 
instance 

Test instance 
(unseen/seen) 

Attributes 

AwA1 50 40 10 30475 19832 5685/4958 85 

AwA2 50 40 10 37332 23527 7913/5882 85 

CUB 200 150 50 11788 7057 2679/1764 312 

SUN 717 645 72 14340 10320 1440/2580 102 

aPY 32 20 12 15339 5932 7924/1483 64 

 



conditional affine coupling blocks can be cascaded and 
constructed into a more complex and powerful generative model, 
referred to as conditional normalizing flow-based generative 
model (CNFG). Suppose each affine coupling transformation 
denoted as 𝑓𝑖 , where i = 1,2, … , n , then we can obtain a 
composite function 

                                z = 𝑓𝑛(ℎ(𝑛), 𝑐) 

= 𝑓𝑛 (𝑓𝑛−1(ℎ(𝑛−1), 𝑐)) 

= ⋯ 
= 𝑓𝑛(𝑓𝑛−1(… 𝑓0(𝑥, 𝑐) … )) 

= 𝐺(𝑥, 𝑐)                          (14) 

which is the conditional variant of the well-desired 𝐺(𝑥, 𝑐) in 
Formula (4). We generally denote the encoding procedure of the 
CNFG model as 𝐺(𝑥, 𝑐; 𝜃). The inverse or decoding procedure 
of the network is denoted as 𝐺−1(𝑧, 𝑐; 𝜃) , representing the 
generative procedure. Our goal is to optimize the network 
parameters θ by maximizing the logarithmic form of q(x) in 
Formula (9). The Jacobian matrix of affine coupling 
transformation strictly adheres to the lower or upper triangular 
form, as seen in Formula (12) and we can view it as a constant 

𝜕𝑓

𝜕𝑥
= c (15) 

The partial derivative with respect to x of G(𝑥, 𝑐)  is also a 
constant C. 

𝜕G(𝑥, 𝑐)

𝜕𝑥
=

𝜕𝑓𝑛

𝜕𝑓𝑛−1

∙
𝜕𝑓𝑛−1

𝜕𝑓𝑛−2

… =
𝜕𝑓0

𝜕𝑥
= 𝐶 (16) 

Thus, the objective function log q(𝑥, 𝑐) in Formula (9) can be 
simplified as 

 log q(𝑥, 𝑐) = −
1

2
‖𝐺(𝑥, 𝑐)‖2 + C (17) 

The maximum log likelihood 𝐸𝑥~𝑝(𝑥) log 𝑞(𝑥, 𝑐) is equal to the 

minimum of 1 2⁄ ‖G(𝑥, 𝑐)‖2. Finally, the maximum likelihood 
training procedure can be implemented by simply minimizing 
the mean square value of z =  𝐺(𝑥, 𝑐). 

Encoder procedure: We first extract all image features from 
real image instances by using the pre-trained ResNet101, then 
designate the 2048-dim image features x of the seen class and 
the corresponding attributes vector c as the inputs of the CNFG 
model. The input image feature x is transformed into the latent 
variable z via 12 conditional affine coupling blocks. The 
optimization objective is to minimize the mean square of z. 

Decoder procedure: Once the generative model is learned, 
we can sample the latent variable z from the multivariate 
Gaussian density and then combine z with the attribute vector c 
of the unseen/seen class as the inputs of the generative model. 
The output is the synthesized instance of the corresponding class. 
We can generate any number of instances for the unseen/seen 
class because the data distribution of the latent variable z and the 
attribute vector 𝐴 of the seen/unseen class is already known.  

Classification procedure: With the “pseudo” annotated data, 
an off-the-peg supervised classification model can be trained. In 
the proposed model, we use the SVM as the final classifier. In 
the generalized setting, the classifier is biased toward the seen 
class to a certain extent if we only use the original annotated 
instance of the seen class and the synthesized instance of the 
unseen class. Thus, we augment the original annotated instance 
of the seen class with the synthesized instance of seen class as 
well.  

V. EXPERIMENT 

We present experiments on the five publicly released 

benchmarks: Animals with Attributes 1 (AWA1) [21] , Animals 

with Attributes 2 (AWA2) [22], Caltech-UCSD Birds 200 

(CUB) [23], SUN attribute database (SUN) [24] and aPascal & 

aAyahoo (aPY) [25]. The statistical data for these benchmarks 

is listed in Table I. In accordance with [22], we use the 

harmonic mean average accuracy of the seen and unseen class 

in the testing set as the evaluation metric, which is defined as 

H = 2 ∗
𝑎𝑐𝑐𝑎𝑣𝑔

𝑠𝑒𝑒𝑛 ∗ 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛

𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 + 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛
(18) 

where 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 and 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛 represent the average accuracy of 

the seen and unseen class, respectively. We realize our model 

TABLE II.          RESULTS IN THE GENERALIZED ZSR SETTING 

Method 
SUN CUB AWA1 AWA2 aPY 

𝑎𝑐𝑐𝑎𝑣𝑔
𝑠   𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑠  H 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠  𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑠  H 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠  𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑠  H 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠  𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑠  H 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠  𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑠  H 

CONSE 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0 

CMT 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 1.4 85.2 2.8 

DAP 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0 

IAP 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4 

SSE 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4 

DEVISE 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2 

SJE 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9 

LATEM 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2 

ALE 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7 

SAE 8.8 18.0 11.8 7.8 54.0 13.6 1.8 77.1 3.5 1.1 82.2 2.2 0.4 80.9 0.9 

SYNC 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3 

ESZSL 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6 

GFZSL 0.0 39.6 0.0 0.0 45.7 0.0 1.8 80.3 3.5 2.5 80.1 4.8 0.0 83.3 0.0 

CVAE - - 26.7 - - 34.5 - - 47.2 - - 51.2 - - - 

SE-GZSL 30.5 40.9 34.9 53.3 41.5 46.7 67.8 56.3 61.5 68.1 58.3 62.8 - - - 

GMMN 37.7 39.7 38.7 55.9 49.1 52.3 70.1 51.5 59.3 77.3 46.3 57.9 64.4 28.5 39.5 

GDAN 89.9 38.1 53.4 66.7 39.3 49.5 - - - 67.5 32.1 43.5 75.0 30.4 43.4 

CNFG (ours) 41.2 43.6 42.3 62.3 47.1 53.6 69.5 57.4 62.8 69.3 58.1 63.2 66.8 31.0 42.3 

 



with the deep learning framework Keras. Specifically, we 

construct CNFG model with 12 affine couple blocks. Each 

affine couple block consists of the Shuffle, Split, Concat, 

AffineCouple and Subnetworks modules. The Shuffle module 

first disrupts the order of the input vector for fully mixing the 

information and increasing the nonlinearity of transformation. 

The Split and Concat modules are responsible for dividing the 

input x into two parts before affine transformation and 

reassemble it back after affine transformation. The 

AffineCouple module is implemented with the corresponding 

subnetworks 𝑎𝑖 and 𝑚𝑖 by using a multilayer perceptron with 3 

or 5 hidden layers and receiving the attribute vector directly as 

conditional information. The hidden layers have 1,024 units that 

are half the dimension of the image features. All multilayer 

perceptron subnetworks use ReLU activation function and 

appropriate dropout layers to avoid over-fitting. In the training 

procedure, we use Adam as our optimizer with the hyper-

parameters learning rate = 0.001 and momentum = (0.9, 0.999).   

A. Results Analysis 

In accordance with [22], we randomly divide all seen class 

instances into 80% and 20% parts in the class level for the 

generalized setting. The two parts are denoted as 𝑋𝑠𝑒𝑒𝑛
𝑡𝑟𝑎𝑖𝑛  seen 

and 𝑋𝑠𝑒𝑒𝑛
𝑡𝑒𝑠𝑡 , respectively. We train our generative model on the 

training set 𝐷𝑠𝑒𝑒𝑛
𝑡𝑟𝑎𝑖𝑛 , which consists of 𝑋𝑠𝑒𝑒𝑛

𝑡𝑟𝑎𝑖𝑛  and the 

corresponding attributes representation 𝐴𝑠𝑒𝑒𝑛
𝑡𝑟𝑎𝑖𝑛, then synthesize 

the pseudo instance of the seen and unseen classes by using our 

trained generative model and denoting them as 𝑋𝑠𝑒𝑒𝑛
𝑝𝑠𝑒𝑢𝑑𝑜

 and 

𝑋𝑢𝑛𝑠𝑒𝑒𝑛
𝑝𝑠𝑒𝑢𝑑𝑜

, respectively. We finally combine these pseudo 

instances with the original seen data 𝑋𝑠𝑒𝑒𝑛
𝑡𝑟𝑎𝑖𝑛 to fit a multi-class 

linear SVM as the final classifier. Once the final classifier is 

fitted, we evaluate the performance of the fitted classifier on 

𝑋𝑠𝑒𝑒𝑛
𝑡𝑒𝑠𝑡  and 𝑋𝑢𝑛𝑠𝑒𝑒𝑛

𝑡𝑒𝑠𝑡  using average accuracy metric and denoting 

them as 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛  and 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛 . Naturally, we calculate the 

harmonic mean value by using Formula (18) and present all 

𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 , 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛 and 𝐻  scores on each dataset, as seen in 

Tables II.  

Table II shows that the family of mapping-based methods 

have pervasive higher 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛  scores and lower 𝑎𝑐𝑐𝑎𝑣𝑔

𝑠𝑒𝑒𝑛 , 𝐻 

scores. These results demonstrate that the bias problem prevails 

in mapping-based ZSR methods, and those methods are not 

suitable for the generalized ZSR setting. Meanwhile, the family 

of ZSR methods based on the generative model made a good 

tradeoff between 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 and 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛  . The proposed CNFG 

model improves over the mapping-based method by 25% on 

AWA1/AWA2 benchmark and achieves the significant 

performance on the other benchmarks. We attribute this 

improvement to the efficiency of the generative model at 

capturing the underlying distributions. We also compare the 

proposed model with recent state-of-the-art methods based on 

the generative models. As shown in the bottom area of Table II, 

the proposed method outperforms most of the ZSR methods that 

are based on VAE or GAN. This difference in performance is 

attributed to the following: 1) the VAE and GAN have their own 

inner limitations, which are stated in Section III. 2) the proposed 

models can capture some low-distribution modes of real data 

density by virtue of its stable and exact log-likelihood 

maximum training procedure. 

B. Number of Synthesized Instances 

Although we can synthesize any number of instances for 

each class by using the generative model, it is inadvisable to 

arbitrarily generate large amounts of synthesized instances. In 

this section, we conduct several control experiments to evaluate 

the effects of NUM on the final classifier, which denotes the 

number of synthesized instances per class. We generate 7 

different numbers of synthesized instances for each class by 

using the trained CNFG model. Specifically, we generate [15, 

35, 55, 100, 150, 250, 350] instances per class for the CUB, 

SUN, and aPY datasets, as well as [100, 200, 300, 400, 600, 800, 

1000] instances per class for the AWA1/AWA2 dataset, which 

is the large-scale dataset on the basis of the number of instances 

per class. The result is shown in Figure 3. Observation based on 

Figure 3 include the following: 1) With an increase in the 

 

Figure 3.  Analysis of the effects of the number of synthesized instances on 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛(us), 𝑎𝑐𝑐𝑎𝑣𝑔

𝑠𝑒𝑒𝑛(s) and H scores. 

 

Figure 4.  Analysis of the effects of the data augmentation on 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛(us), 𝑎𝑐𝑐𝑎𝑣𝑔

𝑠𝑒𝑒𝑛(s), H scores, where wo_* represent without data augmentation  



number of synthesized instances, the average accuracy of the 

unseen class 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛  improves significantly for all datasets. 

This increasement is expected because there are no instances of 

the unseen class exist in the beginning. By contrast, this evident 

improvement demonstrates that the synthesized unseen data are 

very close to the real testing data of the unseen class. Thus, this 

increasement also indirectly proves the generative ability of the 

proposed model. 2) As the number of synthesized instances 

increases, the average accuracy of the seen class 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 mildly 

decreases in the testing set. This result is expected because the 

final classifier is trained on an increasing number of synthesized 

unseen data. The higher 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛  may be irregular in the 

beginning, given that the final classifier is unintentionally 

biased toward the seen class. 3) The harmonic mean score H 

first increases rapidly but does not improve substantially upon 

reaching certain level because the 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛 score and 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛  

scores change in opposite directions with an increase in the 

number of synthesized instances. Thus, synthesizing numerous 

instances is unnecessary.  

C. Data Augmentation 

In the generalized setting, we can fit the final classifier by 

merely using synthesized unseen data and original seen data or 

augment original seen data with synthesized seen data. To 

evaluate the effectiveness of data augmentation, we trained two 

different models for each benchmark with or without 

augmented seen data in the generalized setting. As shown in 

Figure 4, the accuracy of the seen class 𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛  is apparently 

higher than that of the unseen class 𝑎𝑐𝑐𝑎𝑣𝑔
𝑢𝑛𝑠𝑒𝑒𝑛  if we train the 

final classifier only on original seen data and synthesized 

unseen data. This mean that the final classifier is biased toward 

the seen class to a certain extent. The gap between the 

𝑎𝑐𝑐𝑎𝑣𝑔
𝑠𝑒𝑒𝑛and 𝑎𝑐𝑐𝑎𝑣𝑔

𝑢𝑛𝑠𝑒𝑒𝑛  scores has been alleviated in the case of 

data augmentation. The improvement is explained by the fact 

that the synthesized seen data enlarging the decision space of 

SVM not only for the seen class but also for the unseen class.  

 

REFERENCES 

[1] Miloš Radovanovic, Alexandros Nanopoulos, and Mirjana Ivanovi ´ c. 
Hubs in space: Popular nearest neighbors in high-dimensional data. 
Journal of Machine Learning Research, 11(Sep):2487–2531, 2010. 

[2] Angeliki Lazaridou, Georgiana Dinu, and Marco Baroni. Hubness and 
pollution: Delving into cross-space mapping for zero-shot learning. In 
Proceedings of the 53rd Annual Meeting of the Association for 
Computational Linguistics and the 7th International Joint Conference on 
Natural Language Processing (Volume 1: Long Papers), pages 270–280, 
2015. 

[3] Yanwei Fu, Timothy M Hospedales, Tao Xiang, and Shaogang Gong. 
Transductive multi-view zero-shot learning. IEEE transactions on pattern 
analysis and machine intelligence, 37(11):2332–2345, 2015. 

[4] Wei-Lun Chao, Soravit Changpinyo, Boqing Gong, and Fei Sha. An 
empirical study and analysis of generalized zero-shot learning for object 
recognition in the wild. In European Conference on Computer Vision, 
pages 52–68. Springer, 2016. 

[5] Zeynep Akata, Florent Perronnin, Zaid Harchaoui, and Cordelia Schmid. 
Label-embedding for attribute-based classification. In Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, pages 
819–826, 2013. 

[6] Bernardino Romera-Paredes and Philip Torr. An embarrassingly simple 
approach to zero-shot learning. In International Conference on Machine 
Learning, pages 2152–2161, 2015. 

[7] Elyor Kodirov, Tao Xiang, and Shaogang Gong. Semantic autoencoder 
for zero-shot learning. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pages 3174–3183, 2017. 

[8] Li Zhang, Tao Xiang, and Shaogang Gong. Learning a deep embedding 
model for zero-shot learning. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pages 2021–2030, 2017. 

[9] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition via 
semantic embeddings and knowledge graphs. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pages 6857– 
6866, 2018. 

[10] Maxime Bucher, Stéphane Herbin, and Frédéric Jurie. Generating visual 
representations for zero-shot classification. In Proceedings of the IEEE 
International Conference on Computer Vision, pages 2666–2673, 2017. 

[11] Ashish Mishra, Shiva Krishna Reddy, Anurag Mittal, and Hema A Murthy. 
A generative model for zero shot learning using conditional variational 
autoencoders. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition Workshops, pages 2188–2196, 2018. 

[12] Vinay Kumar Verma, Gundeep Arora, Ashish Mishra, and Piyush Rai. 
Generalized zero-shot learning via synthesized examples. In Proceedings 
of the IEEE conference on computer vision and pattern recognition, pages 
4281–4289, 2018. 

[13] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep Akata. Feature 
generating networks for zero-shot learning. In Proceedings of the IEEE 
conference on computer vision and pattern recognition, pages 5542–5551, 
2018. 

[14] Rafael Felix, Vijay BG Kumar, Ian Reid, and Gustavo Carneiro. 
Multimodal cycle-consistent generalized zero-shot learning. In 
Proceedings of the European Conference on Computer Vision (ECCV), 
pages 21–37, 2018. 

[15] He Huang, Changhu Wang, Philip S Yu, and Chang-Dong Wang. 
Generative dual adversarial network for generalized zero-shot learning. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pages 801–810, 2019. 

[16] Mert Bulent Sariyildiz and Ramazan Gokberk Cinbis. Gradient matching 
generative networks for zero-shot learning. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pages 2168– 
2178, 2019. 

[17] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear 
independent components estimation. arXiv preprint arXiv:1410.8516, 
2014.  

[18] Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow with 
invertible 1x1 convolutions. In Advances in Neural Information 
Processing Systems, pages 10215–10224, 2018.  

[19] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density 
estimation using real nvp. arXiv preprint arXiv:1605.08803, 2016.  

[20] Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten Rother, and 
Ullrich Köthe. Guided image generation with conditional invertible neural 
networks. arXiv preprint arXiv:1907.02392, 2019. 

[21] Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning 
to detect unseen object classes by between-class attribute transfer. In 2009 
IEEE Conference on Computer Vision and Pattern Recognition, pages 
951–958. IEEE, 2009. 

[22] Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot learning-the 
good, the bad and the ugly. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pages 4582–4591, 2017. 

[23] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian 
Schroff, Serge Belongie, and Pietro Perona. Caltech-ucsd birds 200. 2010. 

[24] Genevieve Patterson and James Hays. Sun attribute database: Discovering, 
annotating, and recognizing scene attributes. In 2012 IEEE Conference on 
Computer Vision and Pattern Recognition, pages 2751–2758. IEEE, 2012. 

[25] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing 
objects by their attributes. In 2009 IEEE Conference on Computer Vision 
and Pattern Recognition, pages 1778–1785. IEEE, 2009. 

 


